JPH075698B2 - Aromatic petroleum resin manufacturing method - Google Patents

Aromatic petroleum resin manufacturing method

Info

Publication number
JPH075698B2
JPH075698B2 JP2720687A JP2720687A JPH075698B2 JP H075698 B2 JPH075698 B2 JP H075698B2 JP 2720687 A JP2720687 A JP 2720687A JP 2720687 A JP2720687 A JP 2720687A JP H075698 B2 JPH075698 B2 JP H075698B2
Authority
JP
Japan
Prior art keywords
aromatic
petroleum resin
producing
aromatic petroleum
resin according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2720687A
Other languages
Japanese (ja)
Other versions
JPS63196616A (en
Inventor
肇 吉田
忠夫 深山
Original Assignee
三菱石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱石油株式会社 filed Critical 三菱石油株式会社
Priority to JP2720687A priority Critical patent/JPH075698B2/en
Publication of JPS63196616A publication Critical patent/JPS63196616A/en
Publication of JPH075698B2 publication Critical patent/JPH075698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F240/00Copolymers of hydrocarbons and mineral oils, e.g. petroleum resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、従来公知の石油樹脂に比べて、耐熱性および
耐候性が格段にすぐれた芳香族系石油樹脂の製造法に関
するものである。更に詳しくは、芳香族化合物とホルム
アルデヒドを原料とし、耐熱性および耐候性に悪影響を
及ぼす二重結合および酸素原子を実用上全く含有しない
高耐熱性および高耐候性の芳香族系石油樹脂を製造する
方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing an aromatic petroleum resin, which has significantly better heat resistance and weather resistance than conventionally known petroleum resins. More specifically, an aromatic petroleum resin having a high heat resistance and a high weather resistance, which contains practically no double bonds and oxygen atoms, which adversely affect the heat resistance and the weather resistance, is produced from an aromatic compound and formaldehyde as raw materials. It is about the method.

(従来の技術) 周知のように、石油樹脂は一般に石油類の熱分解により
得られる沸点範囲20℃〜280℃程度の分解油留分を重合
して製造される。
(Prior Art) As is well known, a petroleum resin is generally produced by polymerizing a cracked oil fraction having a boiling point range of about 20 ° C to 280 ° C obtained by thermal decomposition of petroleum.

芳香族系石油樹脂は、上記留分のうち140℃〜280℃程度
の沸点範囲の留分を出発原料とするのが一般的である。
この留分はスチレンおよびその誘導体、およびインデン
およびその誘導体等の炭素数9個から構成される芳香族
オレフィン類を主成分とするため、芳香族系石油樹脂は
系石油樹脂とも呼ばれている。
The aromatic petroleum resin generally uses, as a starting material, a fraction having a boiling point range of about 140 ° C. to 280 ° C. among the above fractions.
Since this fraction is mainly composed of aromatic olefins having 9 carbon atoms such as styrene and its derivatives, and indene and its derivatives, aromatic petroleum resins are also called C 9 petroleum resins. There is.

一般的な芳香族系石油樹脂の製造法は、原料油に対して
0.01〜5重量%の三フッ化ホウ素、塩化アルミニウム等
のフリーデルクラフツ型触媒を添加し、−30〜60℃で10
分間〜15時間程度反応し、反応終了後、アルカリを用い
て触媒を分解除去し、最後に蒸留等により未反応油およ
び低分子重合物を除去して製品とするものである。
A typical aromatic petroleum resin manufacturing method is
Add 0.01 to 5% by weight of boron trifluoride, aluminum chloride and other Friedel-Crafts type catalysts at -30 to 60 ° C for 10
The reaction is carried out for about 15 minutes to 15 hours, after the reaction is completed, the catalyst is decomposed and removed using an alkali, and finally unreacted oil and low molecular weight polymer are removed by distillation or the like to obtain a product.

製品の性状は用途に応じて各種存在するが、一般的に
は、軟化点60〜190℃、臭素価20〜40程度の固体であ
る。
There are various properties of the product depending on the use, but generally, it is a solid having a softening point of 60 to 190 ° C and a bromine number of about 20 to 40.

(発明が解決しようとする問題点) 石油樹脂は耐水性、耐薬品性等の物理性状がすぐれてい
るという特徴に加えて、供給が安定しており安価である
ことから、塗料、接着剤、粘着剤、シーラント、ゴム添
加剤等の産業分野で幅広く利用されている。しかしなが
ら、従来の石油樹脂は耐熱性および耐候性に難点が有
り、そのため用途に限界がある。耐熱性および耐候性の
劣る原因は、原料油中に含まれているジオレフィン類に
起因する高い不飽和度の存在だといわれている。この欠
点を改善し、耐熱性、耐候性を向上させる方法がいくつ
か知られている。例えば、原料油の沸点範囲を厳密に規
制してジオレフィン類の混入をできるかぎり抑制する方
法(例えば、特公昭50−34078,昭58−25705等)、また
ジオレフィン類はモノオレフィン類よりも重合し易い性
質を利用し、前段でジオレフィン類を中心とする易重合
性化合物を重合させ、これらを除去したモノオレフィン
類を中心とする原料油を用いて石油樹脂を合成する方法
(例えば、特公昭49−2344等)等が提案されている。
(Problems to be Solved by the Invention) In addition to the characteristics that petroleum resin has excellent physical properties such as water resistance and chemical resistance, since the supply is stable and the cost is low, paints, adhesives, Widely used in industrial fields such as adhesives, sealants, and rubber additives. However, conventional petroleum resins have drawbacks in heat resistance and weather resistance, which limits their use. It is said that the cause of poor heat resistance and weather resistance is the presence of a high degree of unsaturation due to the diolefins contained in the feed oil. Several methods are known to improve this defect and improve heat resistance and weather resistance. For example, a method in which the boiling point range of the feedstock is strictly regulated to suppress mixing of diolefins as much as possible (for example, Japanese Examined Patent Publication No. 34078, Sho 58-25705, etc.), and diolefins are more preferable than monoolefins. A method of synthesizing a petroleum resin by using a raw material oil mainly composed of monoolefins obtained by polymerizing a readily polymerizable compound centered on diolefins by utilizing the property of being easily polymerized (for example, Japanese Patent Publication No. Sho 49-2344, etc.) have been proposed.

しかしながら、これらいずれの方法を用いても完全にジ
オレフィン類を除去することは困難であり、また原料油
の前処理工程を加えることによるコストの増加は避けら
れず、充分な改善効果は得られていないのが現状であ
る。
However, it is difficult to completely remove diolefins by any of these methods, and an increase in cost due to the addition of a pretreatment step of the feedstock is unavoidable, and a sufficient improvement effect can be obtained. The current situation is not.

また、二重結合が生じる原因は必らずしも原料油中のジ
オレフィン類のみに起因するわけではない。一般に芳香
族系石油樹脂の製造に用いる原料油は、スチレンおよび
その誘導体、インデンおよびその誘導体等の芳香族環の
側鎖に二重結合を有する芳香族オレフィン類が主構成物
質である。そしてこれらのオレフィン類をカチオン重合
する限りにおいては、たとえジオレフィン類が完全に存
在しないと仮定しても、重合過程でいわゆる移動反応と
停止反応の過程で二重結合が生成することから、生成樹
脂に二重結合が生起することは避けられない。
Further, the cause of the double bond is not necessarily caused only by the diolefins in the feed oil. In general, a feedstock oil used for producing an aromatic petroleum resin is mainly composed of aromatic olefins having a double bond in a side chain of an aromatic ring such as styrene and its derivatives, indene and its derivatives. As long as these olefins are cationically polymerized, even if it is assumed that diolefins are not completely present, double bonds are formed during the so-called transfer reaction and termination reaction in the polymerization process. It is inevitable that a double bond will occur in the resin.

ジオレフィン類に起因する、二重結合の他に、この原料
にオレフィン類を用いることから生じる本質的な二重結
合の存在も、二重結合が酸化反応を受け易いことを考慮
すれば、石油樹脂の耐熱性、耐候性に悪影響を及ぼすも
のと考えざるを得ない。
In addition to the double bond caused by diolefins, the existence of an essential double bond resulting from the use of olefins in this raw material is considered to be petroleum, considering that the double bond is susceptible to an oxidation reaction. It must be considered that it has a bad influence on the heat resistance and weather resistance of the resin.

そこで、二重結合を減少させる目的で樹脂を二次的に水
添する方法(例えば、特公昭55−41635,昭45−17075,昭
54−20972等)も行なわれており、実際に水添石油樹脂
の一般名称で何種類か上市されている。しかしながら、
芳香族系石油樹脂の水添反応は一般に過酷な水素化条件
が要求されるため、必然的に芳香族環の一部の水添もと
もなう。従って製造コストの上昇は避けられず、特殊な
用途に用いる場合は有益であっても、耐熱性、耐候性の
改善のみを目的に水添することは、石油樹脂の安価であ
るという大きな特長を有利に導びく方法とはいい難い。
Therefore, a method of secondarily hydrogenating a resin for the purpose of reducing double bonds (for example, Japanese Patent Publication No. 55-41635, Japanese Patent Publication No. 45-17075,
54-20972, etc.) have also been carried out, and several types of hydrogenated petroleum resins have actually been put on the market. However,
The hydrogenation reaction of an aromatic petroleum resin generally requires harsh hydrogenation conditions, so that it is inevitably accompanied by the hydrogenation of a part of the aromatic ring. Therefore, an increase in manufacturing cost is unavoidable, and even if it is beneficial when used for special purposes, hydrogenation for the purpose of only improving heat resistance and weather resistance has the great advantage that petroleum resin is inexpensive. It is hard to say that it is an advantageous method.

本発明者らは、以上のような従来の芳香族系石油樹脂に
ついての考察から、耐熱性、耐候性を改善するために
は、二重結合が全くないか、あるいは実用上全く含有し
ない芳香族系石油樹脂の製造法を抜本的に検討せざるを
得ないとの結論に到達した。
From the above consideration of the conventional aromatic petroleum resin, the present inventors have found that in order to improve heat resistance and weather resistance, an aromatic compound having no double bond or containing no aromatic compound in practice is used. We have come to the conclusion that we have no choice but to radically consider the production method of petroleum-based resins.

(問題点を解決するための手段) 水添以外の方法で、二重結合が全くないか、あるいは実
用上全く含有しない芳香族系石油樹脂を製造するために
は、原料油に実質的に二重結合を全く所有しない原料油
を用いる必要がある。ここでいう二重結合とは、芳香族
環の二重結合は含めず、芳香族環の側鎖、ナフテン環あ
るいはパラフィン中の二重結合を示す。しかしながら、
二重結合を全く所有しない芳香族原料をそのままで重合
させることは、熱改質等を除外すれば、一般に不可能で
あり、何らかの方法で芳香族環どおしを、あるいは芳香
族環と別の芳香族化合物の側鎖を、あるいは芳香族環の
側鎖どおしを結合させるための結合剤を加える必要があ
る。
(Means for Solving Problems) In order to produce an aromatic petroleum resin containing no double bond or containing no double bond practically by a method other than hydrogenation, it is practically necessary to use a raw oil as a raw material. It is necessary to use a feedstock that has no heavy bonds. The double bond as used herein does not include a double bond of an aromatic ring, and refers to a double bond in a side chain of an aromatic ring, a naphthene ring or paraffin. However,
It is generally impossible to polymerize an aromatic raw material having no double bond as it is, except for thermal reforming, etc., and the aromatic ring or the aromatic ring is separated from the aromatic ring by some method. It is necessary to add a binder for bonding the side chain of the aromatic compound or the side chains of the aromatic ring.

このように、芳香族オレフィン類を原料とする代りに、
芳香族化合物と結合剤により芳香族系炭化水素樹脂を製
造するという発想は従来の芳香族系石油樹脂製造には全
くなかった概念である。
Thus, instead of using aromatic olefins as raw materials,
The idea of producing an aromatic hydrocarbon resin with an aromatic compound and a binder is a concept that has never been found in conventional aromatic petroleum resin production.

そこで、本発明者らは各種芳香族原料と各種結合剤を組
合わせることで、従来の芳香族系石油樹脂と同程度の物
理性状(例えば、軟化点60〜180℃)を有する新らしい
芳香族系石油樹脂を製造する方法について鋭意研究を重
ねた結果本発明に到達した。すなわち、メチル基、エチ
ル基等の炭素数の比較的少ない側鎖を1〜4個程度所有
する各種芳香族原料に、芳香族環どおしを結びつける結
合剤としてホルムアルデヒドを加え、酸触媒存在下で付
加脱水縮合反応を行ない芳香族メチレン樹脂を合成し、
触媒分離および洗浄を経て得られる芳香族メチレン樹脂
の低沸点留分を分離することで耐熱性、耐候性の良好な
芳香族系石油樹脂が製造できることを見いだした。
Therefore, the inventors of the present invention have combined a variety of aromatic raw materials and various binders to provide a new aromatic compound having physical properties (for example, a softening point of 60 to 180 ° C.) similar to those of conventional aromatic petroleum resins. The present invention has been achieved as a result of intensive research on a method for producing a petroleum-based resin. That is, formaldehyde is added to various aromatic raw materials having 1 to 4 side chains having a relatively small number of carbon atoms such as a methyl group and an ethyl group, as a binder for binding aromatic rings, and in the presence of an acid catalyst. To synthesize an aromatic methylene resin by performing an addition dehydration condensation reaction with
It was found that an aromatic petroleum resin having good heat resistance and weather resistance can be produced by separating a low boiling point fraction of an aromatic methylene resin obtained through catalyst separation and washing.

本樹脂は芳香族環とメチレン基が交互に結合した線状オ
リゴマーであり、二重結合は全くないかあるいは実用上
全く含有せず、またホルムアルデヒドに起因する酸素原
子も全くあるいは実用上全く含有しない芳香族系炭化水
素樹脂であることが判明した。
This resin is a linear oligomer in which an aromatic ring and a methylene group are alternately bonded, and has no double bond or practically contains no oxygen bond, and does not contain oxygen atom derived from formaldehyde at all or practically. It was found to be an aromatic hydrocarbon resin.

ここで二重結合が全くないかあるいは実用上全く含有し
ないというのは臭素価が1.0以下であることを示し、ま
た、酸素原子を全くあるいは実用上全く含有しないとい
うのは酸素原子が1.0重量%以下であることを示す。
Here, having no double bond or containing no practical use indicates that the bromine number is 1.0 or less, and containing no oxygen atom or no practical use means that the oxygen atom is 1.0% by weight. Indicates the following.

ホルムアルデヒドが芳香族環どおしを結合する機能を有
することは公知の事実であり、例えばメタキシレンとホ
ルムアルデヒドから製造された樹脂はキシレン樹脂とい
う一般名で上市されている。しかしながら、このキシレ
ン樹脂はメタキシレン環がメチレン基、エーテル基、ア
セタール基等で結合した酸素原子を多量に含有する液状
の樹脂であり、炭素と水素のみで構成され酸素原子を全
くあるいは事実上全く含有しない一般的な石油樹脂とは
本質的に物理性状も使われる用途も異なっている。ま
た、本発明者らは芳香族化合物とホルムアルデヒドから
酸素原子を全く含まないかあるいは実用上ほとんどない
とみなし得る芳香族メチレン樹脂の製造法を見い出し、
既に特許出願を行なっている(出願番号60−054357)。
しかしながら、この芳香族メチレン樹脂は常温で粘稠液
体あるいは半固体状の物質であり、常温で固体状の高軟
化点樹脂を製造することはできなかった。これは常温で
固体状の高軟化点樹脂が生成すると、触媒分離後に続く
微量の酸性物質を除去する操作がエマルションの生成に
より不可能となるためである。
It is a well-known fact that formaldehyde has a function of binding aromatic rings, and for example, a resin produced from meta-xylene and formaldehyde is put on the market under the general name of xylene resin. However, this xylene resin is a liquid resin containing a large amount of oxygen atoms in which the meta-xylene ring is bound by a methylene group, an ether group, an acetal group, etc., and is composed of only carbon and hydrogen and has no or virtually no oxygen atoms. It is essentially different from the general petroleum resin that does not contain it in its physical properties and uses. Further, the present inventors have found a method for producing an aromatic methylene resin from an aromatic compound and formaldehyde, which can be considered to contain no oxygen atom or practically few.
A patent application has already been filed (application number 60-054357).
However, this aromatic methylene resin is a viscous liquid or a semi-solid substance at room temperature, and a high softening point resin which is solid at room temperature cannot be produced. This is because when a solid high-softening point resin is produced at room temperature, the operation of removing a trace amount of acidic substances following catalyst separation becomes impossible due to the production of an emulsion.

本発明はこの芳香族メチレン樹脂の製造法を徹底的に検
討しなおした結果、常温で固体状の高軟化点樹脂が生成
しても、触媒分離ならびに次に続く微量の酸性物質を除
去する操作が容易に進行し、常温で固体状の耐熱性、耐
候性に優れた芳香族系石油樹脂の製造に成功したもので
ある。すなわち適量のアルコールを加えることでエマル
ションの生成を抑制し、容易に高軟化点の樹脂を含む油
層と洗浄水が分離できることを見いだした。
As a result of thorough reexamination of the method for producing this aromatic methylene resin, the present invention shows that even if a solid high softening point resin is produced at room temperature, the catalyst is separated and the subsequent trace amount of acidic substance is removed. Of the aromatic petroleum resin, which is solid at room temperature and has excellent heat resistance and weather resistance. That is, it was found that the addition of an appropriate amount of alcohol suppresses the formation of an emulsion, and the oil layer containing a resin having a high softening point and the washing water can be easily separated.

(作 用) 本発明に係わる芳香族原料とは、トルエン、キシレン、
エチルベンゼン、メチルエチルベンゼン、トリメチルベ
ンゼン、デュレン、イソデュレン等のベンゼン環にメチ
ル基またはエチル基のような比較的炭素数の少ない置換
基が1〜4個置換したベンゼン誘導体およびインダン誘
導体、ナフタリン、アントラセン等の各種縮合多環芳香
族化合物の誘導体ならびにそれらの混合物またはそれら
の一部を含む留分であれば特に制約はない。
(Operation) The aromatic raw material according to the present invention includes toluene, xylene,
Benzene derivatives such as ethylbenzene, methylethylbenzene, trimethylbenzene, durene, isodurene, etc., in which 1 to 4 substituents having a relatively small number of carbon atoms such as methyl groups or ethyl groups are substituted on the benzene ring, indane derivatives, naphthalene, anthracene, etc. There is no particular limitation as long as it is a derivative of various condensed polycyclic aromatic compounds, a mixture thereof, or a fraction containing a part thereof.

また、プロピル基、ブチル基のような比較的炭素数の多
い置換基を有する芳香族化合物あるいはパラフィン、ナ
フテン等の非芳香族化合物が含まれていても、これらの
化合物はホルムアルデヒドとの反応性が低いかあるいは
全くないため単に溶媒として作用するだけであり、見掛
上の樹脂の収率は低下するが、原料油中に上記の反応性
芳香族化合物が含まれていれば特に問題はない。ただ
し、後述のホルムアルデヒドと原料油のモル比を決定す
る際は、原料油中の反応性芳香族化合物の含有量を考慮
する必要がある。こうして、一般的にはトルエン、改質
系または分解系混合キシレン留分、キシレン製造あるい
は異性化等の塔底油から得られるCあるいはC10芳香
族留分等が実用上好ましい原料油となる。
Even if an aromatic compound having a substituent having a relatively large number of carbon atoms such as a propyl group or a butyl group or a non-aromatic compound such as paraffin or naphthene is contained, these compounds are not reactive with formaldehyde. Since it is low or does not exist at all, it merely acts as a solvent, and the yield of the resin is apparently reduced, but there is no particular problem as long as the above-mentioned reactive aromatic compound is contained in the feed oil. However, it is necessary to consider the content of the reactive aromatic compound in the feedstock when determining the molar ratio of formaldehyde to the feedstock described below. Thus, generally, toluene, reforming-type or cracking-type mixed xylene fraction, C 9 or C 10 aromatic fraction obtained from bottom oil of xylene production or isomerization, etc. are practically preferable feedstocks. .

本発明に係わるホルムアルデヒドは、反応系内で単量体
のホルムアルデヒドを生成するものであれば出発原料と
してはいかなる形態のものでもよく、市販の各種濃度の
ホルマリンまたはトリオキサン、パラホルムアルデヒド
のような重合物等をそのまま用いることができるが、触
媒濃度を低下させず(ホルマリンは水溶液であるので触
媒濃度を低下させる)、低価格で容易に入手できるパラ
ホルムアルデヒドが最適である。また、何らかの方法で
別途発生させたガス状ホルムアルデヒドを原料油、触媒
(液状の場合)、溶媒等に溶解させて反応系内に仕込む
こともできる。
The formaldehyde according to the present invention may be in any form as a starting material as long as it produces a monomeric formaldehyde in the reaction system, and various commercially available concentrations of formalin or trioxane, and polymerized products such as paraformaldehyde. Etc. can be used as they are, but paraformaldehyde, which does not reduce the catalyst concentration (formalin reduces the catalyst concentration because it is an aqueous solution) and is easily available at a low price, is most suitable. Further, gaseous formaldehyde separately generated by some method may be dissolved in a raw material oil, a catalyst (if liquid), a solvent, etc. and charged into the reaction system.

本発明に用いる触媒は液状の酸触媒であれば特に制約は
なく、硫酸、リン酸、ピロリン酸、過塩素酸等を用いる
ことができる。また原料油に溶解するパラトルエンスル
ホン酸、三フッ化ホウ素、フッ化水素、各種塩化アルミ
ニウム等を用いることも出来るが、これらの触媒は再使
用が困難である。また固体酸触媒を用いることも原理的
には可能であるが、触媒の分離工程で多量の希釈溶媒を
用いる必要があり、工業上有利な触媒とは云えない。安
価で再使用が容易な点で硫酸が有利であり、各種濃度の
硫酸が使用可能であるが、スルフォン化を防ぐためには
希硫酸が最適である。
The catalyst used in the present invention is not particularly limited as long as it is a liquid acid catalyst, and sulfuric acid, phosphoric acid, pyrophosphoric acid, perchloric acid or the like can be used. Further, paratoluenesulfonic acid, boron trifluoride, hydrogen fluoride, various aluminum chlorides and the like which are soluble in the raw material oil can be used, but these catalysts are difficult to reuse. Although it is possible in principle to use a solid acid catalyst, it cannot be said to be an industrially advantageous catalyst because it is necessary to use a large amount of diluting solvent in the catalyst separation step. Sulfuric acid is advantageous in that it is cheap and easy to reuse, and sulfuric acid of various concentrations can be used, but dilute sulfuric acid is most suitable for preventing sulfonation.

本発明は過剰の原料油を用いるため、溶媒は必要としな
いが、必要に応じて反応に関与しない溶媒(例えばイソ
パラフィン)を適当量加えることができる。
Since the present invention uses an excess amount of the raw material oil, no solvent is required, but if necessary, a solvent that does not participate in the reaction (eg, isoparaffin) can be added in an appropriate amount.

本発明に係わる石油樹脂反応装置は、特に形状を問わ
ず、通常のバッチ式、セミ流通式、流通式等を用いるこ
とができるが、バッチ式が最も実用的である。
The petroleum resin reactor according to the present invention may be of a usual batch type, a semi-flow type, a flow type or the like regardless of the shape, but the batch type is the most practical.

本発明の酸素原子も二重結合も含まない芳香族系石油樹
脂を得るためには、反応性芳香族化合物に対するホルム
アルデヒドのモル比を1以下に、望ましくは0.8以下に
抑える必要がある。原料に用いる芳香族化合物の種類に
も依るが、一般的にはモル比が低い場合ほど、生成する
石油樹脂の収率は低くまた軟化点も低くなるが、温和な
条件下で酸素原子の含有率を低下させることができ、モ
ル比が高い場合ほど、収率が高く、軟化点も高くなる
が、酸素原子の含有率が高くなる。モル比が1より大の
場合にも石油樹脂を製造することは可能であるが、以下
に述べる実用的な反応条件では酸素原子の含有率が高く
なり、また触媒の分離操作も困難となる。
In order to obtain the aromatic petroleum resin containing neither oxygen atom nor double bond of the present invention, it is necessary to control the molar ratio of formaldehyde to the reactive aromatic compound to 1 or less, preferably 0.8 or less. Generally, the lower the molar ratio, the lower the yield of the produced petroleum resin and the lower the softening point, depending on the type of aromatic compound used as the raw material, but the oxygen atom content under mild conditions. The higher the molar ratio, the higher the yield and the softening point, but the higher the oxygen atom content. Although it is possible to produce a petroleum resin even when the molar ratio is greater than 1, the content of oxygen atoms becomes high and the catalyst separation operation becomes difficult under the practical reaction conditions described below.

本反応に係る触媒使用量は、反応条件と密接に関連する
ため一概に規定出来ないが、一般的には原料油中の反応
性芳香族化合物に対して5〜50重量%、好ましくは15〜
35重量%が適切である。
The amount of the catalyst used in this reaction cannot be unconditionally specified because it is closely related to the reaction conditions, but generally 5 to 50% by weight, preferably 15 to 50% by weight based on the reactive aromatic compound in the feed oil.
35% by weight is suitable.

本反応の反応温度は、原料油および触媒の種類および量
等に依存するため一概に規定出来ないが、一般的には60
〜180℃、好ましくは80〜120℃が用いられる。
The reaction temperature of this reaction cannot be specified unconditionally because it depends on the type and amount of feed oil and catalyst, but generally it is 60
~ 180 ° C, preferably 80-120 ° C is used.

本反応に係る反応時間は、原料油および触媒の種類およ
び量に依存するため一概に規定出来ず、反応時間にとも
なって生成する石油樹脂の含酸素率が低下することか
ら、含酸素率が実用上全く含有しないとみなせる、即ち
1.0重量%以下に低下する一般的には0.5〜10時間、好ま
しくは2〜5時間が用いられる。
The reaction time related to this reaction cannot be specified unconditionally because it depends on the type and amount of the feed oil and the catalyst, and the oxygen content of the petroleum resin produced decreases with the reaction time. Can be regarded as not containing at all,
It is generally 0.5 to 10 hours, preferably 2 to 5 hours.

生成した石油樹脂を単離して製品とするためには、更に
触媒除去、洗浄(微量酸性物質の除去)、未反応油、溶
媒(使用した場合)および軽質生成物の除去が必要であ
るが、これらは以下に述べる方法で実施することができ
る。
In order to isolate the produced petroleum resin into a product, further removal of catalyst, washing (removal of trace acidic substances), unreacted oil, solvent (when used), and removal of light products are necessary. These can be implemented by the method described below.

触媒分離はそのままあるいは適切な希釈溶媒を加えて、
通常の油水分離操作で実施することができる。回収した
触媒は反応中生成する水で希釈されているが、そのまま
あるいは高濃度の酸を追加して濃度調節することにより
再使用が可能である。
Catalyst separation as it is or by adding an appropriate diluent solvent,
It can be carried out by a normal oil-water separation operation. The recovered catalyst is diluted with water produced during the reaction, but it can be reused as it is or by adding a high-concentration acid to adjust the concentration.

洗浄工程は、微量の酸性物質の混入による製品の品質劣
化を防ぐために欠くことのできない工程である。通常は
アルカリによる中和処理と水洗または湯洗を繰返す方法
が採用されるが、本発明のように高軟化点の石油樹脂、
微量の酸性物質、未反応油が存在する場合にはエマルシ
ョンが生成して容易に油水分離することができない。多
量の溶媒を新たに加えて希釈すれば比較的油水分離は容
易になるが、数十倍の希釈が必要であり現実的でない。
また、市販のエマルションブレーカーを添加する方法も
考えられるが、エマルションブレーカーが製品に残留し
品質低下をもたらすので好ましくない。そこで、生成し
た石油樹脂の溶解力を有し、水を部分的に溶解し、油水
分離工程では大部分が油層に残り、かつ容易に生成した
石油樹脂と分離できるエマルションブレーカーを鋭意検
討した結果、炭素数3〜5のアルコールが目的に適うこ
とを見出した。このエマルションブレーカーを見出した
ことが本発明を成功に導いた1つの要因である。ここで
炭素数3〜5のアルコールとは炭素数3〜5の全てのア
ルコールの異性体の単独またはこれらの混合物をいう。
また、アルコールの純度は50重量%以上であればよい。
好ましくはn−ブチルアルコール、iso−ブチルアルコ
ール、sec−ブチルアルコールの単独またはこれらの混
合物がよい。
The washing step is an essential step for preventing the quality deterioration of the product due to the inclusion of a trace amount of acidic substance. Usually, a method of repeating neutralization treatment with an alkali and washing with water or washing with hot water is adopted, but as in the present invention, a petroleum resin having a high softening point,
When a trace amount of acidic substances and unreacted oil are present, an emulsion is formed and oil / water cannot be easily separated. If a large amount of solvent is newly added and diluted, oil-water separation becomes relatively easy, but it is necessary to dilute several tens of times, which is not practical.
Although a method of adding a commercially available emulsion breaker can be considered, it is not preferable because the emulsion breaker remains in the product and deteriorates the quality. Therefore, having a dissolving power of the generated petroleum resin, partially dissolves water, most of it remains in the oil layer in the oil-water separation step, and as a result of diligent study of an emulsion breaker that can be easily separated from the generated petroleum resin, It has been found that alcohols having 3 to 5 carbon atoms are suitable for the purpose. The discovery of this emulsion breaker is one of the factors leading to the success of the present invention. Here, the alcohol having 3 to 5 carbon atoms refers to all isomers of all alcohols having 3 to 5 carbon atoms or a mixture thereof.
Further, the purity of alcohol may be 50% by weight or more.
Preferably, n-butyl alcohol, iso-butyl alcohol and sec-butyl alcohol are used alone or as a mixture thereof.

水洗処理をした油には、アルコール、未反応油、製品の
石油樹脂が含まれている。従って製品の石油樹脂を単離
するためには、アルコール、未反応油、生成した石油樹
脂の軽質分の除去が必要であり、これらの除去操作は一
段で実施することも多段で実施することもできる。
The oil that has been washed with water contains alcohol, unreacted oil, and petroleum resin of the product. Therefore, in order to isolate the petroleum resin of the product, it is necessary to remove alcohol, unreacted oil, and light components of the produced petroleum resin. These removal operations can be performed in one step or in multiple steps. it can.

即ちアルコール、未反応油は同時にあるいは別々に通常
の常圧蒸留あるいはエバポレーター等の操作で除去した
後、生成した石油樹脂の軽質分のみを遠心分離、減圧蒸
留等で除去する多段操作を採用することもできるし、通
常の減圧蒸留装置を用いて徐々に減圧度を上げながら最
終製品の要求性状に応じた沸点以下の軽質分を除去する
一段操作を採用することもできる。最終的に何℃以下ま
での軽質分を除去する必要があるかは、原料油の種類、
目的とする石油樹脂の要求性状に依存するため一概に規
定できないが、通常は5mmHg以下の減圧下、望ましくは
2mmHg以下の減圧下で常圧換算300〜470℃以下の軽質分
(アルコール、未反応油を含めて)を留去することで釜
残に目的とする芳香族系石油樹脂を得ることができる。
That is, adopt a multi-step operation in which alcohol and unreacted oil are removed simultaneously or separately by ordinary atmospheric distillation or operations such as an evaporator, and then only light components of the produced petroleum resin are removed by centrifugation, vacuum distillation, or the like. It is also possible to employ a one-step operation of gradually removing the light components having a boiling point or lower according to the required properties of the final product while gradually increasing the degree of pressure reduction using a normal vacuum distillation apparatus. In the end, it is necessary to remove light components up to what temperature
It cannot be unconditionally specified because it depends on the required properties of the target petroleum resin, but it is usually under a reduced pressure of 5 mmHg or less, preferably under a reduced pressure of 2 mmHg or less. By distilling off (including oil), the desired aromatic petroleum resin can be obtained in the bottom of the kettle.

(実施例) 以下に本発明の内容を具体的に明らかにするために実施
例を示すが、これは一例であり、本発明はこれに限定さ
れるものではない。
(Examples) Examples are shown below to specifically clarify the content of the present invention, but this is an example and the present invention is not limited thereto.

実施に際し、製造した芳香族系石油樹脂の軟化点、臭素
価は、それぞれJISK−2207、JISK−2605に従って測定
し、含酸素率は元素分析装置で測定した。また、本石油
樹脂の耐熱性は、ガラス容器(30mmφ×100mm)中に試
料50gをとりギヤオーブン中150℃でエージングし、外
観、粘度の経時変化を測定した。耐候性は、ガラス板上
に80〜90μmの塗膜をつくり、サンシャインウェザオメ
ーター中で、温度63℃、湿度60%、120分中18分雨の条
件下で暴露した後の色相の変化を観察した。
In the practice, the softening point and bromine number of the produced aromatic petroleum resin were measured according to JISK-2207 and JISK-2605, respectively, and the oxygen content was measured by an elemental analyzer. Regarding the heat resistance of the petroleum resin, 50 g of the sample was placed in a glass container (30 mmφ × 100 mm) and aged in a gear oven at 150 ° C., and changes with time in appearance and viscosity were measured. For weather resistance, make a coating film of 80-90 μm on a glass plate and change the hue after exposure in a sunshine weatherometer under the conditions of temperature 63 ° C, humidity 60%, and rain for 120 minutes for 120 minutes. I observed.

実施例1 攪拌装置、還流冷却器を備えた4つ口フラスコに改質系
キシレン塔底油の150〜180℃の沸点範囲を持つC芳香
族留分240gと市販工業用92%パラホルムアルデヒド20g
を加え、ゆっくり攪拌しながら市販75%希硫酸75gを滴
下した。硫酸滴下後、オイルバスを用いて反応温度を10
0〜110℃に昇温し、そのまゝ激しくかき混ぜながら3時
間反応した。反応終了後、室温にまで冷却し、滴下ロー
トに内容物を移し静置すると硫酸層が下層に分離するの
でこれを除去した。その後、n−ブタノール100mlおよ
び水200mlを加えよく攪拌したのち静置すると、油層と
水層がきれいに分離するので、水層を捨て、引続き洗浄
水のpHが7を示すまで2〜3回水洗を繰返した。得られ
た油層を蒸留フラスコに移し、最初は約10mmHgの減圧蒸
留で、最終的には1mmHgにまで減圧度を上げて、常圧換
算460℃以下の軽質分を除去し、釜残に目的とする芳香
族系石油樹脂112gを得た。得られた石油樹脂の軟化点は
117.5℃、臭素価は0.3gBr2/100g、含酸素率は0.1重量%
以下であり、実用上酸素原子も二重結合も含有しないこ
とが明らかになった。
Example 1 In a four-necked flask equipped with a stirrer and a reflux condenser, 240 g of a C 9 aromatic fraction having a boiling point range of 150 to 180 ° C. of a reforming xylene column bottom oil and 20 g of a commercial industrial 92% paraformaldehyde.
And 75 g of commercially available 75% diluted sulfuric acid was added dropwise with slow stirring. After adding sulfuric acid, adjust the reaction temperature to 10 using an oil bath.
The temperature was raised to 0 to 110 ° C., and the reaction was continued for 3 hours with vigorous stirring. After completion of the reaction, the mixture was cooled to room temperature, and the contents were transferred to a dropping funnel and left to stand, so that a sulfuric acid layer was separated into a lower layer, which was removed. Then, add 100 ml of n-butanol and 200 ml of water, stir it well, and let it stand. The oil layer and the water layer are separated cleanly. Discard the water layer and continue washing with water 2-3 times until the pH of the washing water shows 7. Repeated. The obtained oil layer was transferred to a distillation flask, and first, vacuum distillation of about 10 mmHg was performed, and finally the pressure reduction degree was raised to 1 mmHg to remove light components below 460 ° C. at atmospheric pressure, and leave as a residue in the kettle. 112 g of aromatic petroleum resin was obtained. The softening point of the obtained petroleum resin is
117.5 ℃, Bromine number 0.3g Br 2 / 100g, Oxygen content 0.1% by weight
Below, it became clear that practically neither oxygen atom nor double bond was contained.

得られた石油樹脂の耐熱性、耐候性についてはそれぞれ
表1、表2に示す。
The heat resistance and weather resistance of the obtained petroleum resin are shown in Table 1 and Table 2, respectively.

実施例2 実施例1と同一装置を用い、同一原料油、同一条件下で
反応及び触媒除去・水洗をしたのち、最終的に1mmHgの
減圧下で常圧換算360℃以下の軽質分を蒸留除去し、目
的とする芳香族系石油樹脂134gを得た。得られた石油樹
脂の軟化点は88.5℃、臭素価は0.2gBr2/100g、含酸素率
は0.1重量%以下であった。耐熱・耐候性は表1、表2
に示す。
Example 2 After using the same apparatus as in Example 1 and carrying out reaction and catalyst removal / water washing under the same feed oil and under the same conditions, finally, a light component under atmospheric pressure conversion of 360 ° C. or lower was distilled off under a reduced pressure of 1 mmHg. Then, 134 g of a target aromatic petroleum resin was obtained. The resulting softening point of the petroleum resin is 88.5 ° C., bromine number is 0.2gBr 2 / 100g, oxygen Motoritsu was 0.1% by weight or less. Table 1 and 2 for heat resistance and weather resistance
Shown in.

実施例3 実施例1と同一装置を用い、キシレン留分240gを原料に
用いて実施例1と同一条件下で、反応及び触媒除去・水
洗をした後、常圧換算450℃以下の軽質分を減圧蒸留で
除去したところ、目的とする芳香族系石油樹脂98.2gが
得られた。得られた石油樹脂の軟化点は92.0℃、臭素価
は0.2gBr2/100g、含酸素率は0.1重量%以下であった。
耐熱性、耐候性は表1、表2に示す。
Example 3 Using the same apparatus as in Example 1 and using 240 g of xylene fraction as a raw material under the same conditions as in Example 1, the reaction, catalyst removal and water washing were carried out, and then a light fraction at 450 ° C. at atmospheric pressure equivalent or lower was obtained. After removal by distillation under reduced pressure, 98.2 g of the desired aromatic petroleum resin was obtained. The resulting softening point of the petroleum resin is 92.0 ° C., bromine number is 0.2gBr 2 / 100g, oxygen Motoritsu was 0.1% by weight or less.
The heat resistance and weather resistance are shown in Tables 1 and 2.

実施例4 実施例1と同一装置を用い、改質系キシレン塔底油で18
0〜200℃の沸点範囲を持つC10芳香族留分240gを原料に
用いて実施例1と同一条件下で反応及び触媒除去・水洗
をした後、常圧換算460℃以下の軽質分を減圧蒸留で除
去したところ、目的とする芳香族系石油樹脂102gが得ら
れた。得られた石油樹脂の軟化点は124.5℃、臭素価は
0.1gBr2/100g、含酸素率は0.1重量%以下であった。耐
熱性、耐候性は表1、表2に示す。
Example 4 The same equipment as in Example 1 was used, and a reforming xylene bottom oil was used.
After 240 g of a C 10 aromatic fraction having a boiling range of 0 to 200 ° C. was used as a raw material, the reaction, the catalyst removal and the washing with water were carried out under the same conditions as in Example 1, and then the light components at a normal pressure of 460 ° C. or less were decompressed. When it was removed by distillation, 102 g of the target aromatic petroleum resin was obtained. The petroleum resin obtained has a softening point of 124.5 ° C and a bromine number of
0.1gBr 2 / 100g, the oxygen content was less than 0.1% by weight. The heat resistance and weather resistance are shown in Tables 1 and 2.

実施例5 実施例1と同一装置を用い、触媒に硫酸の代りに市販70
%過塩素酸75gを用いて実施例1と同一原料油、同一条
件下で反応及び、触媒除去・水洗をした後、同一条件下
で減圧蒸留を実施したところ、目的とする芳香族系石油
樹脂123gが得られた。得られた石油樹脂の軟化点は120.
5℃、臭素価は0.2gBr2/100g、含酸素率は0.3重量%であ
った。耐熱性、耐候性は表1、表2に示す。
Example 5 The same apparatus as in Example 1 was used, and commercially available 70
% 75% of perchloric acid was used to react with the same raw material oil as in Example 1 under the same conditions, and after removing the catalyst and washing with water, vacuum distillation was carried out under the same conditions to obtain the desired aromatic petroleum resin. 123 g were obtained. The softening point of the obtained petroleum resin is 120.
5 ° C., bromine number is 0.2gBr 2 / 100g, oxygen Motoritsu was 0.3 wt%. The heat resistance and weather resistance are shown in Tables 1 and 2.

実施例6 実施例1と同一装置を用い、同一原料油、同一条件下で
反応及び触媒除去をした後、sec−ブタノール80ml及びi
so−プロパノール20ml、次いで、洗浄水200mlを加えよ
く攪拌し静置すると水層と油層がきれいに分離するの
で、水層を捨て、その後更に3回水洗を繰り返した。得
られた油層から実施例1と同一操作で軽質分を除去した
結果、目的とする芳香族系石油樹脂109gを得た。得られ
た石油樹脂の軟化点は119.5℃、臭素価は0.1gBr2/100
g、含酸素率は0.1重量%以下であった。耐熱性、耐候性
は表1、表2に示す。
Example 6 After using the same apparatus as in Example 1 and performing reaction and catalyst removal under the same feed oil and under the same conditions, 80 ml of sec-butanol and i
When 20 ml of so-propanol and then 200 ml of washing water were added and stirred well and left to stand, the water layer and the oil layer were separated cleanly, so the water layer was discarded, and the water washing was repeated three more times. As a result of removing light components from the obtained oil layer by the same operation as in Example 1, 109 g of a target aromatic petroleum resin was obtained. The resulting softening point of the petroleum resin is 119.5 ° C., bromine number is 0.1gBr 2/100
g, oxygen content was 0.1% by weight or less. The heat resistance and weather resistance are shown in Tables 1 and 2.

比較例1 従来の芳香族系石油樹脂の代表として、市販のC系石
油樹脂(120グレード)を選んだ。
Comparative Example 1 As a representative of conventional aromatic petroleum resins, a commercially available C 9 petroleum resin (120 grade) was selected.

軟化点は122.0℃、臭素価28.0gBr2/100g、含酸素率2.0
重量%であった。耐熱性、耐候性はそれぞれ表1、表2
に示す。
Softening point is 122.0 ℃, bromine number 28.0g Br 2 / 100g, oxygen content 2.0
% By weight. Heat resistance and weather resistance are shown in Table 1 and Table 2, respectively.
Shown in.

比較例2 実施例1と同一装置を用い、同一原料油、同一条件下で
反応及び触媒除去をした後、微量の酸性物質を除去する
目的で洗浄水200mlを加えよく攪拌して静置したとこ
ろ、一晩以上放置しても油水境界面を中心としてエマル
ションが生成しており、油水分離操作を実施することが
不可能であった。
Comparative Example 2 Using the same apparatus as in Example 1, after performing reaction and catalyst removal under the same feed oil and under the same conditions, 200 ml of washing water was added for the purpose of removing a trace amount of acidic substances, and the mixture was allowed to stand by stirring well. However, even if it was left to stand overnight or more, an emulsion was formed mainly on the oil / water interface, and it was impossible to carry out the oil / water separation operation.

(発明の効果) 本発明により得られた芳香族系石油樹脂は、表1の結果
から従来の芳香族系石油樹脂と比べ、色相変化および粘
度上昇とも緩やかであり、耐熱性が格段にすぐれている
ことが判る。また、表2の結果から本発明により得られ
た芳香族系石油樹脂は、従来の芳香族系石油樹脂と比
べ、色相変化が緩やかであり、耐候性が格段に改善され
ていることは明瞭である。
(Effects of the Invention) From the results shown in Table 1, the aromatic petroleum resin obtained according to the present invention is more gradual in hue change and viscosity increase than the conventional aromatic petroleum resin, and is significantly excellent in heat resistance. It is understood that there is. Further, from the results of Table 2, it is clear that the aromatic petroleum resin obtained according to the present invention has a gentler hue change as compared with the conventional aromatic petroleum resin, and the weather resistance is remarkably improved. is there.

本発明で得られる芳香族系石油樹脂は基本的には従来の
石油樹脂と同一用途に用いることができるが、高耐熱
性、高耐候性の要求される用途、例えばトラフィックペ
イント、ホットメルト接着剤等により好適に使用でき
る。また、これらの用途には加熱溶融工程が含まれるこ
とが多いことから、作業性の向上にも多大の効果を及ぼ
す。
The aromatic petroleum resin obtained by the present invention can be basically used for the same purpose as conventional petroleum resins, but it is required to have high heat resistance and high weather resistance, such as traffic paint and hot melt adhesive. It can be used more suitably. In addition, since these applications often include a heating and melting step, it has a great effect on improving workability.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】芳香族化合物または芳香族化合物を主成分
とする留分とホルムアルデヒドを酸触媒の存在下で反応
させて芳香族メチレン樹脂を合成し、油水分離操作で触
媒を除去し、純度50重量%以上の炭素数3〜5のアルコ
ールを加えて水洗後、低沸点留分を除去して製造する芳
香族系石油樹脂の製造法。
1. An aromatic methylene resin is synthesized by reacting an aromatic compound or a fraction containing an aromatic compound as a main component with formaldehyde in the presence of an acid catalyst, and the catalyst is removed by an oil / water separation operation to obtain a purity of 50. A process for producing an aromatic petroleum resin, which is produced by adding at least 5% by weight of an alcohol having 3 to 5 carbon atoms and washing with water, and then removing the low boiling point fraction.
【請求項2】ホルムアルデヒドとしてパラホルムアルデ
ヒド、触媒として硫酸を用いる特許請求の範囲第1項記
載の芳香族系石油樹脂の製造法。
2. The process for producing an aromatic petroleum resin according to claim 1, wherein paraformaldehyde is used as formaldehyde and sulfuric acid is used as a catalyst.
【請求項3】芳香族化合物または芳香族化合物を主成分
とする留分として、トルエン、改質系または分解系混合
キシレン留分、またはキシレン製造あるいは異性化等の
塔底油から得られるCあるいはC10芳香族留分を用い
る特許請求の範囲第1項記載の芳香族系石油樹脂の製造
法。
3. An aromatic compound or a fraction containing an aromatic compound as a main component, toluene, a reformed or decomposed mixed xylene fraction, or a C 9 obtained from a bottom oil for xylene production or isomerization. Alternatively, the method for producing an aromatic petroleum resin according to claim 1, wherein a C 10 aromatic fraction is used.
【請求項4】炭素数3〜5のアルコールがn−ブチルア
ルコール、iso−ブチルアルコール、sec−ブチルアルコ
ールの単独、またはこれらの混合物である特許請求の範
囲第1項記載の芳香族系石油樹脂の製造法。
4. The aromatic petroleum resin according to claim 1, wherein the alcohol having 3 to 5 carbon atoms is n-butyl alcohol, iso-butyl alcohol, sec-butyl alcohol alone or a mixture thereof. Manufacturing method.
【請求項5】低沸点留分を除去する方法として減圧蒸留
装置を用いる特許請求の範囲第1項記載の芳香族系石油
樹脂の製造法。
5. The method for producing an aromatic petroleum resin according to claim 1, wherein a vacuum distillation apparatus is used as a method for removing the low boiling point fraction.
【請求項6】反応性芳香族化合物に対するホルムアルデ
ヒドの量がその化学当量より少ない量を使用する特許請
求の範囲第1項記載の芳香族系石油樹脂の製造法。
6. The method for producing an aromatic petroleum resin according to claim 1, wherein the amount of formaldehyde with respect to the reactive aromatic compound is smaller than its chemical equivalent.
【請求項7】反応性芳香族化合物に対するホルムアルデ
ヒドの量がその化学当量の0.8以下の量を使用する特許
請求の範囲第1項記載の芳香族系石油樹脂の製造法。
7. The method for producing an aromatic petroleum resin according to claim 1, wherein the amount of formaldehyde with respect to the reactive aromatic compound is 0.8 or less of its chemical equivalent.
【請求項8】反応温度が60〜180℃、反応時間が0.5〜10
時間である特許請求の範囲第1項記載の芳香族系石油樹
脂の製造法。
8. A reaction temperature of 60 to 180 ° C. and a reaction time of 0.5 to 10
The method for producing an aromatic petroleum resin according to claim 1, which is time.
【請求項9】反応温度が80〜120℃、反応時間が2〜5
時間である特許請求の範囲第1項記載の芳香族系石油樹
脂の製造法。
9. A reaction temperature of 80 to 120 ° C. and a reaction time of 2 to 5
The method for producing an aromatic petroleum resin according to claim 1, which is time.
【請求項10】硫酸の量が反応性芳香族化合物に対して
5〜50重量%である特許請求の範囲第2項記載の芳香族
系石油樹脂の製造法。
10. The method for producing an aromatic petroleum resin according to claim 2, wherein the amount of sulfuric acid is 5 to 50% by weight based on the reactive aromatic compound.
JP2720687A 1987-02-10 1987-02-10 Aromatic petroleum resin manufacturing method Expired - Lifetime JPH075698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2720687A JPH075698B2 (en) 1987-02-10 1987-02-10 Aromatic petroleum resin manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2720687A JPH075698B2 (en) 1987-02-10 1987-02-10 Aromatic petroleum resin manufacturing method

Publications (2)

Publication Number Publication Date
JPS63196616A JPS63196616A (en) 1988-08-15
JPH075698B2 true JPH075698B2 (en) 1995-01-25

Family

ID=12214625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2720687A Expired - Lifetime JPH075698B2 (en) 1987-02-10 1987-02-10 Aromatic petroleum resin manufacturing method

Country Status (1)

Country Link
JP (1) JPH075698B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441551B1 (en) 1995-07-12 2004-11-03 미쓰비시 엔지니어링-플라스틱스 코포레이션 Polycarbonate resin composition
JP2000096021A (en) * 1998-09-25 2000-04-04 Arakawa Chem Ind Co Ltd Tackifying resin for delayed tack-type tack agent composition and delayed tack-type tack agent composition
JP4581437B2 (en) * 2003-06-06 2010-11-17 東ソー株式会社 Aromatic petroleum resin for hot melt adhesive, aromatic petroleum resin composition for hot melt adhesive, and hot melt adhesive composition

Also Published As

Publication number Publication date
JPS63196616A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
JPH075698B2 (en) Aromatic petroleum resin manufacturing method
US2540886A (en) Cyclohexanone-formaldehyde resin production
TWI471301B (en) Process for preparing substituted 1, 4-quinone methides
US2994689A (en) Utilization of high boiling fractions in preparing petroleum resins
DE2055732A1 (en)
US3216926A (en) Petroleum resin process
US4792631A (en) Preparation of di-tert.-butylethylenediamine
JPH02124913A (en) Preparation of coumarone resin
JPH06136081A (en) Production of aromatic petroleum resin excellent in heat resistance
JPH05186544A (en) Production of aromatic liquid resin
CN101386782B (en) Method for synthesizing C14-C20 alkyl benzene for fuel scavenge by alkylation process
JP2664497B2 (en) α-Olefin production method
FR2461692A1 (en) PROCESS FOR ARALKYLING BENZENE OR ALKYLBENZENES USING AN AROMATIC OLEFIN
US2758988A (en) Petroleum resins from solvent extracted fractions
US2622112A (en) Production of lubricating oil
JPH05320295A (en) Production of liquid aromatic resin
JPS60108495A (en) Treatment of thermal cracking oil fraction
EP0202965B1 (en) Oligomer resins and processes for their preparation
JPH07138350A (en) Alkylated resin from polycyclic aromatic compound
JPH04335014A (en) Hydrogenated petroleum resin
CN114507110A (en) Production method of alkyl naphthalene
US2077009A (en) Resin production
JPS61145129A (en) Method of separating and recovering methylethyl-benzene
CN114315505A (en) Production method of alkylbenzene
RU2068833C1 (en) Method of cyclopentadiene synthesis