JPH0756087A - Zoom tube lens for infinity correction type zoom microscope - Google Patents

Zoom tube lens for infinity correction type zoom microscope

Info

Publication number
JPH0756087A
JPH0756087A JP5219260A JP21926093A JPH0756087A JP H0756087 A JPH0756087 A JP H0756087A JP 5219260 A JP5219260 A JP 5219260A JP 21926093 A JP21926093 A JP 21926093A JP H0756087 A JPH0756087 A JP H0756087A
Authority
JP
Japan
Prior art keywords
lens
zoom
group
positive
refracting power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5219260A
Other languages
Japanese (ja)
Inventor
Kunio Shimada
邦夫 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNION OPTICAL CO Ltd
Original Assignee
UNION OPTICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNION OPTICAL CO Ltd filed Critical UNION OPTICAL CO Ltd
Priority to JP5219260A priority Critical patent/JPH0756087A/en
Publication of JPH0756087A publication Critical patent/JPH0756087A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144109Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +--+

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To embody the zoom tube lens for infinity correction type zoom microscope, which has a high zoom ratio reaching 10 and can obtain a high object magnification, with a low cost. CONSTITUTION:This mechanical compensation type zoom lens consists of four groups having positive, negative, negative, and positive refracting powers in order from the object side, and the first group has the positive refracting power and is fixed during zooming, and the second group has the negative refracting power and is linearly moved during zooming to act as the main body for power varying, and the third group has the negative refracting power and is linearly moved during zooming to fixedly keep the image position, and the fourth group has the positive refracting power and is fixed during zooming, and its first group consists of a positive single lens.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は無限遠補正型顕微鏡に
使用されるチューブレンズをズームレンズとしたもので
あり、特にズーム比10に達する高ズーム比を有し、顕
微鏡に用いたときに高物体倍率が得られるズームチュー
ブレンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a tube lens used in an infinity correction type microscope as a zoom lens, and particularly has a high zoom ratio reaching a zoom ratio of 10 and a high zoom ratio when used in a microscope. The present invention relates to a zoom tube lens capable of obtaining an object magnification.

【0002】[0002]

【従来の技術】無限遠補正型の顕微鏡においては、チュ
ーブレンズと対物レンズの焦点距離の比が倍率となる。
この性質を利用して、チューブレンズをズームレンズと
することによって倍率を変化させることが従来行われて
いた。従来、この発明と同一発明者による無限遠補正型
の大口径高倍率ズーム顕微鏡のズームチューブレンズ
(本願出願人と同一出願人による特願平4−19926
6号特許出願の明細書において開示。但し、この出願の
時点では未公開。)があったが、その第1群は3枚もの
レンズを要した。
2. Description of the Related Art In an infinity correction type microscope, the ratio of the focal lengths of the tube lens and the objective lens is the magnification.
Utilizing this property, it has been conventionally performed to change the magnification by using a tube lens as a zoom lens. Conventionally, a zoom tube lens of a large-diameter high-magnification zoom microscope of infinity correction type by the same inventor of the present invention (Japanese Patent Application No. 4-19926 by the same applicant as the present applicant).
Disclosed in the specification of No. 6 patent application. However, it has not been published at the time of this application. ), But the first group required as many as three lenses.

【0003】[0003]

【発明が解決しようとする課題】そのため、従来の無限
遠補正型ズーム顕微鏡用ズームチューブレンズは構成レ
ンズ枚数が多いためコストが高くなるという問題点があ
った。この発明は以上の如き従来技術の問題点に鑑みて
創作されたものであり、ズームチューブレンズの第1群
のレンズ枚数をわずか1枚で構成した無限遠補正型ズー
ム顕微鏡用ズームチューブレンズを提供することを目的
とする。
Therefore, the conventional zoom tube lens for an infinity correction type zoom microscope has a problem that the cost is high because the number of constituent lenses is large. The present invention was created in view of the problems of the prior art as described above, and provides a zoom tube lens for an infinity-correction type zoom microscope in which the first lens group of the zoom tube lens is composed of only one lens. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】この発明は無限遠補正型
顕微鏡のチューブレンズとして用いられるズームレンズ
で、そのズームレンズは物体側から正、負、負、正の屈
折力の4群からなるメカニカルコンペンセイションタイ
プであり、第1群は正の屈折力を有し、ズーミング中は
固定され、第2群は負の屈折力を有し、ズーミング中は
直線的に移動して変倍作用の主力をなし、第3群は負の
屈折力を有し、ズーミング中は非線形的に移動して像位
置を一定に保つ作用をなし、第4群は正の屈折力を有
し、ズーミング中は固定され、その第1群は正の単レン
ズよりなる無限遠補正型ズーム顕微鏡用ズームチューブ
レンズに特徴を有する。
SUMMARY OF THE INVENTION The present invention is a zoom lens used as a tube lens of an infinity correction type microscope, and the zoom lens is a mechanical system composed of four groups of positive, negative, negative and positive refracting powers from the object side. Compensation type, the first group has a positive refracting power, is fixed during zooming, the second group has a negative refracting power, moves linearly during zooming, and has a zooming effect. It has a main power, the third group has a negative refracting power, moves non-linearly during zooming to keep the image position constant, and the fourth group has a positive refracting power and has a positive refracting power during zooming. The first group, which is fixed, is characterized by a zoom tube lens for an infinity correction type zoom microscope, which is composed of a positive single lens.

【0005】[0005]

【作用】一般にズームレンズは光線入射高が最大となる
テレ端で最も収差が大きくなりやすい。テレ端における
収差を補正する上で最も重要なのが第1群である。一
方、この発明で得られるような無限遠補正型ズーム顕微
鏡においては、テレ端で対物レンズのNAが最大となる
のに伴ってズームチューブレンズへの光線入射高も最大
となるから、ここでもテレ端での収差補正が最重要とな
る。
In general, the zoom lens is apt to have the largest aberration at the telephoto end where the light beam incident height is maximum. The first group is most important for correcting aberrations at the telephoto end. On the other hand, in the infinity correction type zoom microscope obtained according to the present invention, since the NA of the objective lens becomes maximum at the telephoto end, the incident height of light rays on the zoom tube lens also becomes maximum. Aberration correction at the edge is of utmost importance.

【0006】ところが、この発明の発明者が設計、検討
を繰り返した結果、無限遠補正型ズーム顕微鏡用ズーム
チューブレンズの場合、第1群についての事情が一般の
ズームレンズとは異なることが判明した。つまり、第1
群に隣接して対物レンズが配置されるため、通常は第1
群で負担すべき収差補正を対物レンズに転嫁することが
出来るのである。これによって第1群の収差補正の負担
を小さくすることが出来る。
However, as a result of repeated design and examination by the inventor of the present invention, it has been found that in the case of a zoom tube lens for an infinity-correction type zoom microscope, the situation regarding the first group is different from that of a general zoom lens. . That is, the first
Since the objective lens is placed adjacent to the group, it is usually the first
Aberration correction that should be borne by the group can be passed on to the objective lens. This makes it possible to reduce the burden of aberration correction on the first group.

【0007】以上の理由から、第1群のレンズ構成を単
レンズ1枚にすることが可能となった。
For the above reasons, it has become possible to use a single lens as the lens structure of the first group.

【0008】しかも硝種については、第1群に蛍石系の
硝種を用いた実施例9と第1群にSF系のうち分散の大
きな硝種を用いた実施例10とで証明した様に、第1群
には現在市販されている硝種の全てが使用可能である。
Regarding the glass type, as shown in Example 9 using the fluorite type glass type for the first group and Example 10 using the SF type having a large dispersion among the SF type for the first group, All the glass types currently on the market can be used for one group.

【0009】第2群ないし第4群の各群のレンズ構成に
ついては実施例に示したように、構成を一定にする必要
はない。
As for the lens construction of each of the second to fourth groups, it is not necessary to make the construction constant, as shown in the embodiments.

【0010】この発明と組み合わされる対物レンズは、
ズームチューブレンズの第1群が単レンズ1枚であるこ
とによる収差補正不足を補うものでなくてはならない。
例えば、テレ端における物体倍率を50倍程度とする場
合、3つの成分に分けられ、物体側より順に正単レンズ
2枚より成る正屈折力の第1成分、3群以上の正レンズ
群を有する正屈折力の第2成分、接合レンズ1群より成
る負屈折力の第3成分より成り、第1成分の正単レンズ
のアッベ数のうち小さい方をνS 、第2成分の正レンズ
のみのアッベ数の平均値をνA 、第3成分の正レンズの
アッベ数をνL とする時、 (1) 32<νS <57 (2) 68<νA <95.2 (3) 20<νL <38 なる条件を有する無限遠補正型ズーム顕微鏡用の高N
A、高倍率対物レンズを使用することが望ましい。
The objective lens combined with the present invention is
The first group of zoom tube lenses must compensate for the insufficient aberration correction due to the single lens.
For example, when the object magnification at the telephoto end is set to about 50 times, it is divided into three components, and has a positive-refractive-force first component composed of two positive single lenses in order from the object side, and three or more positive lens groups. It consists of the second component of positive refracting power and the third component of negative refracting power consisting of the first group of cemented lenses. The smaller Abbe number of the positive single lens of the first component is ν S , and only the positive lens of the second component is When the average value of the Abbe number is ν A and the Abbe number of the third component positive lens is ν L , (1) 32 <ν S <57 (2) 68 <ν A <95.2 (3) 20 < High N for infinity corrected zoom microscope with condition of ν L <38
A, it is desirable to use a high magnification objective lens.

【0011】実施例を見れば分かる通り、この発明のズ
ームチューブレンズは高倍率域に限らず、中倍率域の無
限遠補正型ズーム顕微鏡にも有効に使用される。
As can be seen from the examples, the zoom tube lens of the present invention is effectively used not only in the high magnification range but also in the medium magnification range infinity correction type zoom microscope.

【0012】[0012]

【実施例】このズーム顕微鏡用ズームチューブレンズは
対物レンズと組み合わせて用いられるので、各実施例に
おいては対物レンズについても開示することとし、それ
を含めた形で説明する。
EXAMPLES Since this zoom tube lens for a zoom microscope is used in combination with an objective lens, the objective lens will be disclosed in each of the examples and will be described in a form including it.

【0013】(実施例1)図1に実施例1のレンズ構成
図を示す。図中符号、r1 ...r34 は各レンズの曲率
半径、d1 ...d33は各レンズの厚さまたは間隔を表
す。この実施例における光学系の諸元は次の表の通りで
ある。
Example 1 FIG. 1 shows a lens configuration diagram of Example 1. Symbols in the figure, r 1 . . . r 34 is the radius of curvature of each lens, d 1 .. . . d 33 represents the thickness or spacing of each lens. The specifications of the optical system in this example are as shown in the following table.

【0014】[0014]

【表1】 [Table 1]

【0015】ここで、n1 ... 20は各レンズのd線
に対する屈折率、ν1 ...ν20はd線に対するアッベ
数である。この実施例のワイド端(5倍)、中間(21
倍)、テレ端(50倍)における諸収差をそれぞれ図
8、図9、図10として示す。
Here, n 1 .. . . N 20 is the refractive index at the d-line of each lens, [nu 1. . . ν 20 is the Abbe number for the d-line. The wide end (5 times), the middle (21
8), various aberrations at the tele end (50 times) are shown in FIGS. 8, 9 and 10, respectively.

【0016】(実施例2)図2に実施例2のレンズ構成
図を示す。図中符号、r1 ...r28 は各レンズの曲率
半径、d1 ...d27は各レンズの厚さまたは間隔を表
す。この実施例における光学系の諸元は次の表の通りで
ある。
Example 2 FIG. 2 shows a lens configuration diagram of Example 2. Symbols in the figure, r 1 . . . r 28 is the radius of curvature of each lens, d 1 .. . . d 27 represents the thickness or spacing of each lens. The specifications of the optical system in this example are as shown in the following table.

【0017】[0017]

【表2】 [Table 2]

【0018】ここで、n1 ... 16は各レンズのd線
に対する屈折率、ν1 ...ν16はd線に対するアッベ
数である。この実施例のワイド端(1.5倍)、中間
(6.2倍)、テレ端(15倍)における諸収差をそれ
ぞれ図11、図12、図13として示す。
Here, n 1 .. . . N 16 is the refractive index at the d-line of each lens, [nu 1. . . ν 16 is the Abbe number for the d-line. Aberrations at the wide end (1.5 times), the middle (6.2 times), and the tele end (15 times) in this example are shown in FIGS. 11, 12, and 13, respectively.

【0019】(実施例3)図3に実施例3のレンズ構成
図を示す。図中符号、r1 ...r26 は各レンズの曲率
半径、d1 ...d25は各レンズの厚さまたは間隔を表
す。この実施例における光学系の諸元は次の表の通りで
ある。
(Embodiment 3) FIG. 3 is a lens configuration diagram of the third embodiment. Symbols in the figure, r 1 . . . r 26 is the radius of curvature of each lens, d 1 . . . d 25 represents the thickness or spacing of each lens. The specifications of the optical system in this example are as shown in the following table.

【0020】[0020]

【表3】 [Table 3]

【0021】ここで、n1 ... 15は各レンズのd線
に対する屈折率、ν1 ...ν15はd線に対するアッベ
数である。この実施例のワイド端(1.5倍)、中間
(6.2倍)、テレ端(15倍)における諸収差をそれ
ぞれ図14、図15、図16として示す。
Here, n 1 .. . . N 15 is the refractive index at the d-line of each lens, [nu 1. . . ν 15 is the Abbe number for the d-line. Various aberrations at the wide end (1.5 times), the middle (6.2 times), and the tele end (15 times) in this example are shown in FIGS. 14, 15, and 16, respectively.

【0022】(実施例4)図4に実施例4のレンズ構成
図を示す。図中符号、r1 ...r38 は各レンズの曲率
半径、d1 ...d37は各レンズの厚さまたは間隔を表
す。この実施例における光学系の諸元は次の表の通りで
ある。
Example 4 FIG. 4 shows a lens configuration diagram of Example 4. Symbols in the figure, r 1 . . . r 38 is the radius of curvature of each lens, d 1 .. . . d 37 represents the thickness or spacing of each lens. The specifications of the optical system in this example are as shown in the following table.

【0023】[0023]

【表4】 [Table 4]

【0024】ここで、n1 ... 22は各レンズのd線
に対する屈折率、ν1 ...ν22はd線に対するアッベ
数である。この実施例において視野数は18である。こ
の実施例のワイド端(5倍)、中間(21倍)、テレ端
(50倍)における諸収差をそれぞれ図17、図18、
図19として示す。
Here, n 1 .. . . N 22 is the refractive index at the d-line of each lens, [nu 1. . . ν 22 is the Abbe number for the d-line. In this example, the number of fields of view is 18. Aberrations at the wide end (5 times), the middle (21 times), and the tele end (50 times) in this example are shown in FIGS.
Shown as FIG.

【0025】(実施例5)図5に実施例5のレンズ構成
図を示す。図中符号、r1 ...r26 は各レンズの曲率
半径、d1 ...d25は各レンズの厚さまたは間隔を表
す。この実施例における光学系の諸元は次の表の通りで
ある。
(Embodiment 5) FIG. 5 shows a lens configuration diagram of Embodiment 5. Symbols in the figure, r 1 . . . r 26 is the radius of curvature of each lens, d 1 . . . d 25 represents the thickness or spacing of each lens. The specifications of the optical system in this example are as shown in the following table.

【0026】[0026]

【表5】 [Table 5]

【0027】ここで、n1 ... 15は各レンズのd線
に対する屈折率、ν1 ...ν15はd線に対するアッベ
数である。この実施例のワイド端(0.9倍)、中間
(3.7倍)、テレ端(9倍)における諸収差をそれぞ
れ図20、図21、図22として示す。
Here, n 1 .. . . N 15 is the refractive index at the d-line of each lens, [nu 1. . . ν 15 is the Abbe number for the d-line. Aberrations at the wide end (0.9 times), the middle (3.7 times), and the tele end (9 times) in this example are shown in FIGS. 20, 21, and 22, respectively.

【0028】(実施例6)この実施例においてはレンズ
の構成は前記実施例2の場合と同様なので特に図示はし
ない。この実施例における光学系の諸元は次の表の通り
である。
(Embodiment 6) In this embodiment, the structure of the lens is the same as that of the embodiment 2, so that it is not shown. The specifications of the optical system in this example are as shown in the following table.

【0029】[0029]

【表6】 [Table 6]

【0030】ここで、n1 ... 16は各レンズのd線
に対する屈折率、ν1 ...ν16はd線に対するアッベ
数である。この実施例のワイド端(1.5倍)、中間
(6.2倍)、テレ端(15倍)における諸収差をそれ
ぞれ図23、図24、図25として示す。
Here, n 1 . . . N 16 is the refractive index at the d-line of each lens, [nu 1. . . ν 16 is the Abbe number for the d-line. Aberrations at the wide end (1.5 times), the middle (6.2 times), and the tele end (15 times) in this example are shown in FIGS. 23, 24, and 25, respectively.

【0031】(実施例7)図6に実施例7のレンズ構成
図を示す。図中符号、r1 ...r29 は各レンズの曲率
半径、d1 ...d28は各レンズの厚さまたは間隔を表
す。この実施例における光学系の諸元は次の表の通りで
ある。
(Embodiment 7) FIG. 6 shows a lens configuration diagram of Embodiment 7. Symbols in the figure, r 1 . . . r 29 is the radius of curvature of each lens, d 1 .. . . d 28 represents the thickness or spacing of each lens. The specifications of the optical system in this example are as shown in the following table.

【0032】[0032]

【表7】 [Table 7]

【0033】ここで、n1 ... 17は各レンズのd線
に対する屈折率、ν1 ...ν17はd線に対するアッベ
数である。この実施例のワイド端(12.5倍)、中間
(28倍)、テレ端(50倍)における諸収差をそれぞ
れ図26、図27、図28として示す。
Here, n 1 .. . . N 17 is the refractive index at the d-line of each lens, [nu 1. . . ν 17 is the Abbe number for the d-line. Aberrations at the wide end (12.5 times), the middle (28 times), and the tele end (50 times) in this example are shown in FIGS. 26, 27, and 28, respectively.

【0034】(実施例8)図7に実施例8のレンズ構成
図を示す。図中符号、r1 ...r21 は各レンズの曲率
半径、d1 ...d20は各レンズの厚さまたは間隔を表
す。この実施例における光学系の諸元は次の表の通りで
ある。
(Embodiment 8) FIG. 7 shows the lens construction of the eighth embodiment. Symbols in the figure, r 1 . . . r 21 is the radius of curvature of each lens, d 1 .. . . d 20 represents the thickness or spacing of each lens. The specifications of the optical system in this example are as shown in the following table.

【0035】[0035]

【表8】 [Table 8]

【0036】ここで、n1 ... 12は各レンズのd線
に対する屈折率、ν1 ...ν12はd線に対するアッベ
数である。この実施例のワイド端(3.75倍)、中間
(8.3倍)、テレ端(15倍)における諸収差をそれ
ぞれ図29、図30、図31として示す。
Here, n 1 .. . . N 12 is the refractive index at the d-line of each lens, [nu 1. . . ν 12 is the Abbe number for the d-line. Aberrations at the wide end (3.75 times), the middle (8.3 times), and the tele end (15 times) in this example are shown in FIGS. 29, 30, and 31, respectively.

【0037】(実施例9)この実施例においてはレンズ
の構成は前記実施例4の場合と同様なので特に図示はし
ない。この実施例における光学系の諸元は次の表の通り
である。
(Embodiment 9) In this embodiment, the structure of the lens is the same as in the case of the above-mentioned Embodiment 4, so that it is not particularly shown. The specifications of the optical system in this example are as shown in the following table.

【0038】[0038]

【表9】 [Table 9]

【0039】ここで、n1 ... 22は各レンズのd線
に対する屈折率、ν1 ...ν22はd線に対するアッベ
数である。この実施例において、視野数は18である。
この実施例においては、ズームチューブレンズの第1群
に蛍石系の硝種を用いており、実施例10と共に、第1
群には現在市販されている硝種の全てが使用可能である
ことを証明する。この実施例のワイド端(5倍)、中間
(21倍)、テレ端(50倍)における諸収差をそれぞ
れ図32、図33、図34として示す。
Here, n 1 .. . . N 22 is the refractive index at the d-line of each lens, [nu 1. . . ν 22 is the Abbe number for the d-line. In this example, the number of fields of view is 18.
In this example, the first group of zoom tube lenses uses a fluorite-based glass species.
The group proves that all the glass types currently on the market can be used. Various aberrations at the wide end (5 times), the middle (21 times), and the tele end (50 times) in this example are shown in FIGS. 32, 33, and 34, respectively.

【0040】(実施例10)この実施例においてはレン
ズの構成は前記実施例4の場合と同様なので特に図示は
しない。この実施例における光学系の諸元は次の表の通
りである。
(Embodiment 10) In this embodiment, the structure of the lens is the same as in the case of the above-mentioned Embodiment 4, so that it is not shown. The specifications of the optical system in this example are as shown in the following table.

【0041】[0041]

【表10】 [Table 10]

【0042】ここで、n1 ... 22は各レンズのd線
に対する屈折率、ν1 ...ν22はd線に対するアッベ
数である。この実施例において、視野数は18である。
この実施例においては、ズームチューブレンズの第1群
にSF系のうち分散の大きな硝種を用いており、実施例
9と共に、第1群には現在市販されている硝種の全てが
使用可能であることを証明する。この実施例のワイド端
(5倍)、中間(21倍)、テレ端(50倍)における
諸収差をそれぞれ図35、図36、図37として示す。
Here, n 1 .. . . N 22 is the refractive index at the d-line of each lens, [nu 1. . . ν 22 is the Abbe number for the d-line. In this example, the number of fields of view is 18.
In this embodiment, the first group of the zoom tube lens uses a glass type having a large dispersion in the SF system, and together with the ninth example, all the commercially available glass types can be used for the first group. Prove that. Aberrations at the wide end (5 times), the middle (21 times), and the tele end (50 times) in this example are shown in FIGS. 35, 36, and 37, respectively.

【0043】[0043]

【発明の効果】以上の構成よりなるこの発明のズームチ
ューブレンズをズーム顕微鏡に使用すれば、高物体倍
率、高NA、長作動距離及び高ズーム比を、従来のズー
ム顕微鏡に比べて少ないレンズ枚数で達成することがで
きる。即ち、この発明によれば、ズームチューブレンズ
の中で最大のレンズ径を有する第1群の構成が、従来の
3枚に対して1枚となり、コストダウンに有利となる効
果を奏する。
When the zoom tube lens of the present invention having the above-mentioned structure is used in a zoom microscope, the high object magnification, high NA, long working distance, and high zoom ratio can be achieved with a smaller number of lenses than the conventional zoom microscope. Can be achieved with. That is, according to the present invention, the configuration of the first group having the largest lens diameter in the zoom tube lenses is one in comparison with the conventional three lenses, which is advantageous in cost reduction.

【0044】又、実施例1より明らかなように、物体倍
率が5倍から50倍まで一つの対物レンズで連続的に変
倍可能な、ズーム比10のズーム顕微鏡を得られる効果
がある。
As is clear from the first embodiment, there is an effect that a zoom microscope with a zoom ratio of 10 can be obtained in which the object magnification can be continuously varied with one objective lens from 5 times to 50 times.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment of the present invention.

【図2】この発明の実施例2のレンズ構成図。FIG. 2 is a lens configuration diagram of a second embodiment of the present invention.

【図3】この発明の実施例3のレンズ構成図。FIG. 3 is a lens configuration diagram of a third embodiment of the present invention.

【図4】この発明の実施例4のレンズ構成図。FIG. 4 is a lens configuration diagram of a fourth embodiment of the present invention.

【図5】この発明の実施例5のレンズ構成図。FIG. 5 is a lens configuration diagram of a fifth embodiment of the present invention.

【図6】この発明の実施例7のレンズ構成図。FIG. 6 is a lens configuration diagram of a seventh embodiment of the present invention.

【図7】この発明の実施例8のレンズ構成図。FIG. 7 is a lens configuration diagram of an eighth embodiment of the present invention.

【図8】この発明の実施例1のワイド端における諸収差
図。
FIG. 8 is a diagram of various types of aberration at the wide end according to the first example of the present invention.

【図9】同上、中間における諸収差図。FIG. 9 is a diagram showing various aberrations in the middle of the above.

【図10】同上、テレ端における諸収差図。FIG. 10 is a diagram showing various aberrations at the telephoto end.

【図11】この発明の実施例2のワイド端における諸収
差図。
FIG. 11 is a diagram of various types of aberration at the wide end according to the second example of the present invention.

【図12】同上、中間における諸収差図。FIG. 12 is a diagram showing various aberrations in the middle of the above.

【図13】同上、テレ端における諸収差図。FIG. 13 is a diagram showing various aberrations at the telephoto end.

【図14】この発明の実施例3のワイド端における諸収
差図。
FIG. 14 is a diagram of various types of aberration at the wide end according to the third example of the present invention.

【図15】同上、中間における諸収差図。FIG. 15 is a diagram showing various aberrations in the middle of the above.

【図16】同上、テレ端における諸収差図。FIG. 16 is a diagram showing various aberrations at the telephoto end.

【図17】この発明の実施例4のワイド端における諸収
差図。
FIG. 17 is a diagram of various types of aberration at the wide end according to the fourth example of the present invention.

【図18】同上、中間における諸収差図。FIG. 18 is a diagram showing various aberrations in the middle of the above.

【図19】同上、テレ端における諸収差図。FIG. 19 is a diagram showing various aberrations at the telephoto end.

【図20】この発明の実施例5のワイド端における諸収
差図。
FIG. 20 is a diagram of various types of aberration at the wide end according to the fifth example of the present invention.

【図21】同上、中間における諸収差図。FIG. 21 is a diagram showing various aberrations in the middle of the above.

【図22】同上、テレ端における諸収差図。FIG. 22 is a diagram showing various aberrations at the telephoto end.

【図23】この発明の実施例6のワイド端における諸収
差図。
FIG. 23 is a diagram of various types of aberration at the wide end according to the sixth example of the present invention.

【図24】同上、中間における諸収差図。FIG. 24 is a diagram of various types of aberration in the middle of the above.

【図25】同上、テレ端における諸収差図。FIG. 25 is a diagram showing various aberrations at the telephoto end.

【図26】この発明の実施例7のワイド端における諸収
差図。
FIG. 26 is a diagram of various types of aberration at the wide end according to the seventh example of the present invention.

【図27】同上、中間における諸収差図。FIG. 27 is a diagram showing various aberrations in the middle of the above.

【図28】同上、テレ端における諸収差図。FIG. 28 is a diagram showing various aberrations at the telephoto end.

【図29】この発明の実施例8のワイド端における諸収
差図。
FIG. 29 is a diagram of various types of aberration at the wide end according to Example 8 of the present invention.

【図30】同上、中間における諸収差図。FIG. 30 is a diagram of various types of aberration in the middle of the above.

【図31】同上、テレ端における諸収差図。FIG. 31 is a diagram showing various aberrations at the telephoto end.

【図32】この発明の実施例9のワイド端における諸収
差図。
FIG. 32 is a diagram of various types of aberration at the wide end according to the ninth example of the present invention.

【図33】同上、中間における諸収差図。FIG. 33 is a diagram showing various aberrations in the middle of the above.

【図34】同上、テレ端における諸収差図。FIG. 34 is a diagram showing various aberrations at the telephoto end.

【図35】この発明の実施例10のワイド端における諸
収差図。
FIG. 35 is a diagram of various types of aberration at the wide end according to the tenth example of the present invention.

【図36】同上、中間における諸収差図。FIG. 36 is a diagram showing various aberrations in the middle of the above.

【図37】同上、テレ端における諸収差図。FIG. 37 is a diagram showing various aberrations at the telephoto end.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無限遠補正型顕微鏡のチューブレンズと
して用いられるズームレンズで、そのズームレンズは物
体側から正、負、負、正の屈折力の4群からなるメカニ
カルコンペンセイションタイプであり、第1群は正の屈
折力を有し、ズーミング中は固定され、第2群は負の屈
折力を有し、ズーミング中は直線的に移動して変倍作用
の主力をなし、第3群は負の屈折力を有し、ズーミング
中は非線形的に移動して像位置を一定に保つ作用をな
し、第4群は正の屈折力を有し、ズーミング中は固定さ
れ、その第1群は正の単レンズよりなることを特徴とす
る無限遠補正型ズーム顕微鏡用ズームチューブレンズ。
1. A zoom lens used as a tube lens of an infinity correction type microscope, the zoom lens being a mechanical compensation type consisting of four groups of positive, negative, negative and positive refracting powers from the object side, The first group has a positive refracting power and is fixed during zooming, the second group has a negative refracting power, and moves linearly during zooming to form the main force of zooming, and the third group Has a negative refracting power, moves non-linearly during zooming to keep the image position constant, the fourth group has a positive refracting power and is fixed during zooming, and the first group Is a zoom tube lens for infinity-corrected zoom microscopes, which consists of a positive single lens.
JP5219260A 1993-08-12 1993-08-12 Zoom tube lens for infinity correction type zoom microscope Pending JPH0756087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5219260A JPH0756087A (en) 1993-08-12 1993-08-12 Zoom tube lens for infinity correction type zoom microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5219260A JPH0756087A (en) 1993-08-12 1993-08-12 Zoom tube lens for infinity correction type zoom microscope

Publications (1)

Publication Number Publication Date
JPH0756087A true JPH0756087A (en) 1995-03-03

Family

ID=16732741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219260A Pending JPH0756087A (en) 1993-08-12 1993-08-12 Zoom tube lens for infinity correction type zoom microscope

Country Status (1)

Country Link
JP (1) JPH0756087A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514920A (en) * 2000-05-03 2004-05-20 ダーク・ソーンクセン Fully automatic slide scanner for microscope
US8923597B2 (en) 2004-05-27 2014-12-30 Leica Biosystems Imaging, Inc. Creating and viewing three dimensional virtual slides
CN110412759A (en) * 2019-08-21 2019-11-05 杭州图谱光电科技有限公司 A kind of zoomable electronic eyepiece adapter of limited remote conjugate distance microscope
US11709346B2 (en) 2017-02-08 2023-07-25 Largan Precision Co., Ltd. Optical imaging system, imaging apparatus and electronic device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514920A (en) * 2000-05-03 2004-05-20 ダーク・ソーンクセン Fully automatic slide scanner for microscope
JP2011232762A (en) * 2000-05-03 2011-11-17 Aperio Technologies Inc Fully automatic rapid microscope slide scanner
US8385619B2 (en) 2000-05-03 2013-02-26 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
US9851550B2 (en) 2000-05-03 2017-12-26 Leica Biosystems Imaging, Inc. Fully automatic rapid microscope slide scanner
US8923597B2 (en) 2004-05-27 2014-12-30 Leica Biosystems Imaging, Inc. Creating and viewing three dimensional virtual slides
US9069179B2 (en) 2004-05-27 2015-06-30 Leica Biosystems Imaging, Inc. Creating and viewing three dimensional virtual slides
US11709346B2 (en) 2017-02-08 2023-07-25 Largan Precision Co., Ltd. Optical imaging system, imaging apparatus and electronic device
US11988817B2 (en) 2017-02-08 2024-05-21 Largan Precision Co., Ltd. Optical imaging system, imaging apparatus and electronic device
CN110412759A (en) * 2019-08-21 2019-11-05 杭州图谱光电科技有限公司 A kind of zoomable electronic eyepiece adapter of limited remote conjugate distance microscope

Similar Documents

Publication Publication Date Title
JPH05173071A (en) Wide angle zoom lens
JPS62235916A (en) Zoom lens
JPH063592A (en) Large-diameter zoom lens
JPH041715A (en) Internal focusing type telephoto zoom lens
JP4061152B2 (en) Zoom photography optics
US5831771A (en) Zoom lens
JPH09258102A (en) Zoom lens of inner focusing type
JPH0634885A (en) Zoom lens
JPH05215966A (en) Telephoto zoom lens with large aperture ratio
JP3160846B2 (en) Telephoto zoom lens
JP3503911B2 (en) Eyepiece zoom lens system
JPH0894933A (en) High magnifying power zoom lens
JPS5971015A (en) Zoom lens
EP2362260B1 (en) Variable power optical system for stereo microscope
JPH08129134A (en) Zoom lens
JP3723643B2 (en) High zoom ratio zoom lens system
JPH06130330A (en) Zoom lens equipped with vibration preventing function
JPH05119260A (en) High-power zoom lens
JPH05150160A (en) Zoom lens
JP3467102B2 (en) Zoom lens
KR100256205B1 (en) Small type zoom lens
JPH0634883A (en) Super wide-angle variable power zoom lens
JP2947475B2 (en) Zoom lens
JPH05224123A (en) Telephoto zoom lens
JPH0756087A (en) Zoom tube lens for infinity correction type zoom microscope