JPH0754823Y2 - Light intensity measuring device - Google Patents

Light intensity measuring device

Info

Publication number
JPH0754823Y2
JPH0754823Y2 JP4120190U JP4120190U JPH0754823Y2 JP H0754823 Y2 JPH0754823 Y2 JP H0754823Y2 JP 4120190 U JP4120190 U JP 4120190U JP 4120190 U JP4120190 U JP 4120190U JP H0754823 Y2 JPH0754823 Y2 JP H0754823Y2
Authority
JP
Japan
Prior art keywords
output
converter
light
variable gain
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4120190U
Other languages
Japanese (ja)
Other versions
JPH041421U (en
Inventor
倫一郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP4120190U priority Critical patent/JPH0754823Y2/en
Publication of JPH041421U publication Critical patent/JPH041421U/ja
Application granted granted Critical
Publication of JPH0754823Y2 publication Critical patent/JPH0754823Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【考案の詳細な説明】 「産業上の利用分野」 この考案は光パワーメータ、光スペクトラムアナライザ
などで光の強度、特にパルス変調された光の平均強度の
測定に適する光強度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial field of application" The present invention relates to a light intensity measuring device suitable for measuring the light intensity, particularly the average intensity of pulse-modulated light, by an optical power meter, an optical spectrum analyzer or the like.

「従来の技術」 従来の光強度測定装置は第6図に示すように受光素子11
に入射された光は電流に変換され、その電流は電流電圧
変換器12で電圧に変換され、その変換された電圧は可変
利得増幅器、いわゆるレンジングアンプ13で増幅され、
その増幅出力はAD変換器14でデジタル信号に変換され、
そのデジタル信号はCPUよりなる制御器15に入力され、
制御器15を介して表示器16に表示される。この場合、可
変利得増幅器13の出力が所定の範囲、つまり、AD変換器
14が飽和しないように、またその変換デジタル信号が表
示器16の表示範囲に入るように、制御器15は可変利得増
幅器13の利得、いわゆるレンジを変更制御し、あるいは
電流電圧変換器12の変換利得を変更制御する。このよう
にして入射光強度に応じて飽和しない範囲で最大のレン
ジ(利得)になるように制御する。
“Prior Art” A conventional light intensity measuring device is provided with a light receiving element 11 as shown in FIG.
The light incident on is converted into a current, the current is converted into a voltage by the current-voltage converter 12, and the converted voltage is amplified by a variable gain amplifier, so-called ranging amplifier 13,
The amplified output is converted into a digital signal by the AD converter 14,
The digital signal is input to the controller 15 composed of a CPU,
It is displayed on the display 16 via the controller 15. In this case, the output of the variable gain amplifier 13 is within a predetermined range, that is, the AD converter.
The controller 15 controls the gain of the variable gain amplifier 13, so-called range, or the conversion of the current-voltage converter 12 so that 14 does not saturate and its converted digital signal falls within the display range of the display 16. Change control gain. In this way, control is performed so that the maximum range (gain) is achieved in a range that does not saturate according to the intensity of incident light.

入力光が光パルスの場合は、例えば第7図Aに示すよう
な入力パルス光に対し、可変利得増幅器13の出力は第7
図Bに示すようになり、これに対するAD変換器14におけ
るサンプリングが第7図Cに示すような場合は、そのサ
ンプリングが光パルスの入射と一致した時は、その光パ
ワーに応じたデジタル信号が第7図Dに示すように得ら
れるが、入射パルスと一致しないサンプリング時には出
力がゼロとなり欠落が生じる。またこの光パルスと不一
致のサンプリングにもとずく変換デジタル信号が制御器
15に入力されると、制御器15は入力光の強度が小さいと
判断して可変利得増幅器13の利得を上げるように動作す
る。このため入力パルス光とサンプリングとが一致した
時には、その入力パルス光で可変利得増幅器13やAD変換
器14が飽和するおそれがある。何れにしても、入力光パ
ルスとサンプリングとが一致した時と、一致しない時と
で測定値がばらつき、可変利得増幅器13の利得(レン
ジ)切替えがいつまでも収束しない場合も生じる。
When the input light is an optical pulse, for example, the output of the variable gain amplifier 13 corresponds to the input pulse light as shown in FIG.
As shown in FIG. B, and when the sampling in the AD converter 14 for this is as shown in FIG. 7C, when the sampling coincides with the incidence of the optical pulse, the digital signal corresponding to the optical power is changed. Although it is obtained as shown in FIG. 7D, at the time of sampling which does not coincide with the incident pulse, the output becomes zero and a dropout occurs. Also, the converted digital signal based on the sampling that does not match this optical pulse is the controller.
When it is input to 15, the controller 15 determines that the intensity of the input light is small and operates to increase the gain of the variable gain amplifier 13. Therefore, when the input pulsed light and the sampling match, the variable gain amplifier 13 and the AD converter 14 may be saturated by the input pulsed light. In any case, the measured value varies depending on whether the input light pulse and the sampling match or not, and the gain (range) switching of the variable gain amplifier 13 may not converge forever.

これらの問題を解決するため従来においては第8図に示
すように、可変利得増幅器13とAD変換器14との間に低域
通過波器17が直列に挿入されていた。この低域通過
波器17の時定数はAD変換器14のサンプリング間隔より十
分長く設定されている。このようにすると、AD変換器14
の出力の欠落は生じない、またレンジ切替えの非収束の
問題も生じない。しかし入力光パルスのデュテイ比が小
さい場合は、光パルスのピーク値が大きくても低域通過
波器17の出力レベルが小さくなり、第9図Cに示すよ
うにオーバーレンジしきい値より小さく、制御器15は可
変利得増幅器13の利得を上げるように動作し、極端な場
合は最大利得に設定されても、低域通過波器17の出力
はオーバーレンジしきい値に達せず、このような場合は
光パルスにもとずく、可変利得増幅器(レンジングアン
プ)13の出力パルスは飽和してしまい、第9図Bに示す
ように可変利得増幅器13に飽和がないと仮定した場合の
出力パルスよりレベルが低いものとなってしまい、正し
い測定を行うことができない。
In order to solve these problems, in the past, as shown in FIG. 8, a low pass wave filter 17 was inserted in series between the variable gain amplifier 13 and the AD converter 14. The time constant of the low pass wave filter 17 is set sufficiently longer than the sampling interval of the AD converter 14. In this way, the AD converter 14
Does not occur, and the problem of non-convergence of range switching does not occur. However, when the duty ratio of the input optical pulse is small, the output level of the low pass wave filter 17 becomes small even if the peak value of the optical pulse is large, and as shown in FIG. The controller 15 operates so as to increase the gain of the variable gain amplifier 13, and even in the extreme case, even if it is set to the maximum gain, the output of the low pass wave filter 17 does not reach the overrange threshold value. In this case, the output pulse of the variable gain amplifier (ranging amplifier) 13 is saturated due to the optical pulse, and the output pulse is assumed to be saturated in the variable gain amplifier 13 as shown in FIG. 9B. The level is too low to measure correctly.

「課題を解決するための手段」 この考案によれば、受光素子の出力電流はまず積分器で
積分され、その積分出力が可変利得増幅器で増幅され
る。その増幅出力はAD変換器で周期的にデジタル信号に
変換される。この変換周期と同期して、その変換の直後
に積分器の出力は放電される。AD変換器の出力デジタル
信号の大きさに応じて制御器により可変利得増幅器の利
得が切替えられてデジタル信号が所定の範囲内に入るよ
うにされる。
[Means for Solving the Problem] According to this invention, the output current of the light receiving element is first integrated by the integrator, and the integrated output is amplified by the variable gain amplifier. The amplified output is periodically converted into a digital signal by the AD converter. In synchronization with this conversion cycle, the output of the integrator is discharged immediately after the conversion. The controller switches the gain of the variable gain amplifier according to the magnitude of the output digital signal of the AD converter so that the digital signal falls within a predetermined range.

「実施例」 第1図にこの考案の実施例を示し、第6図と対応する部
分に同一符号を付けてある。この考案においては受光素
子11の出力電流はまず積分器18で積分され、その積分出
力は可変利得増幅器13で増幅され、その増幅出力はAD変
換器14で周期的にデジタル信号に変換される。そのデジ
タル信号の大きさに応じて制御器15で、可変利得増幅器
13の利得が制御される。AD変換器14での変換周期と同期
して積分器18の積分出力が放電される。つまりデジタル
信号への変換の直後に積分器18を放電する。このため制
御器15からAD変換器14へ変換指令を出し、また積分器18
に放電制御信号を出す。あるいはAD変換器14自体で周期
的に変換を行っている場合はその変換時点(サンプリン
グ時点)を示す信号が制御器15へ与えられ、これにもと
ずき制御器15が放電制御信号を出力する。またこの例で
は積分器18の利得を変更できるように構成し、必要に応
じてその利得を制御器15で変更するようにした場合であ
る。
[Embodiment] FIG. 1 shows an embodiment of the present invention, in which parts corresponding to those in FIG. 6 are designated by the same reference numerals. In this invention, the output current of the light receiving element 11 is first integrated by the integrator 18, the integrated output is amplified by the variable gain amplifier 13, and the amplified output is periodically converted into a digital signal by the AD converter 14. According to the magnitude of the digital signal, the controller 15 controls the variable gain amplifier.
Gain of 13 is controlled. The integrated output of the integrator 18 is discharged in synchronization with the conversion cycle of the AD converter 14. That is, the integrator 18 is discharged immediately after conversion into a digital signal. Therefore, the controller 15 issues a conversion command to the AD converter 14, and the integrator 18
Issue a discharge control signal. Alternatively, when the AD converter 14 itself is performing conversion periodically, a signal indicating the conversion time point (sampling time point) is given to the controller 15, and based on this, the discharge controller signal is output To do. Further, in this example, the gain of the integrator 18 can be changed, and the gain can be changed by the controller 15 as necessary.

このような積分器18は例えば第2図に示すように構成さ
れる。すなわち演算増幅器19の反転入力端に受光素子11
の一端が接続され、演算増幅器19の非反転入力端は接地
され、また前記反転入力端にコンデンサC1〜Cnの各一端
が接続され、コンデンサC1〜Cnの各他端はスイッチ21で
演算増幅器19の出力端に切替え接続される。また演算増
幅器19の反転入力端と出力端との間にリセットスイッチ
22が接続される。スイッチ21はレンジ切替え信号により
切替え制御される。1つの入力光パルスにより、スイッ
チ21が接続されたコンデンサに充電される電荷量は、そ
のピーク値と幅と受光素子11の変換効率とで決まるか
ら、例えばAD変換器14の出力デジタル信号が所定値以下
の場合はスイッチ21を現在接続されているコンデンサよ
りも小さい容量のコンデンサに切替え接続して積分出力
電圧を大きくし、つまり利得を高くする。放電制御信号
によりリセットスイッチ22をオンとしてコンデンサC1
Cnの電荷を放電させる。
Such an integrator 18 is constructed, for example, as shown in FIG. That is, the light receiving element 11 is connected to the inverting input terminal of the operational amplifier 19.
The one end of the connection, the non-inverting input of the operational amplifier 19 is grounded, and each one end of the capacitor C 1 -C n is connected to the inverting input terminal, the other end of the capacitor C 1 -C n switches 21 Is switched and connected to the output terminal of the operational amplifier 19. In addition, a reset switch is provided between the inverting input terminal and the output terminal of the operational amplifier 19.
22 is connected. The switch 21 is switch-controlled by a range switching signal. The amount of charge charged in the capacitor to which the switch 21 is connected by one input light pulse is determined by the peak value and width and the conversion efficiency of the light receiving element 11, so that the output digital signal of the AD converter 14 is predetermined, for example. If the value is less than the value, the switch 21 is switched and connected to a capacitor having a smaller capacity than the currently connected capacitor to increase the integrated output voltage, that is, the gain. The reset switch 22 is turned on by the discharge control signal and the capacitor C 1 ~
Discharge the charge of C n .

この構成によれば例えば第3図Aに示すように光パルス
が入力されると、その1光パルスごとにそのピーク値及
び幅に比例した積分電圧が第3図Bに示すように増加す
る。この積分出力が可変利得増幅器13で増幅され、その
増幅出力はAD変換器14において第3図Cで示すタイミン
グで周期的にデジタル信号に変換され、そのデジタル信
号の大きさに応じて制御器15はそのデジタル信号が所定
の範囲、つまり表示器16での表示可能範囲、AD変換器14
の変換可能範囲の小さい方に入るように可変利得増幅器
13の利得又は積分器18の利得、あるいは、積分器18の積
分時間T1、もしくはこれらの複数を同時に制御する。AD
変換器14での変換の直後に第3図Dに示すように放電制
御信号が出されて積分器18の積分出力はゼロに放電され
る。
According to this configuration, for example, when an optical pulse is input as shown in FIG. 3A, the integrated voltage proportional to the peak value and the width of each optical pulse increases as shown in FIG. 3B. This integrated output is amplified by the variable gain amplifier 13, and the amplified output is periodically converted into a digital signal by the AD converter 14 at the timing shown in FIG. 3C, and the controller 15 according to the magnitude of the digital signal. Indicates that the digital signal has a predetermined range, that is, the displayable range on the display 16, the AD converter 14
Variable gain amplifier to enter the smaller conversion range
The gain of 13 or the gain of the integrator 18, the integration time T 1 of the integrator 18, or a plurality of these are controlled simultaneously. AD
Immediately after the conversion in the converter 14, a discharge control signal is issued as shown in FIG. 3D, and the integrated output of the integrator 18 is discharged to zero.

このようにこの考案では受光素子11の出力が直ちに平均
化されて可変利得増幅器13へ供給されるため、パルスの
ピークで可変利得増幅器13が飽和するなどの問題はなく
なり、デュテイ比が小さい光パルスでも正しく測定する
ことができる。
As described above, in the present invention, the output of the light receiving element 11 is immediately averaged and supplied to the variable gain amplifier 13, so that there is no problem that the variable gain amplifier 13 is saturated at the peak of the pulse, and the optical pulse with a small duty ratio is eliminated. But it can be measured correctly.

表示器16にはAD変換器14の出力を直接供給してもよい。
第4図に示すように、演算増幅器19の反転入力端と出力
端との間にスイッチ21でコンデンサC1〜Cnの何れかを切
替え接続するか、スイッチ21で抵抗器R1〜Rmの何れかを
切替え接続するかを行うことができるようにし、入力光
が連続光の場合はスイッチ21を抵抗器R1〜Rmの何れかに
接続して積分器18を電流電圧変換器として使用するよう
にしてもよい。なお連続光の測定もスイッチ21をコンデ
ンサC1〜Cmの何れかに接続して測定してもよい。積分器
18としては第2図に示した帰還形のものに限らず、例え
ば第5図に示す電圧増幅形のものとしてもよい。また積
分器18としては固定利得のものでもよい。
The output of the AD converter 14 may be directly supplied to the display 16.
As shown in FIG. 4, one of the capacitors C 1 to C n is switched between the inverting input terminal and the output terminal of the operational amplifier 19 by the switch 21, or the switch R 21 connects the resistors R 1 to R m. When the input light is continuous light, the switch 21 is connected to any one of the resistors R 1 to R m and the integrator 18 is used as a current-voltage converter. It may be used. The continuous light may be measured by connecting the switch 21 to any of the capacitors C 1 to C m . Integrator
18 is not limited to the feedback type shown in FIG. 2, but may be the voltage amplification type shown in FIG. 5, for example. The integrator 18 may have a fixed gain.

「考案の効果」 以上述べたようにこの考案によれば受光素子の出力を直
ちに積分しているため、光パルスが入力された時に、直
ちに平均化され、その平均化出力が可変利得増幅器13へ
供給されるため、デュテイ比が小さい光パルスでも正し
く測定することができる。
[Advantage of Device] As described above, according to this device, since the output of the light receiving element is immediately integrated, when an optical pulse is input, it is immediately averaged, and the averaged output is sent to the variable gain amplifier 13. Since it is supplied, it is possible to correctly measure even an optical pulse having a small duty ratio.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の実施例を示すブロック図、第2図は
その積分器18の具体例を示す接続図、第3図は第1図の
動作例を示すタイムチャート、第4図は積分器18を電流
電圧変換器としても利用できるようにした例を示す接続
図、第5図は積分器18の他の例を示す接続図、第6図は
従来の光強度測定装置を示すブロック図、第7図は第6
図の装置で光パルスを測定する場合の問題点を説明する
ためのタイムチャート、第8図は第6図の装置の問題を
解決した従来の装置を示すブロック図、第9図は第8図
の装置の問題を説明するためのタイムチャートである。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a connection diagram showing a concrete example of the integrator 18, FIG. 3 is a time chart showing an operation example of FIG. 1, and FIG. FIG. 5 is a connection diagram showing an example in which the integrator 18 can also be used as a current-voltage converter, FIG. 5 is a connection diagram showing another example of the integrator 18, and FIG. 6 is a block diagram showing a conventional light intensity measuring device. , FIG. 7 shows the sixth
FIG. 8 is a time chart for explaining problems in measuring an optical pulse with the device shown in FIG. 8, FIG. 8 is a block diagram showing a conventional device which solves the problem of the device shown in FIG. 6, and FIG. 9 is FIG. 3 is a time chart for explaining a problem of the device of FIG.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】入力光を電流に変換する受光素子と、 その受光素子の出力電流を積分し、その積分出力が周期
的に放電される積分器と、 その積分器の積分出力を増幅し、その利得を変更するこ
とができる可変利得増幅器と、 上記各放電の直前に上記可変利得増幅器の出力を、デジ
タル信号に変換するAD変換器と、 そのAD変換器の出力デジタル信号が入力され、その大き
さに応じて上記可変利得増幅器の利得を、上記デジタル
信号が所定の範囲内に入るように制御する制御器と、 上記AD変換器の出力を表示する表示器と、 を具備する光強度測定装置。
1. A light-receiving element that converts input light into a current, an integrator that integrates the output current of the light-receiving element, the integrated output is periodically discharged, and the integrated output of the integrator is amplified, A variable gain amplifier that can change its gain, an AD converter that converts the output of the variable gain amplifier into a digital signal immediately before each discharge, and the output digital signal of the AD converter is input, A light intensity measurement comprising: a controller that controls the gain of the variable gain amplifier according to the magnitude so that the digital signal falls within a predetermined range; and a display that displays the output of the AD converter. apparatus.
JP4120190U 1990-04-18 1990-04-18 Light intensity measuring device Expired - Lifetime JPH0754823Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4120190U JPH0754823Y2 (en) 1990-04-18 1990-04-18 Light intensity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4120190U JPH0754823Y2 (en) 1990-04-18 1990-04-18 Light intensity measuring device

Publications (2)

Publication Number Publication Date
JPH041421U JPH041421U (en) 1992-01-08
JPH0754823Y2 true JPH0754823Y2 (en) 1995-12-18

Family

ID=31551669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4120190U Expired - Lifetime JPH0754823Y2 (en) 1990-04-18 1990-04-18 Light intensity measuring device

Country Status (1)

Country Link
JP (1) JPH0754823Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722332B2 (en) * 2001-06-18 2011-07-13 浜松ホトニクス株式会社 Photodetector
JP4663956B2 (en) * 2002-12-25 2011-04-06 浜松ホトニクス株式会社 Photodetector
JP4192880B2 (en) 2004-10-12 2008-12-10 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP2008209556A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Electro-optical device, semiconductor device, display device and electronic equipment having the same

Also Published As

Publication number Publication date
JPH041421U (en) 1992-01-08

Similar Documents

Publication Publication Date Title
US5998971A (en) Apparatus and method for coulometric metering of battery state of charge
US5132610A (en) Digitizing power meter
GB2195457A (en) Measuring the ratio r/r of a resistance half-bridge
JPH08304488A (en) Method and equipment for measuring variation of capacitance value of dual capacitor
JPH0754823Y2 (en) Light intensity measuring device
US5061865A (en) Non-linear transimpedance amplifier
US4939520A (en) Analog to digital converter using an integrator having a partially controlled output signal
JPS63166000A (en) Measured value transmitter for sensor
US4556789A (en) Measuring circuit for photo-receiving intensity of photosensor
US5253032A (en) Active distance measuring apparatus
JPS6183967A (en) Apparatus for measuring minute current
SU1627998A1 (en) Converter converting product of two dc voltages to dc voltage
SU1545092A1 (en) Photometer
JPS6012354Y2 (en) Double integral type analog-digital converter
CN117856737A (en) Voltage-frequency oscillator with high sensitivity for detecting voltage change of input end
JPH0499955A (en) Humidity measuring instrument
JP4071665B2 (en) Integration time constant A / D converter
JPS60210773A (en) Integrating wattmeter
RU1798726C (en) Device for measuring harmonic coefficient of output signals of quadripoles
JPS6027968Y2 (en) AC voltage measuring device
JP4071444B2 (en) Analog circuit type constant power supply device
JPH05273265A (en) Frequency measuring circuit
JPH07244063A (en) Time ratio detection circuit
JPH018025Y2 (en)
USRE28833E (en) Analogue to digital converter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term