JPH07503147A - Total knee prosthesis with fixed axis of rotation - Google Patents

Total knee prosthesis with fixed axis of rotation

Info

Publication number
JPH07503147A
JPH07503147A JP4506146A JP50614692A JPH07503147A JP H07503147 A JPH07503147 A JP H07503147A JP 4506146 A JP4506146 A JP 4506146A JP 50614692 A JP50614692 A JP 50614692A JP H07503147 A JPH07503147 A JP H07503147A
Authority
JP
Japan
Prior art keywords
total
axis
knee prosthesis
condyle
knee joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4506146A
Other languages
Japanese (ja)
Other versions
JP2654249B2 (en
Inventor
ホリスター,アン
Original Assignee
ハーバー―ユーシーエルエーリサーチ アンド エデュケーション インスティテュート インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハーバー―ユーシーエルエーリサーチ アンド エデュケーション インスティテュート インコーポレイテッド filed Critical ハーバー―ユーシーエルエーリサーチ アンド エデュケーション インスティテュート インコーポレイテッド
Publication of JPH07503147A publication Critical patent/JPH07503147A/en
Application granted granted Critical
Publication of JP2654249B2 publication Critical patent/JP2654249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3877Patellae or trochleae

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 固定した回旋軸線を持つ全人工膝関節 発明の背景 発明の分野 本発明は人工膝関節装置の分野に関する。 従来技術の説明 人間の膝関節は人体で最もストレスのかがる関節である0歩行、ランニング、膝 立ち、階段昇りなどの通常の活動では、膝関節にががる荷重は簡単に体重の5倍 を超えることがあり、もっと激しい活動に携わる場合にはさらにかなり高くなる ことがある。種々の関節炎が世界の人口の約10パーセントに影響を与えている 。有意数の関節炎に罹患した人々が関節、たとえば膝関節のがなりの変質、変形 を経験している。膝に外傷を受けた場合には、特に膝廃疾となり易い。アメリカ 合衆国では毎年、約140. OO0人の患者が人工膝関節全置換のためだけで 手術を受けている。解剖学的な構造の膝により似ている人工膝関節が存在すれば 、膝関節問題を抱えているより多くの人々が人工膝関節全置換の対象となろう。 人工膝関節は基本的に2つのタイプに分類され得る。 第1のタイプは、「安定化」人工関節と呼ばれ、解剖学的構造の膝関節の代替物 として使用されるヒンジ弐あるイハボール・ソケット弐の関節を有する。このタ イプの関節では、その運動はヒンジビンあるいはボール・ソケットによって拘束 される。安定化人工関節は、それを安定させるのに周囲の軟組織(即ち、鍵およ び靭帯)への依存度が小さい場合には有用である。解剖学的構造の膝関節と異な り、これらの人工関節は、もしあるとしても、前後方向平行移動、側方傾斜ある いは回転が小さい、この理由のために、これらの人工関節は望ましくない。 第2のタイプの人工膝関節はいわゆる「顆状面」関節である。このタイプの人工 膝関節では、線部および脛部上の対応する蹄負面の代わりに、類似した形状、位 置の人工蹄負面が用いられる。顆状面人工膝関節は周囲の腟、靭帯に依存して関 節の線部部、脛部部(互いに直接連結していない)を保持し、運動中関節に安定 性を与える。 これらのタイプの関節は、比較的コンパクトで軽量であり、かなりの回転、並進 運動自由度を与え、移植時に自然骨の切除や周囲軟組織の障害が比較的少なくて 済む。 これらのタイプの人工膝関節の例が、Ewaldの米国特許第3.798.67 9号、Grundei等の米国特許第4,064,568号、Murray等の 米国特許第4,224,696号、Grobbelaarの米国特許第4,67 3,408号、^veri11等の米国特許第4.714.472号、)Ian slik等の米国特許第4,770,663号、lla 1ker等の米国特許 第4.822.365号、Boleskyの米国特許第4.822゜366号、 Kennaの米国特許第4,944.756号、Brown等の米国特許第4, 959.071号およびPetersenの米国特許第4゜985.037号に 開示されている。 しかしながら、人工膝関節の設計タイプとは無関係に、全人工膝関節装置に関す る医療従事者および設計者は、膝関節の屈伸運動が単純なヒンジ構造で実現でき ないと長い間考えてきた。むしろ、従来は、膝の屈伸運動が変位、回転を含み、 第1咬文面の同じ部分(線部の顆)が第2の対応する咬交面の同し部分(脛骨プ ラトー)と常に接触するとはかぎらず、運動軸線が固定されていないということ が広く受け入れられてきた。したがって、膝は単純なヒンジ関節として作用せず 、無数の独特な位置の回転中心の連続を介して回旋し、各中心がlla1節、脛 部の成る特定の相対的な向きで作用するということが信じられてきた。たとえば 、”The Surgical Replacement ofthe Hum an Knee Joint”、 by David A、 Sonstega rd、 etal、 5cientific American、 Janua ry+ 197L Vol、 238+Ntllを参照されたい。 Walker等の米国特許第4,822,365号は、人工膝関節の設計開発の 歴史を記載し、この分野での一般的な背景を説明している。多年にわたって、人 工膝関節を製作するのに用いられる材料や屈伸軸線が固定されていないという信 念に基づく設計において改良がなされてきた。しかしながら、後により詳しく説 明するように、本発明者は、解剖学的膝においては、実際には屈伸軸線が固定さ れているということを発見した。従来の全人工膝関節装置の設計は屈伸軸線が固 定されておらず、回転軸線が常に変化するという正しくない前提の下にあるため 、従来の人工膝関節は可能性のある運動度やそこにかかる歪みおよび応力の点で 人間本来の膝にがなり劣ったままである。 今日の人工膝関節は過去のそれよりははるかに優れてはいるが、それらを取り付 けた骨の骨折や剥離による故障がまだある。これらの問題は、設計に起因する、 人工膝関節にかかる不自然な応力および歪みを原因とすること大である。 主王立11 本発明は、回旋軸線が固定されおらず、常時変化するという正しくない信念に基 づ〈従来の全人工膝関節設計からの革新的な発展を示す。本出願人は、人間の自 然な解剖学的膝が屈伸を通じて線部に対する脛部の向きに依存して変化すること がない固定回旋軸線を実際に持っているということを発見した。本発明の特徴を 概説する前に、本出願人が正常な解剖学的な膝の真の解剖学的構造および機能と はどのようなものであると考えているがを以下に説明する。 人間本来の膝においては、この固定屈伸軸線(以後、rFE、軸線とする)は遠 位槌部の内側顆上の上前部がら外側顆の後下部に向いており、内側、外側の側副 靭帯の起始を通る。FE軸軸線、十字靭帯の交点に対して上方にある。固定FE 軸軸線横断面、冠状面から約3.0〜3.8度だけ等しくオフセットしている。 脛部の長手方向回転(LR)軸線も同様に固定軸線であり、FE軸軸線前方にあ り、それに対して直角ではない。FE軸軸線横断面、冠状面からのオフセットは 、膝の伸展のときに外反外旋と膝の屈曲のときに内反内旋が観察されることを説 明している。固定FE軸軸線わり(膝の屈伸による)の運動およびLR軸軸線わ り(脚の回転による)の運動(これらの軸線は直交していない)が生じたとき、 この運動はこれらの軸線まわりの純粋な回転である。FE軸軸線、遠位槌部の側 部にある内側側副靭帯(MCL)および外側側副靭帯(LCL)の起始を通り、 十字靭帯の交点の上方にある。LR軸軸線、脛骨プラトー上の前方十字靭帯(A CL)の付着部を通り、大腿骨切痕のところで後方十字靭帯(PCL)の付着部 付近において後方内側に向いている。膝蓋骨溝はその全長にわたってFE軸軸線 対して直角である。顆をFB軸軸線対して直角に端から見た場合、内側、外側の ll11節顆の後方、遠位部は重なり合っており、形状円形である。脛骨、腓骨 が互いに相対的に回転するとき、FE軸軸線変化のないままである。外側顆の曲 率半径は内側顆のそれよりも小さく、したがって、内側関節面はFE軸軸線より 近くなっており、それが固定FE軸軸線原因となっている。各顆の内側、外側面 は、脛骨がFE軸軸線相対的にLR軸軸線わりに動けるように向きを変える。 LR軸軸線前方にあり、FE軸軸線対して直交していない。LR軸軸線、脛部内 で固定されており、FB軸軸線わりに移動する。LR軸軸線、脛部への上位十字 靭帯付着部付近を通り、組節への後方十字靭帯付着部付近で後方内側に向いてい る。 上に説明したように、古典的には、関節運動は、FE。 LRおよび外転・内転(AA)の個別の直交軸線を持つ解剖学的平面にある軸線 まわりに生じると考えられていた。しカルながら、今や、FE軸軸線冠状面およ び横断面からオフセントしており、LR軸軸線矢状面に位置していないことは知 られている。FE軸軸線よびLR軸軸線、さらに、非直交である。FE、LRの 回転軸線が解剖学的な平面に位置していないので、固定FE、LR軸線まわりの 関節運動は観測されたFE、LR,AAの3つの運動を原因とする。FE軸軸線 わりの主要運動成分は屈曲、伸展であるが、軸線が矢状面に対して直角となって いないため、屈曲と共に結合内反内旋が生じる。 2つの固定軸線に対する十字靭帯の関係は生理学的な膝運動範囲内の等生長を示 唆している。先に述べたように、FE軸軸線l111節の遠位端上のMCL、L CLの起始を通る。LCL、MCLの解剖学的構造は、それらが動的に安定化さ れており、LCLが脛腓関節および膝を横切るので、十字靭帯よりも複雑である 。 観測された固定非直交軸線FE、LRは、顆の形状、靭帯の位置および屈曲で生 じる絶対的脛骨内反白旗を説明している。従来の人工関節、固定器、歩行モデル 、カの計算および再建手術が常に変化する水子F’E軸線という誤った信念に基 づいているので、人工膝関節の設計についての密接な関係は深遠なものであり、 固定屈伸軸線を持つ本発明の全人工膝関節をここで筋単に説明する。 本発明の人工膝関節は、人間本来の膝にかなり類似するように設計され、大腿構 成要素と脛骨プラトー構成要素の組み合わせからなる。大腿構成要素は内側顎部 と外側顕部とを有し、これら2つの顕部は前方面のところで膝蓋骨溝によって、 そして、スペースによって遠位、近位方向に隔離されている。これら2つの顆の 後部の曲率半径は、FE軸軸線対して直角に見て、約135度の円弧にわたって 円形であり、内側顆は外側顕部よりも大きい曲率半径を有し、これら2つの曲率 中心を通るFEf#1線が内側顎部から外側顕部まで後方下方へ3.0〜3.8 度。 の向きとなる。FE軸軸線、横断面、冠状面の両方から等しい角度オフセットし ている。BM骨溝はFE軸軸線対して直角である。FE軸軸線、内側顎部の最後 方部分から大腿軸の前方突起までの距離の35パーセント(±5パーセント)で ありかつ後方側に位置する位置で矢状面を通り、内側顎部の中心を通るように位 置させてもよい。この位置から、FE軸軸線内側顎部から外側顕部まで後方下方 へ等しく3〜3.8度の角度に向いている。 脛骨プラトー構成要素はプラトー頂面と、前方よりも後方で高くなっている隆起 によって分離された外側、内側凹面とを有する。内側凹面は、外側凹面よりも大 きくて深く、大腿構成要素の対応する内外の顕部と摺動係合する。プラトー頂面 の底の下には、脛骨の頂部に固定するための隆条がある。 人工膝関節被移植者が直立し、人工膝関節を伸展させたとき、内外の顕部の最遠 位部は脛骨プラトーと共に横断面(水平面)に着座する。脛骨プラトー構成要素 は、LR軸軸線後方になり、FE軸軸線対して直角とならないように脛骨に取り 付けられる。これは脛部内に固定され、FE軸軸線まわりに移動する。人間本来 の解剖学的構造の膝と同様に、LR軸軸線脛部上の前方十字靭帯付着部付近を通 り、組節の後方十字靭帯付着部付近で後方内方に向く。 本発明のこれらおよび他の特徴は、以下の詳しい説明、添付の請求の範囲および 添付図面に示すいくつかの図を参照することによってより明確に理解して貰えよ う。 ゛ の な量日 本発明を説明する際に、添付図面を参照することになる。この添付図面において : 第1図は、外側から見た矢状面を通る人間の左側の解剖学的構造を持つ膝の概略 側面図であり、大腿骨、脛骨、腓骨、LR軸軸線よび内外の側副靭帯を示す図で ある。 第2図は、横断面を通る第1図の膝の横断面であり、FE軸軸線冠状面からのオ フセントを示す図である。 第3図は、第1図、第2図の人間の左膝の概略正面図であり、FE、LR軸軸線 非直交オフセットと、FE軸軸線横断面からのオフセットとを示す図である。 第4図は、横断面、冠状面の両方からのFE軸軸線オフセットを示す斜視図であ り、簡略化のために単純なヒンジとして示す図である。 第5図は、本発明の全人工膝関節の正面斜視図である。 第6図は、第5図の全人工膝関節の背面斜視図である。 第7図は、オプションの膝蓋骨構成要素を持つ全人工膝関節の側面図である。  第8図は、脛骨構成要素の脛骨プラトーの頂面図である。 第8a図は、脛骨構成要素上に着座している大腿骨構成要素の全体を示す頂面図 であり、FE軸軸線冠状面からのオフセントを示す図である。 第9図は、大腿骨に固定した人工膝関節の大腿骨構成要素の正面図である。 第10図は、大腿骨と脛骨構成要素に固定した第9図の大腿骨構成要素の背面図 である。 第11図は、オプションの膝蓋骨、大腿骨構成要素を通る横断面における人工膝 関節の部分横断面図であり、膝蓋骨、大腿骨構成要素間の境界を示す図である。 第12図は、オプションの膝蓋骨構成要素の正面図である。 第13図は、オプションの膝蓋骨構成要素の背面図である。 特表千7−503147 (6) しい のi なう■ 第1図〜第3図は、人間の膝における屈伸(FE)軸線および長手方向回転軸線 (L、 R)の解剖学的構造および向きを概略的に示す。大腿骨lは、その遠位 端に内側顆2aと外側顆2bを有する。第3図に最も良く示すように、脛骨3の 近位端は脛骨プラトー4を有し、この脛骨プラトーは2つの内外の顆2a、2b 内にそれぞれ着座する2つの内外の凹面4a、4bを有する。脛骨プラトー4を 分割して隆起5がある。腓骨6が脛骨プラトー4の下方にある。外側関節顆靭帯 (LCL)8の起始7が外側上顆面7aに連結している。仮恐線で示すように、 内側関節顆靭帯(MCL)9がその起始10を内側上顆面10aに連結している 。屈伸軸線FEは内外の関節顆靭帯8,9の起始7,10を通る。FE軸軸線、 第2図。 第4図に概略的に示すように、横断面TP、冠状面CPの両方から等しい3.0 〜3.8度の角度だけ内側から外側まで後方下方ヘオフセソトしている。膝蓋骨 溝(図示せず)はFE軸軸線対して直角に延びている。 FE軸軸線上記の位置および向きは、また、FB軸軸線距離ABの約35±5パ ーセントである内側顆2a内の点11を通る向きとも一致する。この距離ABと は、内側顆2a上の最後方点A(実線13a上に位置する)から大腿骨幹13の 前方突起上に位置する点Bまで直角4の最前方線の下向きの突起であり、点線1 3bで示しである)。線ABの向きは、点11のところでFE軸軸線交差するよ うになっている。点11からは、FE軸軸線、横断面TPおよび冠状面CPの両 方から等しり3.0〜3.8度の角度だけ外側顆2bまで後方下方に向いている 。第2図は、冠状面CPからの3.0〜3.8度の角度αだけのFE軸軸線オフ セットを最も良く示している。 第3図に最もよく示されているように、FB軸軸線、3.0〜3.8度の角度β だけ内側顆2aから外側顆2bまでIII面TPからのオフセントシている。大 腿部■Oの中心は矢状面SPから、典型的には3〜7度の範囲で、個体によって 、角度ωだけオフセットしている。 横断面TP、冠状面CPの両方からの人工大腿骨、脛骨構成要素のFE軸軸線固 定オフセ・7ト量、FE軸軸線わりの内外の顆の後方遠位部の円環性およびFE 軸軸線位置、向きは請求の範囲に記載した本発明の主要特徴である。 第4図は、普通のヒンジのオフセ・ノドを示す概略図であり、3つの解剖学的平 面とその向きを示す図である。 第4図のヒンジは、解剖学的膝と本発明の全人工膝関節におけるFE軸軸線向き を示しており、それらの特徴は第5図〜第13図に示してあり、これから説明す る。 第5図〜第6図は、伸展向きにおける左膝のための全人工膝関節19の正面図、 背面図である。大腿骨構成要素20は、内側顎部21と外側顎部22とを有する 。大腿骨構成要素20の前方側から膝蓋骨溝23が発しており、この膝蓋骨溝は 大腿骨構成要素の後部までまわり込み、内外の頬部21.22の間にスペース2 3aを構成している。脛骨構成要素24はプラトー25を有し、脛骨プラトー上 の2つの凹面(これらの中に顆が着座する)間に隆起26がある(第8図、第9 図参照)。理想的には、プラトー25は低摩擦材料(たとえば、超高密度ポリエ チレン)で作った上部27を有する。この上部は、下方の金属部分27aに取り 付けられる。低摩擦上部27は大腿骨構成要素20(金属製である)、脛骨構成 要素25間の摩擦を低下させると望ましい。これにより、全人工膝関節19の動 作をより自然なものとすることができる。隆条28が金属部分27aから下方へ 突出している。これは、第7図に示すように、脛骨3の骨髄管内に脛骨構成要素 25を固着するのに用いられる。 第7図は、膝蓋骨構成要素30を持つ左膝のための全人工膝関節19の側面図で あり、この膝蓋骨構成要素は大腿骨構成要素20の前部の膝蓋骨溝23と摺動係 合する。全人工膝関節19は、大腿骨1と脛骨3に取り付けた状態で示しである 。この全人工膝関節19を人体内に固定するために、大腿骨3の遠位端を平坦面 3a、3b。 3c、3d、3eを持つように切り取り、これらの平坦面が、人工大腿骨構成要 素20の対応する内側の平坦面20a、20b、20c、20d、20eと係合 することになる。大腿骨構成要素20は、次に、普通の手段、たとえば、接着剤 、ペグ等(図示せず)によって大腿骨の遠位端に取り付ける。解剖学的大腿骨に おける内側顆の内向き面と外側顆の外向き面はそのまま残し、内側側副靭帯(M CL)と外側側副靭帯(LCL)は大腿骨上の起始(図示せず)に取り付けたま まである。こうして、MCLおよびLCLは大腿骨部20および脛骨部24を一 緒に保持する必要な固定支えを与えることになる。脛骨3の近位頂部は脛骨構成 要素24を受けるように切り取られる。隆条28は脛骨3の骨髄管に入り、脛骨 3の上部の所定位置に接着される。第7図に示すように、全人工膝関節19では 、解剖学的膝と同様に、内外の顆21.22の後部は、FE軸軸線対して直角の 平面を通して見たときに、円形横断面である。内側顆21は、外側顆22の曲率 半径りよりも大きい曲率半径M(FE軸軸線対して直角な平面を通して取った場 合に点Rから内側顆の外周までの距離)を有する。脛骨の長手方向回転軸線(L R)も同様に固定軸線であり、前方にあり、FE軸軸線対して直角ではない。F E軸軸線横断面、冠状面からのオフセントは、膝の伸展のときの観測された外反 外旋と膝の屈曲のときの内反白旗とを説明している。膝の屈伸による固定FE軸 軸線よびLR軸軸線足の回転による)まわりに運動が生したときくこれらの軸線 は非直交である)、この運動はこれらの軸線まわりの純粋な回転である。 全人工膝関節を据え付け、被移植者が人工膝関節19を完全に伸展させて直立姿 勢にあるとき、内外の顆21゜22の最遠泣面は横断面(水平面)にこれらの顆 が位置するように凹面内に摺動自在に着座する(第10図に最も良く示す)。こ の位置において、FE軸軸線内外の顆の曲率中心を通る)は、それぞれ横断面T P、冠状面CPから等しい3.0〜3.8度の角度0、αだけ内側顆21から外 側顆22まで下方後方に向いている。FB軸軸線大腿骨遠位側で内側側副靭帯( MCL)、外側側副靭帯(LCL)の起始を通り、十字靭帯の交点の上方にある 。 LR軸軸線、脛骨プラトー上の前方十字靭帯(ALC)の付着部を通り、大腿骨 切痕のところで、後方十字靭帯(PCL)の付着部付近で後方内方に向いている 。 全人工膝関節19において、FE軸軸線向きは、内側顆31の最後方部分から大 腿骨幹15の前方突起(大腿骨構成要素の平坦面20aに隣接して位置する)ま での距離の35パーセント±5パーセントであり、大腿骨部の後側にある点Rの ところで内側顎部21の中心を通る。 この点から、FE軸軸線内側顎部から外側顎部まで後方下方へ3.0〜3.8度 に向いている。第9図に示すように、H前置溝23はFE軸軸線直角である。脛 骨プラトー25は約4度の勾配で後方下方に傾斜している。内側顎部Mの後方遠 位部と外側顎部りの後方遠位部の曲率半径は、120度以上の円弧、理想的には 約135度の円弧にわたって円形である。こうして、解剖学的膝の自然な動きが 本人工膝関節において再現される。 第8図は、脛骨構成要素24の頂面図である。内側凹面32は外側凹面33より も大きくて深く、これらの凹面は隆起26で分けられている。隆起26は内外の 顕部21.22間で溝23a間を摺動する。隆起26は、これら2つの顆、それ らの間隔に合わせた寸法となっており、脛骨3およびそれに組み合わせた脛骨構 成要素24はLR軸軸線わりに約15〜30度だけ回転することができ、しかも 互いに隔離されることがない。隆起26は、理想的には、前方よりも後方に向か って高くなる。隆起26の前部は、止めとして作用し、解剖学的膝の場合とほと んど同じように、脛骨構成要素24が大腿骨構成要素20上を前方に移動しすぎ るのを防ぐと共に、人工膝関節の過剰屈曲を防ぐようになっている。第8a図は 、内側から外側に向かって3,0〜3.8度の角度αだけの冠状面CPからのF E軸軸線後方オフセットを示している。 第9図は、大腿骨1に取り付けた左側大腿骨構成要素20の正面図である。内外 の顕部21,22の最遠泣面は、横断面(水平面)TP内にある。FE軸軸線、 3.0〜3.8度の角度θだけ内側顆21から外側顆22まで下方に向いている 。また、大腿骨構成要素20は、3〜7度の角度βだけ矢状面からオフセットし ており、大腿骨の正常の外反オフセットを補正するようになっている。 実際には、角度βは、3度、5度および人体における代表的な外反オフセットを 与えるような角度に選ぶとよい。 第10図は、大腿骨21に取り付けた大腿骨構成要素20の背面図であり、脛骨 構成要素24との接触状態を示している。第9図、第11図から容易にわかるよ うに、内外の顕部21.22は等しい幅Wを有し、それらの最遠位部21a、2 2aのところで湾曲していて大腿骨構成要素24にある内外の凹面32.33内 に摺動嵌合するようになっている。隆起26が内外の顆21.22間で溝23a 内を摺動し、大腿骨構成要素20、脛骨構成要素24が分離するのを防ぐと共に 、上述した他の機能も与える。 大腿骨構成要素20は、ステンレス鋼、チタン、クロム・モリブデン合金その他 の適用可能な材料で作ることができる。 第11図は、大腿骨構成要素20、大腿骨1、オプションの膝蓋骨構成要素30 (膝蓋骨溝23内を摺動する)間の境界面を示す部分横断面図である。第11図 および第12図に示すように、ペグ35を用いて膝蓋骨構成要素30を膝蓋骨3 6(仮悲線で示す)の残部に取り付けることができる。第12図は、膝蓋骨構成 要素30の背面図であり、膝蓋骨溝23内で摺動できるようにした膝蓋骨溝に対 面する表面の湾曲を示している。膝蓋骨構成要素37の前面は、理想的には、粗 面であり、膝蓋骨構成要素30の膝蓋骨36への接着を助けるようになっている 。膝蓋骨構成要素30は、オプションであり、解剖学的膝蓋骨が健康であって損 傷を受けておらず、全人工膝関節20と一緒に利用できる場合にはなくてもよい 。 理想的には、膝蓋骨構成要素30は、少なくとも膝蓋骨溝23と接触するところ は、プラスチック材料で作る。 図示した全人工膝関節は左膝用であるが、膝についての説明は解剖学的平面を考 慮したときには右膝にも同等に当てはめることができる。 FE軸軸線内外の頬部の曲率中心を通り、この曲率中心も内側側副靭帯(MCL )、外側側副靭帯(LCL)の起始(大腿骨を大腿骨構成要素に合わせた表面を 形成するように切った後も顆の外面に残っている)を通るという事実により、あ らゆる屈伸位置のところで側副靭帯によって人工膝関節にかかる応力は解剖学的 膝のそれに従来の人工膝関節装置においては、非固定FE軸軸線より、側副靭帯 は不自然な応力を受ける。これはこれらの靭帯にかかる張力が大腿骨、脛骨の互 いに対する向きの変化に応じて変わるからである。靭帯(しばしば弱くて、最初 に劣化する)が支える張力および応力の増大は、しばしば靭帯のさらなる劣化、 損傷を招くばかりでなく、人工膝関節に付加的な応力を生じさせ、分離やひび割 れを招くことになる。したがって、本出願人の全人工膝関節が従来の非膝関節よ りもはるかに優れていることは明らかである。 図面および前記説明は、その構造、動作方法の詳細に関し本発明の形態だけを唯 −表わすことを意図したものではない。実際、当業者にとっては、発明の精神お よび範囲から逸脱することなく、修正、変更をなし得ることは明白であろう。時 々の状況が手段を示唆したり与えてくれる限り、形態の変化や部品の比率の変化 、並びに、均等物との代替は予想され得る。また、特定の用語を用いたが、これ らの用語は一般的な説明の目的でのみ考えられるものであり、限定の目的はない 。本発明の範囲は以下の請求の範囲に定義されている。 特表千7−503147 (8) 手 牟 ・?=iごと5?−tビj−二ど 泰 手続補正書帽発) 平成6年を月22日 DETAILED DESCRIPTION OF THE INVENTION Total Prosthetic Knee Joint with a Fixed Axis of Rotation BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to the field of knee prosthesis devices. Description of the prior art The human knee joint is the joint that receives the most stress in the human body.During normal activities such as walking, running, kneeling, and climbing stairs, the load on the knee joint is easily five times the body weight. can exceed 20%, and can be significantly higher when engaging in more strenuous activities. Various types of arthritis affect approximately 10 percent of the world's population. A significant number of people with arthritis experience deformity and deformity of their joints, such as the knee joint. Knee injuries are particularly likely to occur if the knee is injured. America In the United States, approximately 140. OO0 patients underwent surgery for total knee replacement alone. If a knee prosthesis existed that more closely resembled the knee anatomy, more people with knee problems would be candidates for total knee replacement. Knee prostheses can be basically classified into two types. The first type, referred to as a "stabilized" prosthesis, has a hinged ball-and-socket joint used as a replacement for the anatomical knee joint. This type In a type joint, its motion is constrained by a hinge pin or ball and socket. A stabilized prosthesis requires surrounding soft tissues (i.e., keys and This is useful when the degree of dependence on the ligaments is small. The anatomical structure of the knee joint is different These artificial joints, if any, are subject to anteroposterior translation and lateral tilt. For this reason, these artificial joints are undesirable. The second type of knee prosthesis is the so-called "condylar" joint. In this type of knee prosthesis, instead of a corresponding hoof surface on the line and shin, An artificial hoof surface is used. The condylar surface artificial knee joint relies on the surrounding vagina and ligaments. It holds the line part of the joint and the shin part (which are not directly connected to each other) and provides stability to the joint during movement. These types of joints are relatively compact and lightweight, offer considerable rotational and translational freedom, and require relatively little removal of native bone and disturbance of surrounding soft tissue during implantation. Examples of these types of knee prostheses are Ewald, U.S. Pat. No. 3,798,679, Grundei et al., U.S. Pat. No. 4,064,568, Murray et al. Grobbelaar, U.S. Pat. No. 4,673,408;^veri11 et al., U.S. Pat. No. 4,714.472;) Ian Slik et al., U.S. Pat. .822.365, Bolesky, U.S. Pat. No. 4,822.366, Kenna, U.S. Pat. No. 4,944.756, Brown et al., U.S. Pat. No. 4,959.071 and Petersen, U.S. Pat. No. 985.037. However, regardless of the design type of the knee prosthesis, there are Medical professionals and designers who are interested in the art of knee joint flexion and extension can achieve this with a simple hinge structure. I thought for a long time that it wasn't. Rather, conventionally, knee flexion and extension movements involve displacement and rotation, and the same part of the first occlusal plane (line condyle) is moved to the same part of the second corresponding occlusal plane (tibial plate). It has been widely accepted that the axis of motion is not fixed, and the axis of motion is not fixed. Therefore, the knee does not act as a simple hinge joint, but rather rotates through a series of centers of rotation at countless unique locations, each acting in a particular relative orientation of the 1, 1, and shin regions. has been believed. For example, “The Surgical Replacement of the Human Knee Joint”, by David A, Sonstegaard, etal, 5Ccientific American, January 197L. See Vol. 238+Ntll. US Pat. No. 4,822,365 to Walker et al. describes the history of the design and development of knee prostheses and provides general background in the field. For many years, people The materials used to make the prosthetic knee joint and the belief that the flexion/extension axis is not fixed. Improvements have been made in deliberate design. However, this will be explained in more detail later. As will be explained, the inventor believes that in an anatomical knee, the flexion/extension axis is actually fixed. I discovered that Conventional total knee prosthesis designs have a fixed flexion/extension axis. Because they are based on the incorrect assumption that the axis of rotation is undefined and constantly changing, traditional knee prostheses do not match the natural knee in terms of possible degrees of motion and the strain and stress they are subjected to. It remains inferior. Although today's knee prostheses are much better than those of the past, their installation There are still injuries due to fractures and avulsions of the skeleton. These problems are largely due to the unnatural stresses and strains placed on the artificial knee joint due to its design. The present invention represents an innovative development from previous total knee prosthesis designs based on the incorrect belief that the axis of rotation is not fixed and is constantly changing. The applicant is discovered that the natural anatomical knee actually has a fixed axis of rotation that does not change depending on the orientation of the shin relative to the line through flexion and extension. Before outlining the features of the present invention, what Applicant believes to be the true anatomy and function of a normal anatomical knee will be explained below. In the natural human knee, this fixed flexion/extension axis (hereinafter referred to as rFE axis) is directed from the superior anterior part of the medial condyle of the distal malleus to the posteroinferior part of the lateral condyle, with medial and lateral collaterals. Passes through the origin of the ligament. It is located above the intersection of the FE axis and the cruciate ligament. Fixed FE axial transverse plane, equally offset from the coronal plane by approximately 3.0-3.8 degrees. The longitudinal rotation (LR) axis of the shin is also a fixed axis, with the FE axis located anterior to the axis. and not at right angles to it. The FE axis transverse plane, offset from the coronal plane, explains that valgus external rotation is observed during knee extension and varus internal rotation is observed during knee flexion. It's clear. Movement around the fixed FE axis (by bending and extending the knee) and the movement around the LR axis When a movement (due to rotation of the legs) occurs (these axes are not orthogonal), this movement is a pure rotation about these axes. The FE axis passes through the origin of the medial collateral ligament (MCL) and lateral collateral ligament (LCL) on the side of the distal malleus, and is located above the intersection of the cruciate ligaments. The LR axis passes through the attachment of the anterior cruciate ligament (ACL) on the tibial plateau and points posteromedially near the attachment of the posterior cruciate ligament (PCL) at the femoral notch. The patellar groove is perpendicular to the FE axis throughout its length. When the condyle is viewed from the end at right angles to the FB axis, the medial and lateral posterior and distal parts of the condyles overlap and have a circular shape. When the tibia and fibula rotate relative to each other, the FE axis remains unchanged. curve of the lateral condyle The radius is smaller than that of the medial condyle, so the medial articular surface is closer to the FE axis, causing a fixed FE axis. The medial and lateral surfaces of each condyle are oriented so that the tibia can move about the LR axis relative to the FE axis. It is located in front of the LR axis and is not perpendicular to the FE axis. The LR axis is fixed within the shin and moves around the FB axis. The LR axis passes near the attachment of the superior cruciate ligament to the shin, and points toward the posterior medial side near the attachment of the posterior cruciate ligament to the joint. Ru. As explained above, classically, joint movements are FE. It was thought to occur around axes in an anatomical plane with separate orthogonal axes of LR and abduction/adduction (AA). However, now the FE axis coronal plane and It is known that it is offset from the horizontal plane and is not located in the sagittal plane of the LR axis. The FE axis and the LR axis are also non-orthogonal. Since the rotational axes of FE and LR are not located in the anatomical plane, the joint movement around the fixed FE and LR axes is caused by the observed three movements of FE, LR, and AA. The main motion components of the FE axis are flexion and extension, but when the axis is perpendicular to the sagittal plane, As a result, combined varus internal rotation occurs with flexion. The relationship of the cruciate ligament to the two fixed axes shows equal growth within the physiological range of knee motion. is suggesting. As mentioned earlier, the FE axis passes through the origin of the MCL and LCL on the distal end of the node l111. The anatomical structures of the LCL and MCL allow them to be dynamically stabilized. It is more complex than the cruciate ligament because the LCL crosses the tibiofibular joint and the knee. The observed fixed non-orthogonal axes FE, LR are caused by the condyle shape, ligament position and flexion. This explains the absolute tibial varus white flag. Conventional artificial joints, fixators, gait models, force calculations, and reconstructive surgeries are based on the erroneous belief that the Mizuko F'E axis is constantly changing. The implications for the design of a knee prosthesis are profound, and the total knee prosthesis of the present invention with a fixed flexion-extension axis will now be briefly described. The knee prosthesis of the present invention is designed to closely resemble the natural human knee and has a femoral structure. It consists of a combination of a tibial plateau component and a tibial plateau component. The femoral component has a medial jaw and a lateral jaw, the two jaws being separated in the anterior aspect by the patellar groove and distally and proximally by a space. The posterior radius of curvature of these two condyles is circular over an arc of approximately 135 degrees when viewed perpendicular to the FE axis, with the medial condyle having a larger radius of curvature than the lateral condyle; The FEf #1 line passing through the center is 3.0 to 3.8 degrees backward and downward from the inner jaw to the outer jaw. The direction will be . Equal angular offset from both the FE axis, transverse plane, and coronal plane. The BM bone groove is perpendicular to the FE axis. The FE axis passes through the sagittal plane at a position that is 35% (±5%) of the distance from the most posterior part of the medial jaw to the anterior process of the femoral shaft and is located on the posterior side, and the center of the medial jaw. pass through You may leave it there. From this position, the FE axis is oriented backwards and downwards from the inner jaw to the outer jaw at an angle of 3 to 3.8 degrees. The tibial plateau component has a plateau apex surface and lateral and medial concave surfaces separated by a ridge that is higher posteriorly than anteriorly. The inner concave surface is larger than the outer concave surface. It is deep and deep, and slides into engagement with the corresponding internal and external genitalia of the femoral component. Below the base of the top of the plateau is a ridge for anchoring to the top of the tibia. When the knee prosthesis recipient stands upright and the knee prosthesis is extended, the most distal portions of the medial and lateral glands sit in a transverse plane (horizontal plane) with the tibial plateau. The tibial plateau component is attached to the tibia so that it is posterior to the LR axis and not perpendicular to the FE axis. Can be attached. It is fixed within the shin and moves about the FE axis. Similar to the original human anatomical structure of the knee, the LR axis passes through the area near the anterior cruciate ligament attachment point on the shin. and points posteriorly and medially near the posterior cruciate ligament attachment point of the joint. These and other features of the invention will be more clearly understood by reference to the following detailed description, appended claims, and some of the figures shown in the accompanying drawings. cormorant. ゛'s amount of days In describing the invention, reference will be made to the accompanying drawings. In this accompanying drawing: Figure 1 is a schematic lateral view of the human left knee anatomy through the sagittal plane viewed from the lateral side, showing the femur, tibia, fibula, LR axis and lateral medial It is a diagram showing collateral ligaments. FIG. 2 is a cross section of the knee in FIG. FIG. FIG. 3 is a schematic front view of the human left knee in FIGS. 1 and 2, and is a diagram showing non-orthogonal offsets of the FE and LR axes and offsets from the FE-axis cross section. FIG. 4 is a perspective view showing the FE axis axis offset from both the transverse and coronal planes. FIG. FIG. 5 is a front perspective view of the total knee prosthesis of the present invention. 6 is a rear perspective view of the total knee prosthesis of FIG. 5; FIG. FIG. 7 is a side view of a total knee prosthesis with an optional patellar component. FIG. 8 is a top view of the tibial plateau of the tibial component. FIG. 8a is a top view of the entire femoral component seated on the tibial component, showing the offset of the FE axis from the coronal plane. FIG. 9 is a front view of the femoral component of the knee prosthesis fixed to the femur. FIG. 10 is a dorsal view of the femoral component of FIG. 9 secured to the femoral and tibial components. FIG. 11 is a partial cross-sectional view of the prosthetic knee joint in a cross-section through the optional patellar and femoral components, showing the boundary between the patellar and femoral components. FIG. 12 is a front view of the optional patellar component. FIG. 13 is a rear view of the optional patellar component. Figures 1 to 3 show the anatomical structure and orientation of the flexion/extension (FE) axis and longitudinal axis of rotation (L, R) in the human knee. Shown schematically. The femur l has a medial condyle 2a and a lateral condyle 2b at its distal end. As best shown in Figure 3, the proximal end of the tibia 3 has a tibial plateau 4 which has two internal and external concave surfaces 4a, 4b that seat within the two internal and external condyles 2a, 2b, respectively. have There is a protuberance 5 dividing the tibial plateau 4. The fibula 6 lies below the tibial plateau 4. The origin 7 of the lateral condyle ligament (LCL) 8 connects to the lateral epicondyle surface 7a. The medial condylar ligament (MCL) 9 connects its origin 10 to the medial epicondylar surface 10a, as shown by the phantom line. The flexion/extension axis FE passes through the origins 7, 10 of the medial and lateral condylar ligaments 8, 9. FE axis axis, Figure 2. As schematically shown in FIG. 4, it extends backward and downward from both the transverse plane TP and the coronal plane CP by an equal angle of 3.0 to 3.8 degrees from the medial side to the lateral side. The patellar groove (not shown) extends perpendicular to the FE axis. The above position and orientation of the FE axis axis also corresponds to approximately 35±5 percent of the FB axis axis distance AB. This also coincides with the direction passing through the point 11 in the medial condyle 2a, which is the center. This distance AB is the downward projection of the most anterior line of the right angle 4 from the most posterior point A on the medial condyle 2a (located on the solid line 13a) to the point B located on the anterior process of the femoral shaft 13; (Indicated by dotted line 13b). The direction of line AB is such that it intersects the FE axis at point 11. It's becoming a sea urchin. From point 11, the FE axis, both the transverse plane TP and the coronal plane CP. It points posteriorly and downwardly to the lateral condyle 2b by an equal angle of 3.0 to 3.8 degrees. Figure 2 shows the FE axis off by an angle α of 3.0 to 3.8 degrees from the coronal plane CP. Best shows the set. As best shown in FIG. 3, the FB axis is offset from the III plane TP by an angle β of 3.0 to 3.8 degrees from the medial condyle 2a to the lateral condyle 2b. The center of the thigh O is offset from the sagittal plane SP by an angle ω, typically in the range of 3 to 7 degrees, depending on the individual. FE axis axis fixation of the artificial femoral and tibial components from both the transverse plane TP and coronal plane CP The constant offset amount, the toricity of the posterior distal portions of the medial and lateral condyles about the FE axis, and the position and orientation of the FE axis are key features of the claimed invention. Figure 4 is a schematic diagram showing the offse throat of a normal hinge, showing the three anatomical planes. It is a figure which shows a surface and its direction. The hinge in Figure 4 shows the orientation of the FE axis in the anatomical knee and the total knee prosthesis of the present invention, and their characteristics are shown in Figures 5 to 13 and will be explained below. Ru. 5-6 are front and rear views of the total knee prosthesis 19 for the left knee in extension. Femoral component 20 has an inner jaw 21 and an outer jaw 22 . From the anterior side of the femoral component 20 emanates a patellar groove 23 which wraps around to the rear of the femoral component and defines a space 23a between the inner and outer cheeks 21.22. The tibial component 24 has a plateau 25 with a ridge 26 between the two concave surfaces on which the condyles sit (see FIGS. 8 and 9). Ideally, plateau 25 is made of a low-friction material (e.g., ultra-high density polyester). It has an upper part 27 made of tyrene). This upper part is attached to the lower metal part 27a. Can be attached. The low friction upper portion 27 desirably reduces the friction between the femoral component 20 (which is made of metal) and the tibial component 25. This allows the movement of the total artificial knee joint 19. You can make your work more natural. A ridge 28 projects downward from the metal portion 27a. This is used to secure the tibial component 25 within the medullary canal of the tibia 3, as shown in FIG. FIG. 7 is a side view of the total knee prosthesis 19 for the left knee with a patellar component 30 that slidingly engages the patellar groove 23 in the anterior portion of the femoral component 20. . Total knee prosthesis 19 is shown attached to femur 1 and tibia 3. In order to fix this total knee prosthesis 19 within the human body, the distal end of the femur 3 is fixed to flat surfaces 3a, 3b. 3c, 3d, and 3e, and these flat surfaces form the artificial femoral component. They engage with corresponding inner flat surfaces 20a, 20b, 20c, 20d, and 20e of element 20. Femoral component 20 is then attached to the distal end of the femur by conventional means, such as adhesives, pegs, etc. (not shown). anatomical femur The medial aspect of the medial condyle and the lateral aspect of the lateral condyle remain intact, and the medial collateral ligament (MCL) and lateral collateral ligament (LCL) remain attached to their origin on the femur (not shown). be. Thus, the MCL and LCL align the femoral section 20 and the tibial section 24. This will provide the necessary fixed support to hold them together. The proximal top of the tibia 3 is cut out to receive the tibial component 24. The ridge 28 enters the medullary canal of the tibia 3 and is glued in place on the upper part of the tibia 3. As shown in FIG. 7, in the total knee prosthesis 19, similar to the anatomical knee, the posterior parts of the medial and lateral condyles 21, 22 have a circular cross section when viewed through a plane perpendicular to the FE axis. It is. The medial condyle 21 has a radius of curvature M (when taken through a plane perpendicular to the FE axis) that is larger than the radius of curvature of the lateral condyle 22. (distance from point R to the outer circumference of the medial condyle). The longitudinal axis of rotation (L R ) of the tibia is likewise a fixed axis, anterior, and not perpendicular to the FE axis. The FE axis transverse plane, offset from the coronal plane, explains the observed valgus external rotation during knee extension and varus white flag during knee flexion. When movement occurs around the fixed FE axis (due to knee flexion/extension) and the LR axis (due to rotation of the foot), these axes are non-orthogonal), this movement is a pure rotation about these axes. The total knee prosthesis is installed, and the recipient stands upright with the knee prosthesis 19 fully extended. When in position, the most distal planes of the medial and lateral condyles 21, 22 are slidably seated within the concave surface such that these condyles lie in the transverse plane (horizontal plane) (best shown in Figure 10). child (passing through the center of curvature of the inner and outer condyle on the FE axis axis) are lateral from the medial condyle 21 by equal angles 0 and α of 3.0 to 3.8 degrees from the transverse plane T P and coronal plane CP, respectively. It points downward and posteriorly to the lateral condyle 22. The FB axis passes through the origins of the medial collateral ligament (MCL) and lateral collateral ligament (LCL) on the distal side of the femur, and is located above the intersection of the cruciate ligaments. The LR axis passes through the attachment of the anterior cruciate ligament (ALC) on the tibial plateau and points posteriorly and medially near the attachment of the posterior cruciate ligament (PCL) at the femoral notch. In the total knee prosthesis 19, the direction of the FE axis extends from the rearmost part of the medial condyle 31. The anterior process of the femoral shaft 15 (located adjacent to the flat surface 20a of the femoral component) or It passes through the center of the medial jaw 21 at point R on the posterior side of the femur. From this point, the FE axis is oriented backward and downward at 3.0 to 3.8 degrees from the inner jaw to the outer jaw. As shown in FIG. 9, the H front groove 23 is perpendicular to the FE axis. shin The bone plateau 25 slopes posteriorly and downwardly with a slope of about 4 degrees. The radius of curvature of the rear distal part of the inner jaw part M and the rear distal part of the outer jaw part is circular over an arc of 120 degrees or more, ideally about 135 degrees. In this way, the natural movement of the anatomical knee is reproduced in this artificial knee joint. FIG. 8 is a top view of the tibial component 24. The inner concave surface 32 is larger and deeper than the outer concave surface 33, and these concave surfaces are separated by a ridge 26. The ridge 26 slides between the grooves 23a between the inner and outer parts 21,22. The ridge 26 is located between these two condyles, that The dimensions match the spacing between the tibia 3 and the tibial structure combined with it. The components 24 can be rotated about 15 to 30 degrees about the LR axis and are not isolated from each other. The ridge 26 is ideally directed more towards the rear than towards the front. It gets expensive. The front part of the bulge 26 acts as a stop and is similar to that of an anatomical knee. Similarly, if the tibial component 24 moves too far forward over the femoral component 20, It is designed to prevent excessive flexion of the artificial knee joint. Figure 8a shows the FE axis posterior offset from the coronal plane CP by an angle α of 3.0 to 3.8 degrees from medial to lateral. FIG. 9 is a front view of the left femoral component 20 attached to the femur 1. FIG. The farthest planes of the inner and outer organs 21 and 22 are within the transverse plane (horizontal plane) TP. The FE axis is directed downwardly from the medial condyle 21 to the lateral condyle 22 by an angle θ of 3.0 to 3.8 degrees. The femoral component 20 is also offset from the sagittal plane by an angle β of 3 to 7 degrees to compensate for the normal valgus offset of the femur. In practice, the angle β may be selected to provide 3 degrees, 5 degrees, and a typical valgus offset in the human body. FIG. 10 is a rear view of the femoral component 20 attached to the femur 21, showing its contact with the tibial component 24. It can be easily understood from Figures 9 and 11. In this way, the inner and outer surfaces 21.22 have equal widths W and are curved at their most distal parts 21a, 22a to slide into the inner and outer concave surfaces 32.33 in the femoral component 24. They are designed to fit together. A ridge 26 slides in the groove 23a between the inner and outer condyles 21,22 to prevent separation of the femoral component 20, tibial component 24 and also provides the other functions described above. The femoral component 20 can be made of stainless steel, titanium, chromium-molybdenum alloy, or other applicable materials. FIG. 11 is a partial cross-sectional view showing the interface between the femoral component 20, the femur 1, and the optional patellar component 30 (sliding within the patellar groove 23). As shown in FIGS. 11 and 12, pegs 35 may be used to attach the patellar component 30 to the remainder of the patella 36 (shown in phantom lines). FIG. 12 is a dorsal view of the patellar component 30, which is adapted to slide within the patellar groove 23. It shows the curvature of the facing surface. The anterior surface of the patellar component 37 is ideally roughened to aid in adhesion of the patellar component 30 to the patella 36. The patellar component 30 is optional and is provided when the anatomical patella is healthy and damaged. It may be absent if it is not damaged and can be used with the total knee prosthesis 20. Ideally, the patellar component 30 is made of a plastic material, at least where it contacts the patellar groove 23. The total knee prosthesis shown is for the left knee, but the description of the knee takes into account the anatomical plane. When considered, it can equally be applied to the right knee. The center of curvature passes through the center of curvature of the cheek inside and outside the axis of the FE axis, and this center of curvature also forms the origin of the medial collateral ligament (MCL) and lateral collateral ligament (LCL) (forming the surface that aligns the femur with the femoral components). This is due to the fact that the The stress exerted on the knee prosthesis by the collateral ligaments in all flexion and extension positions is anatomical.In conventional knee prosthesis devices, the collateral ligaments are subjected to unnatural stresses due to the unfixed FE axis. This is because the tension on these ligaments is mutual between the femur and tibia. This is because it changes according to the change in direction with respect to the object. The increased tension and stress carried by the ligaments (which are often weak and the first to deteriorate) often leads to further deterioration and damage to the ligaments, as well as creating additional stress on the knee prosthesis, leading to separation and cracking. This will lead to Therefore, the applicant's total knee prosthesis is better than conventional non-knee joints. It is clear that the method is much better. The drawings and the foregoing description are not intended to depict only the form of the invention in terms of details of its structure and method of operation. Indeed, for those skilled in the art, the spirit of the invention It will be obvious that modifications and changes may be made without departing from the scope of the invention. Time Changes in form and proportions of parts, as well as substitutions with equivalents, may be envisaged, so long as the circumstances suggest or provide means. Also, although specific terminology was used, this These terms are considered for general descriptive purposes only and not for purposes of limitation. The scope of the invention is defined in the following claims. Special Table Sen7-503147 (8) Temu・? = 5 for each i? -Tbij-Yasu Nido Procedural Amendments Cap) 1994, 22nd of the month

Claims (1)

【特許請求の範囲】 1.患者の身体に移植するための、固定屈伸回旋軸線を有する全人工膝関節であ って、 被移植者の大腿骨の遠位端に連結する移植大腿骨構成要素であり、内側頬部およ び外側頭部を有し、これら内側瓶部、外側顆部がそれらの後方遠位部で隔たって おり、この移植大腿骨構成要素の前方位置においてこれら顆部の間に少なくとも 部分的に位置して膝蓋骨溝が設けてあり、前記内側顆部が前記外側顆部よりも大 きく、前記顆部の後方遠位部が120度以上の円弧にわたって横断面円形であり 、不動の回転中心を有する移植大腿骨構成要素と、 患者の脛骨の近位端に連結する移植脛骨構成要素であり、前記移植大腿骨構成要 素に対面するプラトー面を有し、このプラトー面が内側、外側の凹面を有し、前 記内側凹面が前記外側凹面よりも大きく、これら2つの凹面が隆起によって隔離 されており、この隆起が前記隔たった内外の顆部の間で摺動する移植脛骨構成要 素とを包含する全人工膝関節において、 この全人工膝関節が被移植者の身体に移植されたときに、固定屈伸軸線が前記内 外の顆部の回転中心を通り、前記屈伸軸線が横断面、冠状面の両方から3.0〜 3.8度だけ前記内側顆部から前記外側顆部まで後方下方に向いており、それに よって、前記膝蓋骨溝が前記屈伸軸線に対して直角となる ことを特徴とする全人工膝関節。 2.請求の範囲第1項記載の全人工膝関節において、前記内外の顆部が等しい幅 を有することを特徴とする全人工膝関節。 3.請求の範囲第1項記載の全人工膝関節において、前記大腿骨構成要素が、顆 の最遠位部の大腿骨の骨髄管に対するオフセットが3〜4度となるように大腿骨 に固定してあることを特徴とする全人工膝関節。 4.請求の範囲第1項記載の全人工膝関節において、前記脛骨プラトー面が約4 度後方へ傾斜していることを特徴とする全人工膝関節。 5.請求の範囲第1項記載の全人工膝関節において、前記脛骨プラトー構成要素 およびそれに組み合わせた脛骨が、前記固定屈伸軸線に対して非直交であり、そ の前方にある長手方向回旋軸線に沿って大腿骨構成要素に対して15〜30度の 範囲で回旋できることを特徴とする全人工膝関節。 6.請求の範囲第1項記載の全人工膝関節において、前記内外の顆部がその後方 遠位部において約135度の円弧にわたって円形であることを特徴とする全人工 膝関節。 7.請求の範囲第1項記載の全人工膝関節において、屈伸軸線が、前記内側顆部 の最後方部から大腿骨構成要素の最前方部の背面に緊密に嵌合する大腿骨幹の前 方突起までの距離の35パーセントである矢状面を通る内側顆部の中心にある点 を通り、前記屈伸軸線が、3.0〜3.8度の角度で等しく前記外側顆部に対し て後方下方に向いていることを性徴とする全人工膝関節。 8.請求の範囲第1項記載の全人工膝関節において、屈伸軸線が内外の側副靭帯 の起始を通ることを特徴とする全人工膝関節。 9.請求の範囲第1項記載の全人工膝関節において、前記FE軸線が、内側顆の 最後方点から大腿骨幹の前方突起までの距離の35パーセント±5パーセントで あり、大腿骨部の後側にある点で前記内側顆部の中心を通り、前記内側顆部から 前記外側顆部まで後方下方に向いていることを特徴とする全人工膝関節。 10.請求の範囲第1項記載の全人工膝関節において、前記移植脛骨構成要素が 脛骨に固定するための、前記プラトー面下の隆条を有することを特徴とする全人 工膝関節。 11.請求の範囲第1項記載の全人工膝関節において、前記脛骨プラトー上の前 記隆起がその後側でその前側よりも高くなっていることを特徴とする全人工膝関 節。 12.請求の範囲第1項記載の全人工膝関節において、さらに、前記膝蓋骨溝内 を摺動し、解剖学的膝蓋骨の後方面に取り付けた膝蓋骨構成要素を包含すること を特徴とする全人工膝関節。 13.請求の範囲第1項記載の全人工膝関節において、前記移植脛骨構成要素の 前記内外の凹面が移植膝蓋骨構成要素の前後部の間で最も深くなっていることを 特徴とする全人工膝関節。[Claims] 1. A total knee prosthesis with a fixed axis of flexion, extension, and rotation for implantation into the patient's body. So, The implanted femoral component that connects to the distal end of the recipient's femur and includes the medial cheek and The medial condyle and lateral condyles are separated at their posterior and distal parts. and between these condyles in the anterior position of the implanted femoral component. A partially located patellar groove is provided, the medial condyle being larger than the lateral condyle. The rear distal part of the condyle has a circular cross section over an arc of 120 degrees or more. , an implanted femoral component having an immovable center of rotation; an implanted tibial component connected to the proximal end of a patient's tibia, said implanted femoral component; It has a plateau surface that faces the base, and this plateau surface has an inner and outer concave surface. The inner concave surface is larger than the outer concave surface, and these two concave surfaces are separated by a ridge. The implanted tibial component slides between the separated inner and outer condyles. In a total knee prosthesis that includes When this total knee prosthesis is implanted into the recipient's body, the fixed flexion/extension axis is Passing through the center of rotation of the outer condyle, the flexion/extension axis is 3.0 to 3.0 from both the transverse and coronal planes. 3.8 degrees posteriorly and downwardly from the medial condyle to the lateral condyle; Therefore, the patellar groove is perpendicular to the flexion/extension axis. A total artificial knee joint characterized by: 2. In the total artificial knee joint according to claim 1, the inner and outer condyles have equal widths. A total artificial knee joint characterized by having. 3. The total knee prosthesis according to claim 1, wherein the femoral component is a condyle. Position the femur so that the most distal part of the femur is offset from the medullary canal by 3 to 4 degrees. A total artificial knee joint characterized by being fixed to. 4. The total knee prosthesis according to claim 1, wherein the tibial plateau surface is about 4 A total knee prosthesis characterized by a degree of backward inclination. 5. The total knee prosthesis according to claim 1, wherein the tibial plateau component and the tibia associated therewith are non-orthogonal to the fixed flexion/extension axis; 15 to 30 degrees to the femoral component along the longitudinal axis of rotation anterior to the A total knee prosthesis characterized by the ability to rotate within a range. 6. In the total artificial knee joint according to claim 1, the inner and outer condyles are located at the rear thereof. A total prosthesis characterized by being circular over an arc of about 135 degrees in the distal part Knee joint. 7. In the total artificial knee joint according to claim 1, the flexion/extension axis is located at the medial condyle. from the most posterior part of the femoral shaft to the anterior part of the femoral shaft that fits tightly into the dorsal part of the most anterior part of the femoral component. A point in the center of the medial condyle through the sagittal plane that is 35 percent of the distance to the quadrant process. and the flexion/extension axis is equally relative to the lateral condyle at an angle of 3.0 to 3.8 degrees. A total artificial knee joint whose sexual characteristic is that it faces backward and downward. 8. In the total artificial knee joint according to claim 1, the flexion/extension axis is the inner and outer collateral ligaments. A total knee prosthesis characterized by passing through the origin of the knee joint. 9. In the total knee prosthesis joint according to claim 1, the FE axis is located along the medial condyle. 35% ± 5% of the distance from the most posterior point to the anterior process of the femoral shaft , passing through the center of the medial condyle at a point on the posterior side of the femur, and extending from the medial condyle. A total artificial knee joint, characterized in that the lateral condyle is directed backward and downward. 10. The total knee prosthesis according to claim 1, wherein the implanted tibial component is A whole person characterized by having a ridge below the plateau surface for fixation to the tibia. Artificial knee joint. 11. In the total knee prosthesis joint according to claim 1, the front part on the tibial plateau A total knee prosthesis characterized in that the protuberance is higher on the posterior side than on the anterior side. section. 12. In the total artificial knee joint according to claim 1, furthermore, in the patellar groove, sliding and encompassing the patellar component attached to the posterior aspect of the anatomical patella A total knee prosthesis featuring: 13. The total knee prosthesis according to claim 1, wherein the implanted tibial component comprises: The medial and lateral concave surfaces are deepest between the anterior and posterior portions of the implanted patellar component. Features: Totally artificial knee joint.
JP4506146A 1991-09-16 1991-11-12 Total knee prosthesis with fixed rotation axis Expired - Fee Related JP2654249B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/760,115 US5133758A (en) 1991-09-16 1991-09-16 Total knee endoprosthesis with fixed flexion-extension axis of rotation
US760,115 1991-09-16
PCT/US1991/008451 WO1993005729A2 (en) 1991-09-16 1991-11-12 Total knee endoprosthesis with fixed flexion-extension axis

Publications (2)

Publication Number Publication Date
JPH07503147A true JPH07503147A (en) 1995-04-06
JP2654249B2 JP2654249B2 (en) 1997-09-17

Family

ID=25058141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4506146A Expired - Fee Related JP2654249B2 (en) 1991-09-16 1991-11-12 Total knee prosthesis with fixed rotation axis

Country Status (6)

Country Link
US (2) US5133758A (en)
EP (1) EP0678011A1 (en)
JP (1) JP2654249B2 (en)
AU (1) AU1336992A (en)
CA (1) CA2119016C (en)
WO (1) WO1993005729A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230582A (en) * 2002-02-13 2003-08-19 Toru Suguro Artificial knee joint
JP2004254811A (en) * 2003-02-25 2004-09-16 Kyocera Corp Artificial knee joint
JP2013513435A (en) * 2009-12-09 2013-04-22 ザ・ジエネラル・ホスピタル・コーポレーシヨン・ドウーイング・ビジネス・アズ・マサチユセツツ・ジエネラル・ホスピタル Implants that repair the normal range of knee flexion and movement

Families Citing this family (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9102348D0 (en) * 1991-02-04 1991-03-20 Inst Of Orthopaedics The Prosthesis for knee replacement
US5609639A (en) * 1991-02-04 1997-03-11 Walker; Peter S. Prosthesis for knee replacement
EP0582514A1 (en) * 1992-08-03 1994-02-09 IMPLANTS ORTHOPEDIQUES TOUTES APPLICATIONS, S.A.R.L. dite: Knee prosthesis
FR2697154B1 (en) * 1992-10-28 1994-12-23 Laboureau Jacques Philippe Improvement to the femoral component of knee prostheses.
US5413604A (en) * 1992-12-24 1995-05-09 Osteonics Corp. Prosthetic knee implant for an anterior cruciate ligament deficient total knee replacement
US5522900A (en) * 1993-12-17 1996-06-04 Avanta Orthopaedics Prosthetic joint and method of manufacture
US5658347A (en) * 1994-04-25 1997-08-19 Sarkisian; James S. Acetabular cup with keel
FR2721500B1 (en) * 1994-06-22 1996-12-06 Euros Sa Femoral implant, in particular for a three-compartment knee prosthesis.
US5549688A (en) * 1994-08-04 1996-08-27 Smith & Nephew Richards Inc. Asymmetric femoral prosthesis
US6793681B1 (en) 1994-08-12 2004-09-21 Diamicron, Inc. Prosthetic hip joint having a polycrystalline diamond articulation surface and a plurality of substrate layers
US6676704B1 (en) 1994-08-12 2004-01-13 Diamicron, Inc. Prosthetic joint component having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
US6402787B1 (en) 2000-01-30 2002-06-11 Bill J. Pope Prosthetic hip joint having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
US6514289B1 (en) 2000-01-30 2003-02-04 Diamicron, Inc. Diamond articulation surface for use in a prosthetic joint
US6425922B1 (en) 2000-01-30 2002-07-30 Diamicron, Inc. Prosthetic hip joint having at least one sintered polycrystalline diamond compact articulation surface
US6494918B1 (en) 2000-01-30 2002-12-17 Diamicron, Inc. Component for a prosthetic joint having a diamond load bearing and articulation surface
US6290726B1 (en) 2000-01-30 2001-09-18 Diamicron, Inc. Prosthetic hip joint having sintered polycrystalline diamond compact articulation surfaces
US6596225B1 (en) 2000-01-31 2003-07-22 Diamicron, Inc. Methods for manufacturing a diamond prosthetic joint component
US8603095B2 (en) 1994-09-02 2013-12-10 Puget Bio Ventures LLC Apparatuses for femoral and tibial resection
US6695848B2 (en) 1994-09-02 2004-02-24 Hudson Surgical Design, Inc. Methods for femoral and tibial resection
US5609643A (en) * 1995-03-13 1997-03-11 Johnson & Johnson Professional, Inc. Knee joint prosthesis
US5871546A (en) * 1995-09-29 1999-02-16 Johnson & Johnson Professional, Inc. Femoral component condyle design for knee prosthesis
US5681354A (en) * 1996-02-20 1997-10-28 Board Of Regents, University Of Colorado Asymmetrical femoral component for knee prosthesis
HU219444B (en) 1996-02-26 2001-04-28 Gábor Krakovits Sliding surface for knee-joint prothesis
GB9611060D0 (en) * 1996-05-28 1996-07-31 Howmedica Tibial element for a replacment knee prosthesis
US5871540A (en) * 1996-07-30 1999-02-16 Osteonics Corp. Patellar implant component and method
US5718717A (en) 1996-08-19 1998-02-17 Bonutti; Peter M. Suture anchor
DE19646891A1 (en) * 1996-11-13 1998-05-14 Kubein Meesenburg Dietmar Artificial joint, especially an endoprosthesis to replace natural joints
DE19716879C2 (en) * 1997-04-22 1999-07-15 Plus Endoprothetik Ag Femur sledge
US6039764A (en) * 1997-08-18 2000-03-21 Arch Development Corporation Prosthetic knee with adjusted center of internal/external rotation
US5957979A (en) * 1997-12-12 1999-09-28 Bristol-Myers Squibb Company Mobile bearing knee with metal on metal interface
US6045551A (en) 1998-02-06 2000-04-04 Bonutti; Peter M. Bone suture
US6443991B1 (en) 1998-09-21 2002-09-03 Depuy Orthopaedics, Inc. Posterior stabilized mobile bearing knee
US6565523B1 (en) 1998-10-19 2003-05-20 Robert Maurice Gabourie Single jointed knee brace
US6972039B2 (en) 1999-03-01 2005-12-06 Biomet, Inc. Floating bearing knee joint prosthesis with a fixed tibial post
US6165223A (en) * 1999-03-01 2000-12-26 Biomet, Inc. Floating bearing knee joint prosthesis with a fixed tibial post
US6413279B1 (en) 1999-03-01 2002-07-02 Biomet, Inc. Floating bearing knee joint prosthesis with a fixed tibial post
DE29906909U1 (en) 1999-03-02 1999-09-30 Plus Endoprothetik Ag Rotkreuz Femur sledge
US6368343B1 (en) 2000-03-13 2002-04-09 Peter M. Bonutti Method of using ultrasonic vibration to secure body tissue
US6447516B1 (en) 1999-08-09 2002-09-10 Peter M. Bonutti Method of securing tissue
US7635390B1 (en) 2000-01-14 2009-12-22 Marctec, Llc Joint replacement component having a modular articulating surface
US6702821B2 (en) 2000-01-14 2004-03-09 The Bonutti 2003 Trust A Instrumentation for minimally invasive joint replacement and methods for using same
US6635073B2 (en) 2000-05-03 2003-10-21 Peter M. Bonutti Method of securing body tissue
US6410877B1 (en) 2000-01-30 2002-06-25 Diamicron, Inc. Methods for shaping and finishing prosthetic joint components including polycrystalline diamond compacts
US6709463B1 (en) 2000-01-30 2004-03-23 Diamicron, Inc. Prosthetic joint component having at least one solid polycrystalline diamond component
US6488715B1 (en) 2000-01-30 2002-12-03 Diamicron, Inc. Diamond-surfaced cup for use in a prosthetic joint
US6447549B1 (en) 2000-10-06 2002-09-10 Sulzer Orthopedics Inc. Modular knee prosthesis system
FR2815244B1 (en) 2000-10-18 2003-06-27 Aesculap Sa INCLINED FEMORAL COMPONENT
US6558426B1 (en) 2000-11-28 2003-05-06 Medidea, Llc Multiple-cam, posterior-stabilized knee prosthesis
US6355037B1 (en) 2000-12-05 2002-03-12 Smith & Nephew, Inc. Apparatus and method of external skeletal support allowing for internal-external rotation
US8062377B2 (en) 2001-03-05 2011-11-22 Hudson Surgical Design, Inc. Methods and apparatus for knee arthroplasty
WO2003013338A2 (en) * 2001-08-07 2003-02-20 Depuy Orthopaedic, Inc Patello-femoral joint arthroplasty
US20030120346A1 (en) * 2001-08-07 2003-06-26 James Mercinek Patellar prosthetic arrangement and associated surgical method
US7708741B1 (en) 2001-08-28 2010-05-04 Marctec, Llc Method of preparing bones for knee replacement surgery
FR2832626B1 (en) * 2001-11-28 2004-08-27 Philippe Caudal TOTAL KNEE PROSTHESIS
US6719765B2 (en) 2001-12-03 2004-04-13 Bonutti 2003 Trust-A Magnetic suturing system and method
US8801720B2 (en) 2002-05-15 2014-08-12 Otismed Corporation Total joint arthroplasty system
US6770099B2 (en) * 2002-11-19 2004-08-03 Zimmer Technology, Inc. Femoral prosthesis
CA2511216C (en) 2002-12-20 2011-02-01 Smith & Nephew, Inc. High performance knee prostheses
US7160330B2 (en) * 2003-01-21 2007-01-09 Howmedica Osteonics Corp. Emulating natural knee kinematics in a knee prosthesis
KR100528121B1 (en) * 2003-03-27 2005-11-15 김종범 Determinating device of size of atrificial knee joint
FR2854792B1 (en) * 2003-05-12 2005-09-09 Tornier Sa GAME OF PROTHETIC ELEMENTS FOR A TIBIAL PROTHETIC SET
US7081137B1 (en) * 2003-06-23 2006-07-25 Howmedica Osteonics Corp. Knee prosthesis with extended range of motion
WO2005030098A1 (en) * 2003-08-27 2005-04-07 Waldemar Link Gmbh & Co. Kg Ankle-joint endoprosthesis
AU2004281743B2 (en) 2003-10-17 2011-06-09 Smith & Nephew, Inc. High flexion articular insert
US7387644B2 (en) * 2003-11-07 2008-06-17 University Of Vermont And State Agricultural College Knee joint prosthesis with a femoral component which links the tibiofemoral axis of rotation with the patellofemoral axis of rotation
US8114083B2 (en) 2004-01-14 2012-02-14 Hudson Surgical Design, Inc. Methods and apparatus for improved drilling and milling tools for resection
US8021368B2 (en) 2004-01-14 2011-09-20 Hudson Surgical Design, Inc. Methods and apparatus for improved cutting tools for resection
US20060030854A1 (en) 2004-02-02 2006-02-09 Haines Timothy G Methods and apparatus for wireplasty bone resection
US20060015115A1 (en) 2004-03-08 2006-01-19 Haines Timothy G Methods and apparatus for pivotable guide surfaces for arthroplasty
AU2005200104B2 (en) * 2004-01-23 2009-12-17 Depuy Orthopaedics, Inc. Bone protector, kit and method
US7435448B2 (en) * 2004-02-06 2008-10-14 Hewlett-Packard Development Company, L.P. Sulfur-containing inorganic media coatings for ink-jet applications
US8506639B2 (en) * 2004-03-31 2013-08-13 DePuy Synthes Products, LLC Sliding patellar prosthesis
US20090036993A1 (en) * 2004-04-22 2009-02-05 Robert Metzger Patellar implant
US7927336B2 (en) * 2005-02-08 2011-04-19 Rasmussen G Lynn Guide assembly for guiding cuts to a femur and tibia during a knee arthroplasty
US8303597B2 (en) 2005-02-08 2012-11-06 Rasmussen G Lynn Systems and methods for guiding cuts to a femur and tibia during a knee arthroplasty
US8317797B2 (en) 2005-02-08 2012-11-27 Rasmussen G Lynn Arthroplasty systems and methods for optimally aligning and tensioning a knee prosthesis
US7601154B2 (en) * 2005-04-18 2009-10-13 Uni-Knee, Llc Unicondylar knee instrument system
US7578850B2 (en) * 2005-04-18 2009-08-25 Uni-Knee, Llc Unicondylar knee implant
US9301845B2 (en) 2005-06-15 2016-04-05 P Tech, Llc Implant for knee replacement
EP1968497B1 (en) 2005-12-15 2016-03-16 Zimmer, Inc. Distal femoral knee prostheses
GB0526385D0 (en) 2005-12-28 2006-02-08 Mcminn Derek J W Improvements in or relating to knee prosthesis
AU2007222102B2 (en) * 2006-01-23 2013-09-26 Smith & Nephew Inc. Patellar components
US9808262B2 (en) 2006-02-15 2017-11-07 Howmedica Osteonics Corporation Arthroplasty devices and related methods
WO2007108804A1 (en) 2006-03-21 2007-09-27 Komistek Richard D Moment induced total arthroplasty prosthetic
EP2043561B1 (en) 2006-06-30 2016-01-27 Smith & Nephew, Inc. Anatomical motion hinged prosthesis
DE102007013121A1 (en) * 2007-03-15 2008-09-25 Aequos Endoprothetik Gmbh joint
US8632600B2 (en) 2007-09-25 2014-01-21 Depuy (Ireland) Prosthesis with modular extensions
US8128703B2 (en) * 2007-09-28 2012-03-06 Depuy Products, Inc. Fixed-bearing knee prosthesis having interchangeable components
US9204967B2 (en) 2007-09-28 2015-12-08 Depuy (Ireland) Fixed-bearing knee prosthesis having interchangeable components
US10582934B2 (en) * 2007-11-27 2020-03-10 Howmedica Osteonics Corporation Generating MRI images usable for the creation of 3D bone models employed to make customized arthroplasty jigs
US8545509B2 (en) 2007-12-18 2013-10-01 Otismed Corporation Arthroplasty system and related methods
US8777875B2 (en) 2008-07-23 2014-07-15 Otismed Corporation System and method for manufacturing arthroplasty jigs having improved mating accuracy
US8480679B2 (en) 2008-04-29 2013-07-09 Otismed Corporation Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US8160345B2 (en) 2008-04-30 2012-04-17 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8617171B2 (en) 2007-12-18 2013-12-31 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US8292965B2 (en) * 2008-02-11 2012-10-23 New York University Knee joint with a ramp
US9408618B2 (en) 2008-02-29 2016-08-09 Howmedica Osteonics Corporation Total hip replacement surgical guide tool
US7998203B2 (en) * 2008-06-06 2011-08-16 Blum Michael F Total knee prosthesis and method for total knee arthroplasty
US9119723B2 (en) 2008-06-30 2015-09-01 Depuy (Ireland) Posterior stabilized orthopaedic prosthesis assembly
US8828086B2 (en) * 2008-06-30 2014-09-09 Depuy (Ireland) Orthopaedic femoral component having controlled condylar curvature
US8236061B2 (en) 2008-06-30 2012-08-07 Depuy Products, Inc. Orthopaedic knee prosthesis having controlled condylar curvature
US8206451B2 (en) 2008-06-30 2012-06-26 Depuy Products, Inc. Posterior stabilized orthopaedic prosthesis
US8092544B2 (en) 2008-06-30 2012-01-10 Depuy Products, Inc. Implantable patella component having a thickened superior edge
US8192498B2 (en) 2008-06-30 2012-06-05 Depuy Products, Inc. Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature
US8187335B2 (en) 2008-06-30 2012-05-29 Depuy Products, Inc. Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US9168145B2 (en) 2008-06-30 2015-10-27 Depuy (Ireland) Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US7981159B2 (en) * 2008-07-16 2011-07-19 Depuy Products, Inc. Antero-posterior placement of axis of rotation for a rotating platform
US8202323B2 (en) * 2008-07-16 2012-06-19 Depuy Products, Inc. Knee prostheses with enhanced kinematics
US8715358B2 (en) * 2008-07-18 2014-05-06 Michael A. Masini PCL retaining ACL substituting TKA apparatus and method
US8617175B2 (en) 2008-12-16 2013-12-31 Otismed Corporation Unicompartmental customized arthroplasty cutting jigs and methods of making the same
US8915965B2 (en) 2009-05-07 2014-12-23 Depuy (Ireland) Anterior stabilized knee implant
US10307256B2 (en) * 2009-07-27 2019-06-04 Biomet Manufacturing, Llc Knee replacement system and method for enabling natural knee movement
EP3158976A1 (en) * 2009-11-16 2017-04-26 New York Society for the Ruptured and Crippled Maintaining the Hospital for Special Surgery Prosthetic condylar joints with articulating bearing surfaces having a translating contact point during rotation thereof
US8900315B2 (en) * 2009-11-16 2014-12-02 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Constrained condylar knee device
US9011547B2 (en) 2010-01-21 2015-04-21 Depuy (Ireland) Knee prosthesis system
US8308808B2 (en) 2010-02-19 2012-11-13 Biomet Manufacturing Corp. Latent mobile bearing for prosthetic device
CA2989184C (en) * 2010-07-24 2020-02-25 Zimmer, Inc. Asymmetric tibial components for a knee prosthesis
US8764840B2 (en) 2010-07-24 2014-07-01 Zimmer, Inc. Tibial prosthesis
US9381090B2 (en) 2010-07-24 2016-07-05 Zimmer, Inc. Asymmetric tibial components for a knee prosthesis
US8926709B2 (en) 2010-08-12 2015-01-06 Smith & Nephew, Inc. Structures for use in orthopaedic implant fixation and methods of installation onto a bone
WO2012034033A1 (en) 2010-09-10 2012-03-15 Zimmer, Inc. Motion facilitating tibial components for a knee prosthesis
AU2011300819B2 (en) * 2010-09-10 2014-01-23 Zimmer Gmbh Femoral prothesis with medialized patellar groove
US8287601B2 (en) 2010-09-30 2012-10-16 Depuy Products, Inc. Femoral component of a knee prosthesis having an angled cement pocket
US8317870B2 (en) 2010-09-30 2012-11-27 Depuy Products, Inc. Tibial component of a knee prosthesis having an angled cement pocket
US8834574B2 (en) 2010-12-07 2014-09-16 Zimmer, Inc. Prosthetic patella
US8603101B2 (en) 2010-12-17 2013-12-10 Zimmer, Inc. Provisional tibial prosthesis system
US8460392B2 (en) * 2010-12-30 2013-06-11 Depuy (Ireland) Knee prosthesis having cross-compatible dome and anatomic patella components
US8403994B2 (en) 2011-01-19 2013-03-26 Wright Medical Technology, Inc. Knee implant system
BR112013018640A2 (en) 2011-01-27 2016-10-18 Smith & Nephew Inc constricted knee prosthesis
AU2012217654B2 (en) 2011-02-15 2016-09-22 Conformis, Inc. Patient-adapted and improved articular implants, procedures and tools to address, assess, correct, modify and/or accommodate anatomical variation and/or asymmetry
US9308095B2 (en) 2011-06-16 2016-04-12 Zimmer, Inc. Femoral component for a knee prosthesis with improved articular characteristics
US9060868B2 (en) 2011-06-16 2015-06-23 Zimmer, Inc. Femoral component for a knee prosthesis with bone compacting ridge
US8932365B2 (en) 2011-06-16 2015-01-13 Zimmer, Inc. Femoral component for a knee prosthesis with improved articular characteristics
US8551179B2 (en) 2011-06-16 2013-10-08 Zimmer, Inc. Femoral prosthesis system having provisional component with visual indicators
US9180013B2 (en) 2011-09-27 2015-11-10 DePuy Synthes Products, Inc. Deflection resistant acetabular cup
CA2856070C (en) 2011-11-18 2016-07-26 Zimmer, Inc. Tibial bearing component for a knee prosthesis with improved articular characteristics
AU2012341026B2 (en) 2011-11-21 2015-01-29 Zimmer, Inc. Tibial baseplate with asymmetric placement of fixation structures
US8808387B2 (en) 2012-01-26 2014-08-19 Epic Ortho, LLC Prosthetic joint
US9402637B2 (en) 2012-10-11 2016-08-02 Howmedica Osteonics Corporation Customized arthroplasty cutting guides and surgical methods using the same
US20140276872A1 (en) 2013-03-15 2014-09-18 Otismed Corporation Customized acetabular cup positioning guide and system and method of generating and employing such a guide
US9925052B2 (en) 2013-08-30 2018-03-27 Zimmer, Inc. Method for optimizing implant designs
US10130375B2 (en) 2014-07-31 2018-11-20 Zimmer, Inc. Instruments and methods in performing kinematically-aligned total knee arthroplasty
EP3197403B1 (en) 2014-09-24 2022-04-06 DePuy Ireland Unlimited Company Surgical planning
GB201503838D0 (en) * 2015-03-06 2015-04-22 Murray David W And Monk Paul Knee prosthesis
CN108135701B (en) 2015-09-21 2019-12-24 捷迈有限公司 Prosthesis system including tibial bearing component
US10136997B2 (en) 2015-09-29 2018-11-27 Zimmer, Inc. Tibial prosthesis for tibia with varus resection
CN105213071A (en) * 2015-10-21 2016-01-06 苏州锐进医疗科技有限公司 A kind of bone conservative knee-joint prosthesis
US10179052B2 (en) 2016-07-28 2019-01-15 Depuy Ireland Unlimited Company Total knee implant prosthesis assembly and method
JP2020500600A (en) 2016-11-30 2020-01-16 ジー リン ラスムッセン System and method for providing a tibial baseplate
CN110402123B (en) 2017-03-10 2022-02-08 捷迈有限公司 Tibial prosthesis with tibial bearing component fastening features
AU2018266322B2 (en) 2017-05-12 2020-03-19 Zimmer, Inc. Femoral prostheses with upsizing and downsizing capabilities
US10893948B2 (en) 2017-11-02 2021-01-19 Howmedica Osteonics Corp. Rotary arc patella articulating geometry
US11426282B2 (en) 2017-11-16 2022-08-30 Zimmer, Inc. Implants for adding joint inclination to a knee arthroplasty
US10835380B2 (en) 2018-04-30 2020-11-17 Zimmer, Inc. Posterior stabilized prosthesis system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US513378A (en) * 1894-01-23 The national ulthogt
US4085466A (en) * 1974-11-18 1978-04-25 National Research Development Corporation Prosthetic joint device
US4301553A (en) * 1975-08-15 1981-11-24 United States Surgical Corporation Prosthetic knee joint
GB1600661A (en) * 1978-02-17 1981-10-21 Howmedica Bicondylar joint prosthesis
FR2508793A1 (en) * 1981-07-06 1983-01-07 Andre Rambert TOTAL KNEE PROSTHESIS
GB8817908D0 (en) * 1988-07-27 1988-09-01 Howmedica Tibial component for replacement knee prosthesis
US5071438A (en) * 1990-11-07 1991-12-10 Intermedics Orthopedics, Inc. Tibial prothesis with pivoting articulating surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230582A (en) * 2002-02-13 2003-08-19 Toru Suguro Artificial knee joint
JP2004254811A (en) * 2003-02-25 2004-09-16 Kyocera Corp Artificial knee joint
JP2013513435A (en) * 2009-12-09 2013-04-22 ザ・ジエネラル・ホスピタル・コーポレーシヨン・ドウーイング・ビジネス・アズ・マサチユセツツ・ジエネラル・ホスピタル Implants that repair the normal range of knee flexion and movement

Also Published As

Publication number Publication date
CA2119016C (en) 1998-09-15
AU1336992A (en) 1993-04-27
US5133758A (en) 1992-07-28
EP0678011A1 (en) 1995-10-25
WO1993005729A2 (en) 1993-04-01
WO1993005729A3 (en) 1993-06-24
US5326361A (en) 1994-07-05
CA2119016A1 (en) 1993-04-01
EP0678011A4 (en) 1994-11-28
JP2654249B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
JPH07503147A (en) Total knee prosthesis with fixed axis of rotation
JP5399989B2 (en) High performance knee prosthesis
JP4716535B2 (en) Knee joint prosthesis with spin-out prevention
JP5410181B2 (en) Front and rear placement of rotating shaft for rotating platform
CA1176004A (en) New jersey meniscal bearing knee replacement
US20080243258A1 (en) Knee Joint Prosthesis
Pagnano et al. Role of the posterior cruciate ligament in total knee arthroplasty
US20080288080A1 (en) Knee joint prosthesis
EP1591083A1 (en) Prosthetic knee
US20050143832A1 (en) High flexion articular insert
US20100016977A1 (en) Pcl retaining acl substituting tka apparatus and method
JPH0553501B2 (en)
JPH11504226A (en) Asymmetric femoral prosthesis
JP2019193791A (en) Orthopedic prosthetic system for hinged-knee prosthesis
US6517504B1 (en) Knee-assisting or knee-substitute apparatus
Manning et al. Hinge implants
US20200093604A1 (en) Modular knee prosthesis
Gschwend Design criteria, present indication and implantation techniques for artificial knee joints
Tateishi Indications for total knee arthroplasty and choice of prosthesis
Logesh A Prospective Study of Functional Outcome of All Polyethylene Tibial Component in Total Knee Arthroplasty
Mills et al. Dislocation of posteriorly stabilized total knee arthroplasties
Castiello et al. The first surgical approach for total knee arthroplasty (TKA)
Yoshino et al. Yoshino-Shoji total knee system: its features and postoperative results
Villarruel et al. Temporary prosthetic fitting over tibial stump lengthening device
Bain et al. Injuries of the proximal interphalangeal joint

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees