JPH074975A - Timing generation circuit for light interference angular velocity meter - Google Patents

Timing generation circuit for light interference angular velocity meter

Info

Publication number
JPH074975A
JPH074975A JP14767693A JP14767693A JPH074975A JP H074975 A JPH074975 A JP H074975A JP 14767693 A JP14767693 A JP 14767693A JP 14767693 A JP14767693 A JP 14767693A JP H074975 A JPH074975 A JP H074975A
Authority
JP
Japan
Prior art keywords
frequency
output
dividing means
light
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14767693A
Other languages
Japanese (ja)
Other versions
JP2739193B2 (en
Inventor
Junichi Takada
淳一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP5147676A priority Critical patent/JP2739193B2/en
Publication of JPH074975A publication Critical patent/JPH074975A/en
Application granted granted Critical
Publication of JP2739193B2 publication Critical patent/JP2739193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To generate reference timing signals which can highly sensitively detect respective components of two, three and four times harmonic frequency fm from interference light by using general components. CONSTITUTION:A clock signal is sequentially divided by 2 by first and second dividing means 33, and its output having inverse polarity is divided by 8 by a third dividing means 36 to obtain a reference signal of 3fmr. The inverse polarity output of the first dividing means 33 is divided by 3 by a fourth dividing means 43, and its output is divided by 8 by fifth and sixth dividing means 45, 46 to obtain a reference signal of 2fmr. The inverse polarity output of the fifth dividing means 45 is divided by 2 by a seventh dividing means 51 to obtain a reference signal of 4fmr. The fourth dividing means 43 comprises a JK flipflop, while other dividing means comprise D-type flipflops.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、少くとも一周する光
学路に右回り光と左回り光を通し、その光学路に印加さ
れる軸心まわりの角速度を、右回り光と左回り光との位
相差により検出する光干渉角速度計における前記位相差
を検出するための基準タイミング信号と、安定な動作点
を得るために必要な基準タイミング信号とを発生するタ
イミング発生回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention allows right-handed light and left-handed light to pass through an optical path that makes at least one round, and determines the angular velocity about the axis applied to the optical path as a right-handed light and a left-handed light. The present invention relates to a timing generation circuit for generating a reference timing signal for detecting the phase difference in the optical interference gyro which is detected by the phase difference and the reference timing signal necessary for obtaining a stable operating point.

【0002】[0002]

【従来の技術】従来の光干渉角速度計(以下FOGと称
す)を図3を参照して説明する。光源11からの光I
は、光カプラ12、偏光子13、光カプラ14を順次経
てループ状光学路15にその両端から投入される。光学
路15を伝搬する左右両回り光は、光学路15の片端と
光カプラ14との間に配置した位相変調器16により位
相変調される。その位相変調を受けた両光は、光カプラ
14で結合され干渉し、再び偏光子13を経て光カプラ
12により受光器17へ分岐され光電変換される。光学
路15は、例えば光ファイバを複数回ループ状に巻いた
もので構成される。光学路15にその周方向の角速度が
印加されない状態においては、光学路15中における両
光間の位相差は、理想的には、ゼロであるが光学路15
の円周回りに角速度Ωが印加されると、この角速度Ωに
よっていわゆるサニャック(sagnac)効果が生じ
両光間に位相差ΔΦS が生じる。この位相差ΔΦS は、
次式で表される。
2. Description of the Related Art A conventional optical interference angular velocity meter (hereinafter referred to as FOG) will be described with reference to FIG. Light I from the light source 11
Is sequentially introduced through the optical coupler 12, the polarizer 13 and the optical coupler 14 into the loop optical path 15 from both ends thereof. The left and right lights that propagate through the optical path 15 are phase-modulated by a phase modulator 16 arranged between one end of the optical path 15 and the optical coupler 14. The two lights having undergone the phase modulation are combined by the optical coupler 14 and interfere with each other, and again pass through the polarizer 13 and are branched to the light receiver 17 by the optical coupler 12 and photoelectrically converted. The optical path 15 is composed of, for example, an optical fiber wound plural times in a loop. In the state where the angular velocity in the circumferential direction is not applied to the optical path 15, the phase difference between the two lights in the optical path 15 is ideally zero, but the optical path 15
When the angular velocity Ω is applied around the circumference of, the angular velocity Ω causes a so-called Sagnac effect, which causes a phase difference ΔΦ S between the two lights. This phase difference ΔΦ S is
It is expressed by the following equation.

【0003】 ΔΦS =4πRLΩ/(Cλ) (1) ここで C:光速 λ:真空中における光の波長 R:光ファイバコイル15の半径 L:光ファイバコイル15の光ファイバの長さ ところで受光器17からの光電変換信号VP は、位相変
調器16による位相変調をP(t)=Asinωm tと
すると次式で表わせる。
ΔΦ S = 4πRLΩ / (Cλ) (1) where C: speed of light λ: wavelength of light in vacuum R: radius of optical fiber coil 15 L: length of optical fiber of optical fiber coil 15 The photoelectric conversion signal V P from 17 can be expressed by the following equation when the phase modulation by the phase modulator 16 is P (t) = A sin ω m t.

【0004】 VP =(I/2)K1 {1+cosΔΦ(Σεn ・(−1)n ・J2n(X)・cos2nωm t′)−sinΔΦ(2Σ(−1)n ・J2n+1(X)・cos(2n+1)ωm t′)} (2) ここで、Σはn=0から無限大まで、 t′=t−τ/2 εn =1;n=0.2;n≧1 K:定数 I:光源11からの出射光 Jn :第一種ベッセル関数 X:2Asinπfmτ ΔΦS :光学系における左右両光間の位相差 ωm :位相変調の角周波数(ωm =2πfm) τ:光学路15中における光の伝搬時間 (2)式から明らかなように光電変換信号VP には、s
inΔΦS に比例する項と、cosΔΦS に比例する項
とが含まれており、従って干渉光の強度を測定すること
により角速度Ωを検出することができる。
V P = (I / 2) K 1 {1 + cos ΔΦ (Σε n · (−1) n · J 2n (X) · cos 2nω m t ′) −sin ΔΦ (2Σ (−1) n · J 2n + 1 (X) · cos (2n + 1) ω m t ′)} (2) Here, Σ is from n = 0 to infinity, t ′ = t−τ / 2 ε n = 1; n = 0.2; n ≧ 1 K: constant I: light emitted from the light source 11 J n : first-order Bessel function X: 2 Asinπfmτ ΔΦ S : phase difference between left and right lights in the optical system ω m : angular frequency of phase modulation (ω m = 2πfm ) Τ: Propagation time of light in the optical path 15 As apparent from the equation (2), the photoelectric conversion signal V P has s
The term proportional to inΔΦ S and the term proportional to cos ΔΦ S are included, and thus the angular velocity Ω can be detected by measuring the intensity of the interference light.

【0005】受光器17の出力は、同期検波回路18に
入力され、そこで位相変調周波数の第3高調波成分が、
タイミング発生回路19からの参照タイミング信号f3
=3fm により同期検波されて取り出される。同期検波
回路18の出力は、さらにローパスフィルタ(LPF)
21によって交流成分がろ波され適切な利得に設定され
た後、FOG出力として出力端子22に取り出される。
FOGの出力V3 は次式で表される。
The output of the photodetector 17 is input to the synchronous detection circuit 18, where the third harmonic component of the phase modulation frequency is
Reference timing signal f 3 from the timing generation circuit 19
= 3f m , the signal is synchronously detected and taken out. The output of the synchronous detection circuit 18 is further a low pass filter (LPF).
After the AC component is filtered by 21 and set to an appropriate gain, it is taken out to the output terminal 22 as an FOG output.
The output V 3 of the FOG is expressed by the following equation.

【0006】 V3 =I・K2 ・J3 (X)・sinΔΦS (3) ところで(3)式における入力感度は、ベッセル関数の
Xの値に左右されるため、従来において(特開昭62−
12811)は、ベッセル関数のJ2 (X)とJ
4 (X)とが交わる位置でJ3 (X)が最大値となり、
その位置(X=4.2)で位相変調を動作させ、J
2 (X)とJ4 (X)とが実質的に等しくなる、即ち受
光器17の出力中の第2高調波成分と第4高調波成分と
が実質的に等しくなるように位相変調器16の駆動状態
を制御する自動制御ループを設けている。(図4のベッ
セル関数グラフ参照) 即ち受光器17の出力の内、位相変調周波数の第2高調
波成分が同期検波回路23によってf2 =2fm を参照
タイミング信号として同期検波され、第4高調波成分が
同期検波回路24によってf4 =4fm を参照タイミン
グ信号として同期検波される。
V 3 = I · K 2 · J 3 (X) · sin ΔΦ S (3) By the way, since the input sensitivity in the formula (3) depends on the value of X of the Bessel function, it has been hitherto known (Japanese Patent Laid-Open No. 62-
12811) is the Bessel function J 2 (X) and J
J 3 (X) becomes the maximum value at the position where 4 (X) intersects,
The phase modulation is operated at that position (X = 4.2), and J
2 (X) and J 4 (X) are substantially equal to each other, that is, the second harmonic component and the fourth harmonic component in the output of the photodetector 17 are substantially equal to each other. An automatic control loop is provided to control the drive state of. (See the Bessel function graph of FIG. 4.) That is, of the output of the photodetector 17, the second harmonic component of the phase modulation frequency is synchronously detected by the synchronous detection circuit 23 with f 2 = 2f m as the reference timing signal, and the fourth harmonic is generated. The wave component is synchronously detected by the synchronous detection circuit 24 with f 4 = 4f m as a reference timing signal.

【0007】同期検波回路23の出力V2 は、差動増幅
器25の+入力側に供給され、同期検波回路24の出力
4 は差動増幅器25の−入力側に入力される。差動増
幅器25の出力は、積分器26に入力される。自動電圧
調整器27は、積分器26からの正の信号によって位相
変調器16に印加する駆動周波数fm の信号の電圧を増
加させ、積分器26からの負の信号によって位相変調器
16に印加する駆動周波数fm の信号の電圧を小さくす
るよう構成し、自動制御ループを構成している。ここで
装置は、差動増幅器25の出力がゼロ、即ちV2 =V4
の時第1種ベッセル関数のJ2 (X)とJ4 (X)とが
同じ値、即ちXの値が約4.20になるように自動電圧
調整器27によって位相変調器16に印加される電圧が
調整される。
The output V 2 of the synchronous detection circuit 23 is supplied to the + input side of the differential amplifier 25, and the output V 4 of the synchronous detection circuit 24 is input to the − input side of the differential amplifier 25. The output of the differential amplifier 25 is input to the integrator 26. The automatic voltage regulator 27 increases the voltage of the signal of the drive frequency f m applied to the phase modulator 16 by the positive signal from the integrator 26, and applies it to the phase modulator 16 by the negative signal from the integrator 26. The automatic control loop is configured so that the voltage of the signal of the driving frequency f m is reduced. Here, the device is such that the output of the differential amplifier 25 is zero, that is, V 2 = V 4
Then, the Bessel functions of the first kind J 2 (X) and J 4 (X) are applied to the phase modulator 16 by the automatic voltage regulator 27 so that the same value, that is, the value of X becomes about 4.20. Voltage is adjusted.

【0008】[0008]

【発明が解決しようとする課題】前述したように受光器
17の出力を2fm 、3fm 、4fm の各参照タイミン
グ信号で同期検波することにより動作を安定化し、かつ
感度よくジャイロ出力を得ることができるが、タイミン
グ発生回路19の具体的構成が示されていない。所で受
光器17中の被検出信号に対し参照タイミング信号が逆
位相の場合は、検波出力の極性が負となり、90度位相
が異なると、検波出力がゼロとなり、検波することがで
きない。この発明の目的は受光器の出力から2fm 、3
m 、4f m の各成分を適切に取出すことを可能とする
各参照タイミング信号を発生するタイミング発生回路の
具体的構成を提供することにある。
As described above, the light receiver
The output of 17 is 2fm3fm4fmEach reference of timing
Operation is stabilized by synchronous detection with the
Gyro output can be obtained with good sensitivity, but
The specific configuration of the trigger generation circuit 19 is not shown. Received at the place
The reference timing signal is opposite to the detected signal in the optical device 17.
In the case of phase, the polarity of the detection output becomes negative and the 90 degree phase
, The detection output becomes zero, and it is possible to detect.
I can't come. The object of the present invention is to output 2f from the output of the light receiver.mThree
fm4f mIt is possible to properly extract each component of
Of the timing generation circuit that generates each reference timing signal
It is to provide a concrete configuration.

【0009】[0009]

【課題を解決するための手段】この発明によれば、クロ
ック発生器からのクロック信号が第1分周手段で2分の
1に分周され、その正極性分周出力が第2分周手段で2
分の1に分周され、その逆極性分周出力が第3分周手段
により8分の1に分周されて第1同期検波手段へ参照タ
イミング信号として供給され、第1分周手段の逆極性分
周出力が第4分周手段により3分の1に分周され、その
分周出力が第5分周手段により2分の1に分周され、そ
の正極性分周出力が第6分周手段により4分の1に分周
されて第2同期検波手段へ参照タイミング信号として供
給され、第5分周手段の逆極性分周出力が第7分周手段
により2分の1に分周されて第3同期検波手段へ参照タ
イミング信号として供給される。
According to the present invention, the clock signal from the clock generator is divided in half by the first frequency dividing means, and the positive frequency division output is obtained by the second frequency dividing means. In 2
The frequency is divided by 1 and the divided output of the opposite polarity is divided by 1/8 by the third frequency dividing means and supplied to the first synchronous detection means as a reference timing signal. The polarity frequency division output is divided into ⅓ by the fourth frequency division means, the frequency division output is halved by the fifth frequency division means, and the positive frequency division output is divided into the sixth division. The frequency dividing means divides the frequency into 1/4 and supplies it to the second synchronous detection means as a reference timing signal, and the reverse polarity frequency division output of the fifth frequency dividing means is divided into 1/2 by the seventh frequency dividing means. It is then supplied to the third synchronous detection means as a reference timing signal.

【0010】[0010]

【実施例】図1にこの発明の実施例を示す。クロック発
生器31からのクロック信号はD形フリップフロップ3
2よりなる第1分周手段33にて2分の1に分周され、
その正極性分周出力、つまりD形フリップフロップ32
のQ出力はD形フリップフロップ34よりなる第2分周
手段35により2分の1に分周される。第2分周手段3
5の逆極性分周出力、つまりD形フリップフロップ34
のq出力は、第3分周手段36により8分の1に分周さ
れる。第3分周手段36はD形フリップフロップ37,
38,39によりそれぞれ構成された各2分の1分周期
が縦続接続されて構成され、しかも、そのフリップフロ
ップ37のQ出力がフリップフロップ38へ供給され、
フリップフロップ38のq出力がフリップフロップ39
へ供給され、フリップフロップ39のQ出力が第3分周
手段36の出力とされる。
FIG. 1 shows an embodiment of the present invention. The clock signal from the clock generator 31 is the D flip-flop 3
The frequency is divided into halves by the first frequency dividing means 33 consisting of 2,
The positive frequency division output, that is, the D-type flip-flop 32
The Q output of is divided by a second by the second frequency dividing means 35 including the D-type flip-flop 34. Second frequency dividing means 3
5 reverse polarity frequency division output, that is, D flip-flop 34
Q output of is divided into ⅛ by the third dividing means 36. The third frequency dividing means 36 is a D-type flip-flop 37,
The half-cycles of 38 and 39 are connected in cascade, and the Q output of the flip-flop 37 is supplied to the flip-flop 38.
The q output of the flip-flop 38 is the flip-flop 39
And the Q output of the flip-flop 39 is used as the output of the third frequency dividing means 36.

【0011】一方、第1分周手段33の逆極性分周出
力、つまりD形フリップフロップ32のq出力はJKフ
リップフロップ41,42よりなる第4分周手段43に
より3分の1に分周される。その正極性分周出力はD形
フリップフロップ44からなる第5分周手段45により
2分の1に分周され、その正極性分周出力は第6分周手
段46により4分の1に分周される。第6分周手段46
はそれぞれD形フリップフロップ47,48よりなる2
分の1分周器が縦続接続されて構成される。
On the other hand, the reverse polarity frequency-divided output of the first frequency dividing means 33, that is, the q-output of the D-type flip-flop 32 is frequency-divided to 1/3 by the fourth frequency-dividing means 43 including the JK flip-flops 41 and 42. To be done. The positive frequency-divided output is divided by a fifth by the fifth frequency dividing means 45 composed of the D-type flip-flop 44, and the positive-polarity divided output is divided by a sixth by the sixth frequency dividing means 46. Be lapped. 6th frequency dividing means 46
2 are D-type flip-flops 47 and 48, respectively.
The frequency dividers are connected in cascade.

【0012】第5分周手段45の逆極性分周出力、つま
りフリップフロップ44のq出力はD形フリップフロッ
プ49よりなる第7分周手段51で2分の1に分周され
る。第6分周手段46の正極性分周出力はD形フリップ
フロップ52よりなる第8分周手段53により2分の1
に分周される。この構成において、図2に示すように電
源電圧が所定値に立上って各フリップフロップに対する
リセットが解除されると(図2A)、クロック発生器3
1からのクロック信号(図2B)が第1分周手段23に
より2分の1に分周され、第1分周手段23から図2
C,Dに示すような正極性分周出力、逆極性分周出力が
得られ、その正極性分周出力は第2分周手段35により
更に2分の1に分周され、図2Eに示す出力が得られ、
その出力は第3分周手段36の初段、中段、終段で順次
2分の1に分周され、それぞれ図2F,G,Hに示す出
力が得られる。この第3分周手段36の分周出力(図2
H)が、図3中の同期検波回路18へ参照タイミング信
号f3 =3fmrとして供給される。
The reverse polarity frequency-divided output of the fifth frequency dividing means 45, that is, the q-output of the flip-flop 44 is frequency-divided by half by the seventh frequency-dividing means 51 composed of the D-type flip-flop 49. The positive frequency division output of the sixth frequency dividing means 46 is halved by the eighth frequency dividing means 53 composed of the D-type flip-flop 52.
Is divided into. In this configuration, when the power supply voltage rises to a predetermined value as shown in FIG. 2 and the reset for each flip-flop is released (FIG. 2A), the clock generator 3
The clock signal from FIG. 1 (FIG. 2B) is divided into two by the first frequency dividing means 23, and the first frequency dividing means 23 outputs the clock signal shown in FIG.
Positive frequency division output and reverse polarity frequency division output as shown in C and D are obtained, and the positive polarity frequency division output is further divided into two by the second frequency dividing means 35, and is shown in FIG. 2E. Output is obtained,
The output is sequentially divided into halves at the first stage, the middle stage and the final stage of the third frequency dividing means 36, and the outputs shown in FIGS. 2F, G and H are obtained. The frequency division output of the third frequency division means 36 (see FIG.
H) is supplied to the synchronous detection circuit 18 in FIG. 3 as a reference timing signal f 3 = 3f mr .

【0013】第1分周手段33の逆極性分周出力(図2
D)は第4分周手段43で3分の1に分周され、図2I
に示す出力が得られる。この分周出力は第5分周手段4
5で2分の1に分周され、その正極性分周出力は図2J
に示すようになり、この出力は更に第6分周手段46で
分周され、そのフリップフロップ47,48のQ出力は
図2K,Iに示すようになる。この第6分周手段46の
分周出力(図2L)は図3中の同期検波回路23へ参照
タイミング信号f2 =2fmrとして供給される。
Reverse polarity frequency division output of the first frequency division means 33 (see FIG. 2).
2D is divided by the fourth frequency dividing means 43 into one third, and
The output shown in is obtained. This frequency division output is the fifth frequency division means 4
It is divided into two by 5 and the positive division output is shown in Fig. 2J.
The output is further divided by the sixth frequency dividing means 46, and the Q outputs of the flip-flops 47 and 48 are as shown in FIGS. 2K and 2I. The frequency division output (FIG. 2L) of the sixth frequency dividing means 46 is supplied to the synchronous detection circuit 23 in FIG. 3 as the reference timing signal f 2 = 2f mr .

【0014】第5分周手段45の逆極性分周出力は図2
Mのようになり、この出力が第7分周手段51で分周さ
れて図2Nに示すようになり、これが図3中の同期検波
回路24へ参照タイミング信号f4 =4fmrとして供給
される。第6分周手段46の出力(図2L)は第8分周
手段53で2分の1に分周され、図20に示すようにな
り、この出力は図3中の自動電圧調整器27を通じて周
波数fm の変調信号として位相変調器16へ供給され
る。
The reverse polarity frequency division output of the fifth frequency division means 45 is shown in FIG.
2M, and the output is divided by the seventh frequency divider 51 to be as shown in FIG. 2N, which is supplied to the synchronous detection circuit 24 in FIG. 3 as the reference timing signal f 4 = 4f mr. . The output of the sixth frequency dividing means 46 (FIG. 2L) is halved by the eighth frequency dividing means 53 and becomes as shown in FIG. 20, and this output is passed through the automatic voltage regulator 27 in FIG. It is supplied to the phase modulator 16 as a modulation signal of frequency f m .

【0015】3fmrの参照タイミング信号(図2H)
と、2fmrの参照タイミング信号(図2L)と、4fmr
の参照タイミング信号(図2N)との時間的中心が、図
2から明らかなように、1/fm ごとに一致し、従って
受光器17の出力から、2fms成分、3fms成分、4f
ms成分をそれぞれ感度よく検出することができ、2fms
成分及び4fms成分を利用して安定に動作させることが
でき、しかも高い感度でジャイロ出力が3fms成分によ
り得られる。
Reference timing signal of 3f mr (FIG. 2H)
And 2f mr reference timing signal (Fig. 2L) and 4f mr
Temporal center of the reference timing signal (Fig. 2N) is, as is clear from FIG. 2, match each 1 / f m, thus the output of the photodetector 17, 2f ms component, 3f ms component, 4f
Each ms component can be detected with high sensitivity and 2f ms
The component and the 4 f ms component can be used for stable operation, and the gyro output can be obtained with high sensitivity by the 3 f ms component.

【0016】上述ではこの発明を開ループ形のものに適
用したが閉ループ形のものにも適用できる。
Although the present invention is applied to the open loop type in the above description, it can be applied to the closed loop type.

【0017】[0017]

【発明の効果】以上述べたようにこの発明によれば干渉
光中の変調周波数fm の2倍、3倍、4倍の各高周波成
分を感度よく検出することができ、安定に動作し、かつ
感度の高いジャイロ出力が得られる。また各分周手段を
汎用のフリップフロップで構成でき、小形軽量化のため
のゲートアレイ化も容易であり、部品点数を減らすこと
も可能である。
As described above, according to the present invention, high frequency components of 2, 3, and 4 times the modulation frequency f m in the interference light can be detected with high sensitivity, and stable operation is achieved. Also, a highly sensitive gyro output can be obtained. Further, each frequency dividing means can be constituted by a general-purpose flip-flop, and it is easy to form a gate array to reduce the size and weight, and the number of parts can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1の動作例を示すタイムチャート。FIG. 2 is a time chart showing an operation example of FIG.

【図3】この発明が適用される光干渉角速度計の例を示
すブロック図。
FIG. 3 is a block diagram showing an example of an optical interference angular velocity meter to which the present invention is applied.

【図4】第1種ベッセル関数を示すグラフ。FIG. 4 is a graph showing a Bessel function of the first kind.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一周する光学路と、 その光学路に対して光源よりの光を右回り光及び左回り
光として入射する分岐手段と、 その光学路を伝搬してきた右回り光及び左回り光を干渉
させる干渉手段と、 前記分岐手段と前記光学路の一端との間にこれらと縦続
的に配置されて右回り光及び左回り光に位相変化を与え
る位相変調手段と、 前記干渉光の光強度を電気信号として検出する受光器
と、 その受光器からの出力の内、前記位相変調手段の変調周
波数の第3高周波を同期検波して角速度を出力する第1
同期検波手段と、 前記受光器からの出力の内前記変調周波数の第2高周波
を同期検波する第2同期検波手段と、 前記変調周波数の第4高調波を前記受光器の出力から同
期検波する第3同期検波手段と、 前記第2同期検波手段の出力と前記第3同期検波手段の
出力との差を検出する差検出手段と、 その差検出手段の検出力で、その検出力がゼロになるよ
うに上記位相変調手段を帰還制御する手段と、 を具備する光干渉角速度計のタイミング発生回路におい
て、 クロック発生器と、 そのクロック発生器からのクロック信号を2分の1に分
周する第1分周手段と、 その第1分周手段の正極性分周出力を2分の1に分周す
る第2分周手段と、 その第2分周手段からの逆極性分周出力を8分の1に分
周してその正極性出力を前記第1同期検波手段へ参照タ
イミング信号として供給する第3分周手段と、 前記第1分周手段の逆極性分周出力を3分の1に分周す
る第4分周手段と、 その第4分周手段の出力を2分の1に分周する第5分周
手段と、 その第5分周手段の正極性分周出力を4分の1に分周し
て、その正極性出力を前記第2同期検波手段へ参照タイ
ミング信号として供給する第6分周手段と、 前記第5分周手段の逆極性分周出力を2分の1に分周し
てその正極性出力を前記第3同期検波手段へ参照タイミ
ング信号として供給する第7分周手段と、 を具備することを特徴とする光干渉角速度計のタイミン
グ発生回路。
1. An optical path that makes at least one round, branching means that makes light from a light source enter the optical path as right-handed light and left-handed light, and right-handed light and left-handed light propagating through the optical path. An interfering means for interfering light, a phase modulating means for cascading between the branching means and one end of the optical path and providing a phase change to the clockwise light and the counterclockwise light, and the interfering light A light receiver for detecting light intensity as an electric signal, and a first for synchronously detecting a third high frequency of a modulation frequency of the phase modulating means among outputs from the light receiver and outputting an angular velocity.
Synchronous detection means, second synchronous detection means for synchronously detecting a second high frequency of the modulation frequency in the output from the photodetector, and fourth synchronous detection for the fourth harmonic of the modulation frequency from the output of the photodetector 3 synchronous detection means, difference detection means for detecting the difference between the output of the second synchronous detection means and the output of the third synchronous detection means, and the detection power of the difference detection means makes the detection power zero. In the timing generation circuit of the optical interference gyro including the means for feedback controlling the phase modulation means, a clock generator and a first frequency-dividing clock signal from the clock generator. The frequency dividing means, the second frequency dividing means for dividing the positive frequency-divided output of the first frequency dividing means by half, and the reverse polarity frequency-divided output from the second frequency dividing means by 8 minutes. The frequency is divided into 1 and its positive output is the first synchronous detection means. A third frequency dividing means for supplying as a reference timing signal, a fourth frequency dividing means for dividing the reverse polarity frequency divided output of the first frequency dividing means into one third, and an output of the fourth frequency dividing means. A fifth frequency dividing means for dividing the frequency by one half and a positive frequency dividing output of the fifth frequency dividing means are divided by four, and the positive polarity output is sent to the second synchronous detection means. Sixth frequency dividing means for supplying as a reference timing signal, and the reverse polarity frequency-divided output of the fifth frequency dividing means is halved and its positive output is supplied to the third synchronous detection means. And a seventh frequency dividing means, which is supplied as a.
JP5147676A 1993-06-18 1993-06-18 Timing generation circuit for optical interference gyro Expired - Lifetime JP2739193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5147676A JP2739193B2 (en) 1993-06-18 1993-06-18 Timing generation circuit for optical interference gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5147676A JP2739193B2 (en) 1993-06-18 1993-06-18 Timing generation circuit for optical interference gyro

Publications (2)

Publication Number Publication Date
JPH074975A true JPH074975A (en) 1995-01-10
JP2739193B2 JP2739193B2 (en) 1998-04-08

Family

ID=15435764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5147676A Expired - Lifetime JP2739193B2 (en) 1993-06-18 1993-06-18 Timing generation circuit for optical interference gyro

Country Status (1)

Country Link
JP (1) JP2739193B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212811A (en) * 1985-07-10 1987-01-21 Japan Aviation Electronics Ind Ltd Angular speed meter using optical interference
JPH03235018A (en) * 1990-02-13 1991-10-21 Sumitomo Electric Ind Ltd Automatic phase adjusting method in optical fiber gyro

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212811A (en) * 1985-07-10 1987-01-21 Japan Aviation Electronics Ind Ltd Angular speed meter using optical interference
JPH03235018A (en) * 1990-02-13 1991-10-21 Sumitomo Electric Ind Ltd Automatic phase adjusting method in optical fiber gyro

Also Published As

Publication number Publication date
JP2739193B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
JPS6129715A (en) Device for measuring irreversible phase shift generated in closed loop interferometer
JPH0680405B2 (en) Light fiber gyro
JPH09505148A (en) Reduction of Kerr effect error in resonator fiber optic gyroscope
JP2002532705A (en) Fiber optic gyroscope with modulated suppression of co-propagating and counter-propagating polarization errors
JPH02300623A (en) Signal processor for optical fiber gyro
US5009480A (en) Fiber optic gyro
JP2819434B2 (en) Signal phase difference control device combined with optical fiber gyroscope
JP2722013B2 (en) Single-stage demodulator using reference signal phase fluctuation method
JPH074975A (en) Timing generation circuit for light interference angular velocity meter
JPH0352003B2 (en)
JP2578045B2 (en) Optical interference angular velocity meter
JP2739191B2 (en) Optical interference angular velocity meter
JPS63138208A (en) Optical fiber gyro by phase modulation system
JP2514532B2 (en) Optical interference gyro
JP2619015B2 (en) Fiber optic gyro
JP2963612B2 (en) Optical rotation angular velocity sensor
JP2514529B2 (en) Optical interference gyro
JP2548072B2 (en) Optical interference gyro
JPH10132578A (en) Optical fiber gyroscope
JPH0634378A (en) Light interferential angular velocity meter
JPH10267756A (en) Optical spectrum analyzer
JPH06235641A (en) Optical fiber gyroscope
JPS6015509A (en) Light interference angular velocity meter
JPH09269230A (en) Light interference angular velocity meter
JPS5963513A (en) Optical fiber gyroscope

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 15

EXPY Cancellation because of completion of term