JPH0749417A - Interference filter assembly - Google Patents

Interference filter assembly

Info

Publication number
JPH0749417A
JPH0749417A JP19583293A JP19583293A JPH0749417A JP H0749417 A JPH0749417 A JP H0749417A JP 19583293 A JP19583293 A JP 19583293A JP 19583293 A JP19583293 A JP 19583293A JP H0749417 A JPH0749417 A JP H0749417A
Authority
JP
Japan
Prior art keywords
microlens
interference filter
light
filter
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19583293A
Other languages
Japanese (ja)
Inventor
Sueo Onaka
末雄 大仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19583293A priority Critical patent/JPH0749417A/en
Publication of JPH0749417A publication Critical patent/JPH0749417A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the opening ratio without deteriorating the characteristic of a filter by providing an interference filter that is installed between both microlenses for passing substantially parallel rays of light being output from the front microlens. CONSTITUTION:The rays of light converged by a converging system 1 are focused in various positions on the front surface of a front-side microlens 4 in accordance with their converging angle. Accordingly, the opening ratio F up to this microlens 4 is reduced, and an optical system can be formed. The light rays given to the microlens 4 are turned here into nearly parallel rays and are sent to an interference filter 2. After a prescribed filtering action has been carried out in this interference filter 2, the rays are sent out to a microlens 5 situated behind while keeping parallel rays. In the microlens 5, the rays are converged in various positions on the surface of a detecting element array 3. Thus, even if the aperture ratio F up to the microlens 4 is small, the optical path difference can be reduced to a small amount, and a filter that is light and excellent in the narrow-band characteristic can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は干渉フィルタアセンブリ
に関し、特にマルチアセンブリの画像システムに用いら
れる高感度分光イメージャと称する狭帯域(バンドパ
ス)の干渉フィルタアセンブリに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interference filter assembly, and more particularly to a narrow band (bandpass) interference filter assembly for use in a multi-assembly image system, which is called a high sensitivity spectral imager.

【0002】光学系に用いられる干渉フィルタは光線レ
ベルを減衰させないと共に波長の通過帯域が狭い特性が
必要となっている。
An interference filter used in an optical system is required to have a characteristic that it does not attenuate the light level and has a narrow wavelength pass band.

【0003】[0003]

【従来の技術】図4(a) は従来から知られている干渉フ
ィルタアセンブリを示したもので、集光系(レンズ)1
に左の方向から光線Rが入射すると、基板21及び干渉
膜22から成るフィルタ2を経由してレンズ1の焦点位
置にある検出素子アレイ3に結像する。
2. Description of the Related Art FIG. 4 (a) shows a conventionally known interference filter assembly.
When the light ray R is incident on the left side of the lens, the light ray R forms an image on the detection element array 3 at the focal position of the lens 1 via the filter 2 including the substrate 21 and the interference film 22.

【0004】フィルタ2の作用は、図(b) に示すよう
に、厚さdの薄膜(干渉膜)22を通過する際の基板2
1と膜材との間、及び膜材と空気(真空)との間の屈折
率の差異により生ずる多重反射の干渉を利用して所定波
長帯域の光線のみを通過(バンドパス)させるものであ
る。
The action of the filter 2 is that, as shown in FIG. 2B, the substrate 2 passes through a thin film (interference film) 22 having a thickness d.
1 and the film material, and the interference of multiple reflections caused by the difference in the refractive index between the film material and the air (vacuum) is used to pass only a light beam in a predetermined wavelength band (bandpass). .

【0005】このレンズ1の開口径をDとし、焦点距離
をfとすると、開口比はF=f/Dで表され、Fが小さ
いほど、即ち開口径Dが大きいか焦点距離fが小さいほ
ど入射エネルギーが検出素子アレイ3の表面上の小さい
面積に集められるので、減衰量が少ない明るい光学系に
なる。
When the aperture diameter of the lens 1 is D and the focal length is f, the aperture ratio is represented by F = f / D. The smaller F is, that is, the larger the aperture diameter D or the smaller the focal length f is. Since the incident energy is collected in a small area on the surface of the detection element array 3, the bright optical system has a small amount of attenuation.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、開口比
Fを小さくすると、以下に述べるようにフィルタ特性が
劣化する。
However, when the aperture ratio F is reduced, the filter characteristics deteriorate as described below.

【0007】開口比F値の小さい明るい光学系を用いる
と、同図のθ0が大きくなる。一方、光線Rのうち、中
心部(θ=0)を通る光線R0の場合の光路差は、多重
反射として2回反射する場合、その1回往復光と直接通
過光との光路長差であり2dとなり、この光路長差は2
dに固定されることが望ましい。
When a bright optical system having a small aperture ratio F value is used, θ 0 in the figure becomes large. On the other hand, of the rays R, the optical path difference in the case of the ray R0 passing through the central portion (θ = 0) is the optical path length difference between the one-time reciprocating light and the directly passing light when the light is reflected twice as multiple reflections. 2d, and this optical path length difference is 2
It is preferably fixed at d.

【0008】しかしながら、レンズ1の所で、中心から
hのところに入射する光は検知素子アレイ3の面に角度
θ=tan-1h/fで入射するが、このときの光路差は
2l=2d/cosθとなる。
However, at the lens 1, the light incident at h from the center is incident on the surface of the sensing element array 3 at an angle θ = tan −1 h / f, but the optical path difference at this time is 2l = 2d / cos θ.

【0009】これが大口径の集光系(例えばF=0.
7)の場合には、−45°<θ<+45°となり、光路
差は2d〜2.8dの間に分散することになる。その結
果、フィルタ特性は、図5に示すように開口比Fの値
(F=1.0〜3.0)により大きく変わってしまうこと
が本発明者の実験によって分かった。
This is a large-diameter condenser system (for example, F = 0.
In the case of 7), -45 ° <θ <+ 45 °, and the optical path difference is dispersed between 2d and 2.8d. As a result, it has been found by an experiment conducted by the present inventor that the filter characteristic greatly changes depending on the value of the aperture ratio F (F = 1.0 to 3.0) as shown in FIG.

【0010】このように、リモートセンシング用マルチ
スペクトルイメージングシステムの可視部の狭帯域分光
特性を維持するには、上記のような従来の方式では、フ
ィルタ2を通過する光路長は、開口比Fの値が小さい場
合には、図4(a) に示すように光学系の中心部の光線R
0と周縁部の光線R1とでは大きな差が生じてしまい、
中心波長、通過帯域幅、遮断波長域の透過特性が、設計
値から大幅にずれてしまう(図5参照)ので、一般的に
は開口比Fの値は「2」を越える値になってしまうとい
う問題点があった。
As described above, in order to maintain the narrow-band spectral characteristic of the visible portion of the multispectral imaging system for remote sensing, in the conventional method as described above, the optical path length passing through the filter 2 is equal to the aperture ratio F. When the value is small, as shown in Fig. 4 (a), the ray R at the center of the optical system
There is a large difference between 0 and the peripheral ray R1.
Since the transmission characteristics in the central wavelength, the pass band width, and the cutoff wavelength range largely deviate from the designed values (see FIG. 5), the value of the aperture ratio F generally exceeds "2". There was a problem.

【0011】従って本発明は、フィルタ特性を劣化させ
ることなく、できるだけ開口比を小さくすることが可能
な干渉フィルタを提供することを目的とする。
Therefore, an object of the present invention is to provide an interference filter which can reduce the aperture ratio as much as possible without deteriorating the filter characteristics.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係る干渉フィルタは、図1に示すように、
前方が集光系1の焦点位置に設置され後方が可視部検出
素子アレイ3に結像させる位置に設置された2枚のマイ
クロレンズ4,5と、両マイクロレンズ4,5の間に設
置され前方のマイクロレンズ4から出力される実質的に
平行な光を通過させる干渉フィルタ2と、を備えてい
る。
In order to achieve the above object, an interference filter according to the present invention, as shown in FIG.
It is installed between two microlenses 4 and 5 which are installed at the focal position of the light converging system 1 at the front and at the position where the rear is formed at the position where an image is formed on the visible light detecting element array 3, and between the microlenses 4 and 5. The interference filter 2 that allows the substantially parallel light output from the front microlens 4 to pass therethrough.

【0013】上記の本発明では、干渉フィルタ2は、前
方のマイクロレンズ4の背面又は後方のマイクロレンズ
5の前面に干渉膜フィルタを形成したものでもよい。
In the above-described present invention, the interference filter 2 may have an interference film filter formed on the back surface of the front microlens 4 or the front surface of the rear microlens 5.

【0014】また本発明では、該マイクロレンズとして
平板セルフオックマイクロレンズを用いることができ
る。
In the present invention, a flat plate self-occurring microlens can be used as the microlens.

【0015】[0015]

【作用】図1において、集光系1で集光された光線は、
その集光角度に応じて前方の側の(平板セルフオック)
マイクロレンズ4の前面の種々の位置で結像する。従っ
て、このマイクロレンズ4までの開口比Fは小さくなり
明るい光学系が形成される。
In FIG. 1, the light beam condensed by the condensing system 1 is
Depending on the converging angle, the front side (flat plate self-lock)
Images are formed at various positions on the front surface of the microlens 4. Therefore, the aperture ratio F up to the microlens 4 becomes small and a bright optical system is formed.

【0016】マイクロレンズ4に与えられた光線はここ
でそれぞれほぼ平行な光となって干渉フィルタ2に送ら
れる。
The light rays given to the microlens 4 are converted into substantially parallel light, and are sent to the interference filter 2.

【0017】この干渉フィルタ2では所定のフィルタリ
ング動作を行った後、平行光線のまま後方のマイクロレ
ンズ5に送出する。マイクロレンズ5ではその光線を検
出素子アレイ3の表面上の種々の位置に集光させる。
The interference filter 2 performs a predetermined filtering operation, and then sends the parallel rays as they are to the rear microlens 5. The microlens 5 focuses the light beam at various positions on the surface of the detection element array 3.

【0018】このようにして干渉フィルタ2を通過する
光は実質的に平行光となり、ここでは開口比Fの値が大
きい(又は無限大の)光束になっているため、マイクロ
レンズ4までの開口比Fが小さくても前述の光路長差を
僅かなものにすることができ、明るくて狭帯域特性の優
れたフィルタを維持することができる。
In this way, the light passing through the interference filter 2 becomes substantially parallel light, which is a light beam with a large aperture ratio F (or infinite), so that the aperture up to the microlens 4 is increased. Even if the ratio F is small, the above-mentioned optical path length difference can be made small, and it is possible to maintain a bright filter having excellent narrow band characteristics.

【0019】[0019]

【実施例】図2は図1を部分的に拡大した図を示してお
り、特にこの実施例ではマイクロレンズ4として1.5
λ(波長)の幅を有する平板セルフォックマイクロレン
ズを用いている。
FIG. 2 shows a partially enlarged view of FIG. 1, and in particular, in this embodiment, the microlens 4 is 1.5
A flat plate Selfoc microlens having a width of λ (wavelength) is used.

【0020】この実施例においては、集光系(図示せ
ず)からの光線Rは、セルフォックマイクロレンズ4の
前面に結像してマイクロレンズ4に入射する。
In this embodiment, a light ray R from a condenser system (not shown) is focused on the front surface of the SELFOC microlens 4 and enters the microlens 4.

【0021】レンズ4内では光線は蛇行するが、1.5
λ(波長)の幅を持っているのでレンズ4の後面で腹部
となり平行光として出射されて干渉フィルタ2の基板2
1に入射される。
In the lens 4, the light rays meander, but 1.5
Since it has a width of λ (wavelength), it becomes an abdominal part on the rear surface of the lens 4 and is emitted as parallel light, and the substrate 2 of the interference filter 2
It is incident on 1.

【0022】この基板21を通過し、更に干渉フィルタ
2を構成する干渉膜22を通過する光線は平行光であ
り、開口比Fの値が大きい光束になっているため、前述
の光路長差の分散が小さく、フィルタ特性を設計値に近
く維持でき、図5におけるF≧3.0 に相当する特性を
得ることができる。
The light rays passing through the substrate 21 and further through the interference film 22 constituting the interference filter 2 are parallel light rays and have a large aperture ratio F, so that the above-mentioned difference in optical path length is caused. The dispersion is small, the filter characteristic can be maintained close to the design value, and the characteristic corresponding to F ≧ 3.0 in FIG. 5 can be obtained.

【0023】そして、フィルタ2を通過した光線は後方
のマイクロレンズ5に平行に与えられ、ここで図示のよ
うに蛇行した後、レンズ幅が例えば1.2λであること
からその焦点位置に在る検知素子アレイ3の面に結像さ
れることとなる。
Then, the light beam which has passed through the filter 2 is given to the rear microlens 5 in parallel, and after meandering as shown here, since it has a lens width of, for example, 1.2λ, it is at its focal position. An image is formed on the surface of the sensing element array 3.

【0024】図3は、フィルタ薄膜を前方のマイクロレ
ンズ4の後面に直接張り付けて、マイクロレンズとフィ
ルタを兼用させた実施例を示しており、この実施例でも
マイクロレンズ4として1.5λ(波長)の幅を有する
セルフォックマイクロレンズを用い、マイクロレンズ5
として1.2λの幅を有するセルフォックマイクロレン
ズを用いている。
FIG. 3 shows an embodiment in which a filter thin film is directly attached to the rear surface of the front microlens 4 to serve as a microlens and a filter. Also in this embodiment, the microlens 4 has a wavelength of 1.5λ (wavelength). ) Using a SELFOC microlens having a width of
Is used as a selfoc micro lens having a width of 1.2λ.

【0025】尚、このフィルタ薄膜は後方のマイクロレ
ンズ5の前面に直接張り付けてもよい。
The filter thin film may be directly attached to the front surface of the rear microlens 5.

【0026】この実施例においても、集光系(図示せ
ず)からの光線Rは、セルフォックマイクロレンズ4の
前面に結像してマイクロレンズ4に入射し、この後面で
腹部となり平行光として出射されて干渉膜22に入射さ
れる。
Also in this embodiment, the light ray R from the condensing system (not shown) forms an image on the front surface of the SELFOC microlens 4 and is incident on the microlens 4 and becomes an abdominal portion on the rear surface thereof and becomes parallel light. The light is emitted and made incident on the interference film 22.

【0027】そして、この干渉膜22を通過してマイク
ロレンズ5によりその焦点位置に在る検知素子アレイ3
の面に結像されることとなる。
Then, the sensing element array 3 passing through the interference film 22 and located at the focal position by the microlens 5 is used.
Will be imaged on the surface of.

【0028】[0028]

【発明の効果】以上述べたように本発明に係る干渉フィ
ルタによれば、2枚のマイクロレンズの一方を集光系の
焦点位置に設置し他方を可視部検出素子アレイに結像さ
せる位置に設置して両マイクロレンズの間に設置した干
渉フィルタへの入射光が実質的に平行な光となるように
構成したので、光学系を明るくするために開口比Fが小
さな値となるように集光系とマイクロレンズとを配置さ
せてもフィルタを通過する光線は平行となりフィルタ特
性を劣化させずに済み、好ましい狭帯域を与えることが
可能となる。
As described above, according to the interference filter of the present invention, one of the two microlenses is installed at the focal position of the condensing system and the other is located at the position where an image is formed on the visible light detecting element array. Since the incident light to the interference filter installed between both the microlenses is configured to be substantially parallel light, the aperture ratio F is set to a small value in order to make the optical system bright. Even if the optical system and the microlens are arranged, the rays passing through the filter become parallel to each other without deteriorating the filter characteristics, and it becomes possible to provide a preferable narrow band.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る干渉フィルタアセンブリを原理的
に示した図である。
FIG. 1 is a view showing the principle of an interference filter assembly according to the present invention.

【図2】本発明に係る干渉フィルタアセンブリの実施例
を部分的に拡大して示した図である。
FIG. 2 is a partially enlarged view of an embodiment of an interference filter assembly according to the present invention.

【図3】本発明に係る干渉フィルタアセンブリの他の実
施例を部分的に拡大して示した図である。
FIG. 3 is a partially enlarged view of another embodiment of the interference filter assembly according to the present invention.

【図4】従来例を説明するための図である。FIG. 4 is a diagram for explaining a conventional example.

【図5】従来の干渉フィルタアセンブリの透過特性を示
したグラフ図である。
FIG. 5 is a graph showing transmission characteristics of a conventional interference filter assembly.

【符号の説明】[Explanation of symbols]

1 集光系(レンズ) 2 干渉フィルタ 3 検知素子アレイ 4,5 セルフォックマイクロレンズ R 光線 図中、同一符号は同一又は相当部分を示す。 1 Condensing System (Lens) 2 Interference Filter 3 Sensing Element Array 4,5 Selfoc Microlens R Ray

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 前方が集光系(1)の焦点位置に設置さ
れ後方が可視部検出素子アレイ(3)に結像させる位置
に設置された2枚のマイクロレンズ(4,5)と、 両マイクロレンズ(4,5)の間に設置され前方のマイ
クロレンズ(4)から出力される実質的に平行な光を通
過させる干渉フィルタ(2)と、 を備えたことを特徴とする干渉フィルタアセンブリ。
1. Two microlenses (4, 5), the front of which is installed at a focus position of the light-collecting system (1) and the rear of which is installed at a position where an image is formed on the visible light detecting element array (3), An interference filter (2), which is installed between both microlenses (4, 5) and passes substantially parallel light output from the front microlens (4), assembly.
【請求項2】 該干渉フィルタ(2)が、前方のマイク
ロレンズ(4)の背面に干渉膜フィルタを形成したもの
であることを特徴とした請求項1に記載の干渉フィルタ
アセンブリ。
2. The interference filter assembly according to claim 1, wherein the interference filter (2) is formed by forming an interference film filter on the back surface of the front microlens (4).
【請求項3】 該干渉フィルタ(2)が、後方のマイク
ロレンズの前面に干渉膜フィルタを形成したものである
ことを特徴とした請求項1に記載の干渉フィルタアセン
ブリ。
3. The interference filter assembly according to claim 1, wherein the interference filter (2) has an interference film filter formed on the front surface of a rear microlens.
【請求項4】 該マイクロレンズ(4,5)が平板のセ
ルフオックマイクロレンズであることを特徴とした請求
項1に記載の干渉フィルタアセンブリ。
4. The interference filter assembly according to claim 1, wherein the microlenses (4, 5) are flat plate self-occurring microlenses.
JP19583293A 1993-08-06 1993-08-06 Interference filter assembly Withdrawn JPH0749417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19583293A JPH0749417A (en) 1993-08-06 1993-08-06 Interference filter assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19583293A JPH0749417A (en) 1993-08-06 1993-08-06 Interference filter assembly

Publications (1)

Publication Number Publication Date
JPH0749417A true JPH0749417A (en) 1995-02-21

Family

ID=16347757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19583293A Withdrawn JPH0749417A (en) 1993-08-06 1993-08-06 Interference filter assembly

Country Status (1)

Country Link
JP (1) JPH0749417A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006861A1 (en) * 2000-07-14 2002-01-24 Nippon Sheet Glass Co., Ltd. Optical element having wavelength selectivity
DE102011088860A1 (en) 2010-12-16 2012-06-21 Denso Corporation Interference filter arrangement
JP2014174136A (en) * 2013-03-13 2014-09-22 Panasonic Corp Photoreceiver and space information detector
US9992477B2 (en) 2015-09-24 2018-06-05 Ouster, Inc. Optical system for collecting distance information within a field
US10063849B2 (en) 2015-09-24 2018-08-28 Ouster, Inc. Optical system for collecting distance information within a field
US10222458B2 (en) 2016-08-24 2019-03-05 Ouster, Inc. Optical system for collecting distance information within a field
US10222475B2 (en) 2017-05-15 2019-03-05 Ouster, Inc. Optical imaging transmitter with brightness enhancement
JP2019529957A (en) * 2016-10-03 2019-10-17 ゼノマティクス ナムローゼ フェンノートシャップ System for measuring the distance to an object
US10481269B2 (en) 2017-12-07 2019-11-19 Ouster, Inc. Rotating compact light ranging system
JP2022133325A (en) * 2018-07-05 2022-09-13 株式会社Iddk Microscope observation device, detector, and microscope observation method
US11733092B2 (en) 2018-08-09 2023-08-22 Ouster, Inc. Channel-specific micro-optics for optical arrays
US11874374B2 (en) 2016-12-30 2024-01-16 Xenomatix Nv System for characterizing surroundings of a vehicle

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006861A1 (en) * 2000-07-14 2002-01-24 Nippon Sheet Glass Co., Ltd. Optical element having wavelength selectivity
DE102011088860A1 (en) 2010-12-16 2012-06-21 Denso Corporation Interference filter arrangement
JP2014174136A (en) * 2013-03-13 2014-09-22 Panasonic Corp Photoreceiver and space information detector
US11956410B2 (en) 2015-09-24 2024-04-09 Ouster, Inc. Optical system for collecting distance information within a field
US10063849B2 (en) 2015-09-24 2018-08-28 Ouster, Inc. Optical system for collecting distance information within a field
US11178381B2 (en) 2015-09-24 2021-11-16 Ouster, Inc. Optical system for collecting distance information within a field
US9992477B2 (en) 2015-09-24 2018-06-05 Ouster, Inc. Optical system for collecting distance information within a field
US11202056B2 (en) 2015-09-24 2021-12-14 Ouster, Inc. Optical system with multiple light emitters sharing a field of view of a pixel detector
US11196979B2 (en) 2015-09-24 2021-12-07 Ouster, Inc. Optical system for collecting distance information within a field
US11190750B2 (en) 2015-09-24 2021-11-30 Ouster, Inc. Optical imaging system with a plurality of sense channels
US11025885B2 (en) 2015-09-24 2021-06-01 Ouster, Inc. Optical system for collecting distance information within a field
US10222458B2 (en) 2016-08-24 2019-03-05 Ouster, Inc. Optical system for collecting distance information within a field
US11422236B2 (en) 2016-08-24 2022-08-23 Ouster, Inc. Optical system for collecting distance information within a field
US10809359B2 (en) 2016-08-24 2020-10-20 Ouster, Inc. Optical system for collecting distance information within a field
US10948572B2 (en) 2016-08-24 2021-03-16 Ouster, Inc. Optical system for collecting distance information within a field
JP2019529957A (en) * 2016-10-03 2019-10-17 ゼノマティクス ナムローゼ フェンノートシャップ System for measuring the distance to an object
US11874374B2 (en) 2016-12-30 2024-01-16 Xenomatix Nv System for characterizing surroundings of a vehicle
US11150347B2 (en) 2017-05-15 2021-10-19 Ouster, Inc. Micro-optics for optical imager with non-uniform filter
US11175405B2 (en) 2017-05-15 2021-11-16 Ouster, Inc. Spinning lidar unit with micro-optics aligned behind stationary window
US10663586B2 (en) 2017-05-15 2020-05-26 Ouster, Inc. Optical imaging transmitter with brightness enhancement
US10222475B2 (en) 2017-05-15 2019-03-05 Ouster, Inc. Optical imaging transmitter with brightness enhancement
US10969490B2 (en) 2017-12-07 2021-04-06 Ouster, Inc. Light ranging system with opposing circuit boards
US20200025879A1 (en) 2017-12-07 2020-01-23 Ouster, Inc. Light ranging system with opposing circuit boards
US11340336B2 (en) 2017-12-07 2022-05-24 Ouster, Inc. Rotating light ranging system with optical communication uplink and downlink channels
US11353556B2 (en) 2017-12-07 2022-06-07 Ouster, Inc. Light ranging device with a multi-element bulk lens system
US10481269B2 (en) 2017-12-07 2019-11-19 Ouster, Inc. Rotating compact light ranging system
JP2022133325A (en) * 2018-07-05 2022-09-13 株式会社Iddk Microscope observation device, detector, and microscope observation method
US11733092B2 (en) 2018-08-09 2023-08-22 Ouster, Inc. Channel-specific micro-optics for optical arrays

Similar Documents

Publication Publication Date Title
US11240422B2 (en) Method and system for multiple f-number lens
US3761184A (en) Wide angle, narrow bandwidth laser detection system
RU2503046C1 (en) Image forming element and image forming apparatus and photographic system having said element
JPH0749417A (en) Interference filter assembly
JPS60263912A (en) Focus detecting device of camera
JP3044734B2 (en) Solid-state imaging device
JP2002318157A (en) Electromagnetic wave detection device
CN106291895A (en) A kind of wide field staring double-colored prior-warning device of type infrared and ultraviolet
JPH05133803A (en) Infrared-detecting element
JPS6250809B2 (en)
JPS5922027A (en) Optical image formation apparatus
US10948349B2 (en) Multi-spectrum imaging
US6545828B2 (en) Optical device with absorption gradient and selective spectral filtering and lens assembly and camera fitted with such a device
US4716284A (en) Photographic optical system having enhanced spectral transmittance characteristics
JPH0714997A (en) Solid-state imaging device
US4557580A (en) Beam splitter for a single lens reflex camera
CN113820763A (en) Micro-lens based on high-refractive-index medium substrate
JP4323048B2 (en) Imaging device
US4093384A (en) Narrow angle, narrow bandwidth optical receiver system
JPH05203873A (en) Two-focus switching type lens with far exit pupil
JPH07113948A (en) Focus detecting device
JP4366107B2 (en) Optical device
JPS5820018B2 (en) Optical system
JPH05100186A (en) Image sensor
JP2000088642A (en) Optical system for measuring light of single lens reflex camera

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031