JPH0748489B2 - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH0748489B2
JPH0748489B2 JP18544787A JP18544787A JPH0748489B2 JP H0748489 B2 JPH0748489 B2 JP H0748489B2 JP 18544787 A JP18544787 A JP 18544787A JP 18544787 A JP18544787 A JP 18544787A JP H0748489 B2 JPH0748489 B2 JP H0748489B2
Authority
JP
Japan
Prior art keywords
plasma processing
water vapor
processing apparatus
supply means
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18544787A
Other languages
Japanese (ja)
Other versions
JPS6430225A (en
Inventor
啓介 品川
修三 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18544787A priority Critical patent/JPH0748489B2/en
Publication of JPS6430225A publication Critical patent/JPS6430225A/en
Publication of JPH0748489B2 publication Critical patent/JPH0748489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔概要〕 プラズマ処理装置の改良に関し、 高圧をもって給送されるガスと並行して低圧をもって水
蒸気を供給しうるプラズマ処理装置を提供することを目
的とし、 ガス供給手段のそれぞれが相互に干渉することなく、そ
れぞれが独立に作動することができ、ガスも、水蒸気
も、スムーズに圧送されるように、それぞれがプラズマ
発生室に直接開口する複数の管をもって構成されてい
る。
The present invention relates to an improvement of a plasma processing apparatus, and an object thereof is to provide a plasma processing apparatus capable of supplying steam at low pressure in parallel with gas supplied at high pressure. Each can operate independently without interfering with each other, and is configured with a plurality of tubes each directly opening to the plasma generation chamber so that gas and water vapor can be smoothly pumped. .

〔産業上の利用分野〕[Industrial application field]

本発明は、プラズマ処理装置の改良に関する。 The present invention relates to improvements in plasma processing equipment.

〔従来の技術〕[Conventional technology]

プラズマエッチング方法、プラズマ堆積法、プラズマ酸
化法等プラズマを被処理物に接触させてなるプラズマ処
理方法にはプラズマ処理装置が使用される。
A plasma processing apparatus is used for a plasma processing method such as a plasma etching method, a plasma deposition method, or a plasma oxidation method in which plasma is brought into contact with an object to be processed.

従来技術に係るプラズマ処理装置の1例を図を参照して
説明する。
An example of a plasma processing apparatus according to the related art will be described with reference to the drawings.

第2図参照 図において、11は例えば電磁波等を導く導波管等のエネ
ルギー供給手段であり、12はガス供給手段であり、この
例にあっては、酸素と窒素または酸化二窒素とを供給す
るために分岐管とされており、それぞれの分岐にはマス
フロー等の流量調節手段121が設けられており、その上
流に酸素源、窒素源、酸化二窒素源等が設けられる。1
はプラズマ発生室であり真空容器よりなる。
Referring to FIG. 2, 11 is an energy supply means such as a waveguide for guiding electromagnetic waves and the like, and 12 is a gas supply means. In this example, oxygen and nitrogen or dinitrogen oxide are supplied. In order to achieve this, a branch pipe is provided, and each branch is provided with a flow rate adjusting means 121 such as a mass flow, and an oxygen source, a nitrogen source, a nitrous oxide source, etc. are provided upstream thereof. 1
Is a plasma generation chamber and is composed of a vacuum container.

2は隔壁でありスリット21を有し、このスリット21を介
して、プラズマ発生室1と反応室3とが連通している。
反応室3には、半導体ウェーハ等被処理体を保持するス
テージ31が設けられ、排気手段32によって内圧が例えば
0.8Torrに保持される。
Reference numeral 2 is a partition wall having a slit 21, and the plasma generation chamber 1 and the reaction chamber 3 are communicated with each other through the slit 21.
The reaction chamber 3 is provided with a stage 31 for holding an object to be processed such as a semiconductor wafer.
Holds at 0.8 Torr.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

酸素ガスを使用するダウンフローアッシング法をなす場
合、反応ガスに水蒸気を添加すると酸素濃度が高くなり
アッシングレートの上昇に寄与することが知られてい
る。
It is known that when a downflow ashing method that uses oxygen gas is performed, adding water vapor to the reaction gas increases the oxygen concentration and contributes to an increase in the ashing rate.

ところで、上記した従来のプラズマ処理装置(プラズマ
発生室の内圧は約0.8Torr)を使用して水蒸気を供給し
ようとしても、高圧で供給される酸素が低圧(約24Tor
r)をもって供給される水蒸気供給管に逆流して、水蒸
気はプラズマ発生室1に給送されることができない。酸
素ガスが流れることによって発生する圧力降下によって
決定される分岐点の圧力が水蒸気の圧送圧より高くなっ
てしまうからである。
By the way, even if an attempt is made to supply water vapor using the above-described conventional plasma processing apparatus (internal pressure of the plasma generation chamber is about 0.8 Torr), oxygen supplied at high pressure is at low pressure (about 24 Torr).
The water vapor cannot be sent to the plasma generation chamber 1 by flowing back to the water vapor supply pipe supplied with r). This is because the pressure at the branch point, which is determined by the pressure drop generated by the flow of oxygen gas, becomes higher than the pressure of pumping water vapor.

本発明の目的は、この欠点を解消することにあり、高圧
をもって給送されるガスと並行して低圧をもって水蒸気
を供給しうるプラズマ処理装置を提供することにある。
An object of the present invention is to eliminate this drawback, and it is an object of the present invention to provide a plasma processing apparatus capable of supplying steam at low pressure in parallel with gas supplied at high pressure.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、エネルギー供給手段(11)と、流量調節
手段(121)を有するガス供給手段(12)とを具備し真
空容器よりなるプラズマ発生室(1)と、該プラズマ発
生室(1)とスリット(21)を有する隔壁(2)を介し
て連通し、被処理体を保持するステージ(31)を有し、
排気手段(32)を有する真空容器よりなる反応室(3)
とを有するプラズマ処理装置において、前記ガス供給手
段(12)は、それぞれが前記プラズマ発生室(1)に直
接開口する複数の管(122)よりなることによって達成
される。
The above-mentioned object is to provide a plasma generating chamber (1) comprising a vacuum container, which comprises an energy supplying means (11) and a gas supplying means (12) having a flow rate adjusting means (121), and the plasma generating chamber (1). And a stage (31) for holding the object to be processed, which communicates with each other through a partition (2) having a slit (21),
Reaction chamber (3) consisting of vacuum container having exhaust means (32)
In the plasma processing apparatus having and, the gas supply means (12) is achieved by a plurality of tubes (122) each of which directly opens to the plasma generation chamber (1).

ところで、流量調節手段として使用されるマスフローに
流体が流れはじめるときの流量・時間関係には、第3図
に示すように、流れ始めに大量の流体が流れる傾向があ
る。そのため、水蒸気はマスフロー中で断熱膨張して水
滴と化し流路の閉塞を原因する欠点がある。
By the way, regarding the flow rate / time relationship when the fluid starts flowing in the mass flow used as the flow rate adjusting means, as shown in FIG. 3, a large amount of fluid tends to flow at the beginning of the flow. Therefore, there is a drawback that the water vapor expands adiabatically in the mass flow to form water droplets, which causes blockage of the flow path.

この欠点を解消するため、本発明においては、水蒸気を
給送する管の送出端とその中で断熱膨張が発生するマス
フローとの間にニードルバルブ等の減圧弁123を設け、
水蒸気給送路中に水滴が発生して流路を閉塞することは
ない。
In order to eliminate this drawback, in the present invention, a pressure reducing valve 123 such as a needle valve is provided between the delivery end of the pipe for feeding steam and the mass flow in which adiabatic expansion occurs.
No water droplets are generated in the water vapor feed path to block the flow path.

〔作用〕[Action]

本発明が解消しようとする欠点(2本の管が途中で合流
する管路において、第1の管の送出端圧力が極めて高
く、第2の管の送出端圧力が極めて低い場合、第2の管
の流量が零になる欠点)は、すでに上記したとおり、第
1の管の送出端と合流点との間に発生する圧力降下によ
って決定される合流点の圧力が第2の管の送出端圧より
高くなるからである。
Disadvantages to be solved by the present invention (in a pipe line where two pipes join in the middle, when the delivery end pressure of the first pipe is extremely high and the delivery end pressure of the second pipe is extremely low, The disadvantage that the flow rate in the tube is zero) is that, as already mentioned above, the pressure at the confluence point determined by the pressure drop generated between the delivery end of the first tube and the confluence point is the delivery end of the second tube. It is higher than the pressure.

本発明に係るプラズマ処理装置においては、高圧をもっ
てガスを圧送する第1の管も、低圧をもって水蒸気を圧
送する第2の管も、ともに、プラズマ発生室内に開口し
ており、このプラズマ発生室の内圧は水蒸気を圧送する
第2の管の送出端圧力より高くされているから、ガスを
圧送する第1の管も、水蒸気を圧送する第2の管も、相
互に干渉することなく、独立に作動することができ、ガ
スも、水蒸気も、スムーズに圧送される。
In the plasma processing apparatus according to the present invention, both the first pipe for pumping gas at high pressure and the second pipe for pumping water vapor at low pressure are both open in the plasma generation chamber. Since the internal pressure is set higher than the delivery end pressure of the second pipe for pumping water vapor, the first pipe for pumping gas and the second pipe for pumping water vapor are independent of each other without interfering with each other. It can operate and both gas and water vapor are pumped smoothly.

〔実施例〕〔Example〕

以下、図面を参照しつゝ、本発明の一実施例に係るプラ
ズマ処理装置について、さらに説明する。
Hereinafter, a plasma processing apparatus according to an embodiment of the present invention will be further described with reference to the drawings.

第1図参照 図において、11は例えば電磁波等を導く導波管等のエネ
ルギー供給手段であり、122はガス供給手段12を構成す
る複数の管のそれぞれであり、一方は酸素と窒素または
酸化二窒素とを供給するものであり、他方は水蒸気を供
給するものであり、双方の管とも、プラズマ発生室1中
に開口している。また、ガス供給手段12を構成する管12
2のそれぞれには、流量調節手段としてのマスフロー121
が設けられており、その上流には、一方の管には酸素
源、窒素源等が設けられ、他方の管にはニードルバルブ
123を介して水蒸気源124が設けられる。
In FIG. 1, 11 is an energy supply means such as a waveguide for guiding an electromagnetic wave or the like, 122 is each of a plurality of tubes constituting the gas supply means 12, one of which is oxygen and nitrogen or two oxides. It supplies nitrogen and the other supplies water vapor, and both tubes are open in the plasma generation chamber 1. Further, the pipe 12 constituting the gas supply means 12
Each of the 2 has a mass flow 121 as a flow rate adjusting means.
An oxygen source, a nitrogen source, etc. are installed in one of the pipes upstream of the
A steam source 124 is provided via 123.

2は隔壁でありスリット21を有し、このスリット21を介
して、プラズマ発生室1と反応室3とが連通している。
反応室3には、半導体ウェーハ等被処理体を保持するス
テージ31が設けられ、排気手段32によって内圧が例えば
0.8Torrに保持される。
Reference numeral 2 is a partition wall having a slit 21, and the plasma generation chamber 1 and the reaction chamber 3 are communicated with each other through the slit 21.
The reaction chamber 3 is provided with a stage 31 for holding an object to be processed such as a semiconductor wafer.
Holds at 0.8 Torr.

酸素ガスを使用するダウンフローアッシング法をなす場
合、反応ガスに水蒸気を添加するとアッシングレートが
上昇するが、本実施例に係るプラズマ処理装置のガス供
給手段12は、いずれもがプラズマ発生室1に直接開口し
ている管122をもって構成されているので、酸素と窒素
または酸化二窒素も、水蒸気も、スムーズにプラズマ発
生室に供給されて、すぐれたアッシングレートを実現し
うる。
When the downflow ashing method using oxygen gas is performed, adding ash to the reaction gas increases the ashing rate. However, the gas supply means 12 of the plasma processing apparatus according to the present embodiment does not use the plasma generation chamber 1 either. Since the tube 122 is directly opened, both oxygen and nitrogen or dinitrogen oxide and water vapor can be smoothly supplied to the plasma generation chamber, and an excellent ashing rate can be realized.

さらに、水蒸気給送用の管122に設けられているマスフ
ロー121の上流にはニードルバルブ123が設けられている
ので、この系のマスフロー121中で水滴が発生して流路
を閉塞することはない。
Further, since the needle valve 123 is provided upstream of the mass flow 121 provided in the water vapor feeding pipe 122, water droplets are not generated in the mass flow 121 of this system to block the flow path. .

〔発明の効果〕〔The invention's effect〕

以上説明せるとおり、本発明に係るプラズマ処理装置の
ガス供給手段は、それぞれがプラズマ発生室に直接開口
する複数の管であるから、相互に干渉することなく、そ
れぞれが独立に作動することができ、ガスも、水蒸気
も、スムーズに圧送され、酸素ガスを使用するダウンフ
ローアッシング法をなすアッシング法のアッシングレー
トが向上される。
As explained above, since the gas supply means of the plasma processing apparatus according to the present invention is a plurality of tubes each of which directly opens to the plasma generation chamber, each can operate independently without interfering with each other. Both the gas and the water vapor are smoothly pumped, and the ashing rate of the ashing method, which is a downflow ashing method using oxygen gas, is improved.

【図面の簡単な説明】 第1図は、本発明の一実施例に係るプラズマ処理装置の
構成図である。 第2図は、従来技術に係るプラズマ処理装置の構成図で
ある。 第3図は、マスフローの流量/時間特性を示すグラフで
ある。 1……プラズマ発生室、11……エネルギー供給手段、12
……ガス供給手段、121……マスフロー、122……ガス供
給手段を構成する管、123……減圧弁、124……水蒸気
源、2……隔壁、21……スリット、3……反応室、31…
…ステージ、32……排気手段。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of a plasma processing apparatus according to an embodiment of the present invention. FIG. 2 is a configuration diagram of a plasma processing apparatus according to a conventional technique. FIG. 3 is a graph showing mass flow rate / time characteristics. 1 ... Plasma generation chamber, 11 ... Energy supply means, 12
...... Gas supply means, 121 ...... mass flow, 122 ...... tubes constituting gas supply means, 123 ...... reducing valve, 124 ...... steam source, 2 ...... partition, 21 ...... slit, 3 ...... reaction chamber, 31 ...
… Stage, 32… Exhaust means.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】エネルギー供給手段(11)と、流量調節手
段(121)を有するガス供給手段(12)とを具備する真
空容器よりなるプラズマ発生室(1)と、該プラズマ発
生室(1)と、スリット(21)を有する隔壁(2)を介
して連通し、被処理体を保持するステージ(31)を有
し、排気手段(32)を有する真空容器よりなる反応室
(3)とを有するプラズマ処理装置において、 前記ガス供給手段(12)は、それぞれが前記プラズマ発
生室(1)に直接開口する複数の管(122)よりなる ことを特徴とするプラズマ処理装置。
1. A plasma generation chamber (1) comprising a vacuum container having an energy supply means (11) and a gas supply means (12) having a flow rate control means (121), and the plasma generation chamber (1). And a reaction chamber (3) consisting of a vacuum container having a stage (31) for holding an object to be processed and communicating with each other through a partition (2) having a slit (21) and having an exhaust means (32). In the plasma processing apparatus having, the gas supply means (12) comprises a plurality of tubes (122) each of which directly opens to the plasma generation chamber (1).
【請求項2】前記ガス供給手段(12)を構成する管(12
2)の一つは水蒸気を給送することゝされており、該水
蒸気を給送する管(122)の水蒸気送出端と前記流量調
節手段(121)との間に減圧弁(123)が設けられてなる
ことを特徴とする特許請求の範囲第1項記載のプラズマ
処理装置。
2. A pipe (12) constituting the gas supply means (12).
One of the features 2) is to feed water vapor, and a pressure reducing valve (123) is provided between the water vapor delivery end of the water vapor feeding pipe (122) and the flow rate adjusting means (121). The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is formed by:
JP18544787A 1987-07-27 1987-07-27 Plasma processing device Expired - Lifetime JPH0748489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18544787A JPH0748489B2 (en) 1987-07-27 1987-07-27 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18544787A JPH0748489B2 (en) 1987-07-27 1987-07-27 Plasma processing device

Publications (2)

Publication Number Publication Date
JPS6430225A JPS6430225A (en) 1989-02-01
JPH0748489B2 true JPH0748489B2 (en) 1995-05-24

Family

ID=16170954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18544787A Expired - Lifetime JPH0748489B2 (en) 1987-07-27 1987-07-27 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0748489B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019094481A1 (en) * 2017-11-11 2019-05-16 Micromaterials Llc Gas delivery system for high pressure processing chamber
US10529585B2 (en) 2017-06-02 2020-01-07 Applied Materials, Inc. Dry stripping of boron carbide hardmask
US10529603B2 (en) 2017-03-10 2020-01-07 Micromaterials, LLC High pressure wafer processing systems and related methods
US10566188B2 (en) 2018-05-17 2020-02-18 Applied Materials, Inc. Method to improve film stability
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10636669B2 (en) 2018-01-24 2020-04-28 Applied Materials, Inc. Seam healing using high pressure anneal
US10636677B2 (en) 2017-08-18 2020-04-28 Applied Materials, Inc. High pressure and high temperature anneal chamber
US10643867B2 (en) 2017-11-03 2020-05-05 Applied Materials, Inc. Annealing system and method
US10675581B2 (en) 2018-08-06 2020-06-09 Applied Materials, Inc. Gas abatement apparatus
US10685830B2 (en) 2017-11-17 2020-06-16 Applied Materials, Inc. Condenser system for high pressure processing system
US10704141B2 (en) 2018-06-01 2020-07-07 Applied Materials, Inc. In-situ CVD and ALD coating of chamber to control metal contamination
US10714331B2 (en) 2018-04-04 2020-07-14 Applied Materials, Inc. Method to fabricate thermally stable low K-FinFET spacer
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
US10847360B2 (en) 2017-05-25 2020-11-24 Applied Materials, Inc. High pressure treatment of silicon nitride film
US10854483B2 (en) 2017-11-16 2020-12-01 Applied Materials, Inc. High pressure steam anneal processing apparatus
US10957533B2 (en) 2018-10-30 2021-03-23 Applied Materials, Inc. Methods for etching a structure for semiconductor applications
US10998200B2 (en) 2018-03-09 2021-05-04 Applied Materials, Inc. High pressure annealing process for metal containing materials
US11177128B2 (en) 2017-09-12 2021-11-16 Applied Materials, Inc. Apparatus and methods for manufacturing semiconductor structures using protective barrier layer
US11581183B2 (en) 2018-05-08 2023-02-14 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510053B2 (en) * 1990-06-27 1996-06-26 富士通株式会社 Method of manufacturing semiconductor integrated circuit and manufacturing apparatus used therefor
DE69132811T2 (en) * 1990-06-27 2002-04-04 Fujitsu Ltd METHOD FOR PRODUCING AN INTEGRATED SEMICONDUCTOR CIRCUIT
WO1992006488A1 (en) * 1990-10-05 1992-04-16 Fujitsu Limited Vapor supplier and its control method
JP4939864B2 (en) * 2006-07-25 2012-05-30 東京エレクトロン株式会社 Gas supply apparatus, gas supply method, thin film forming apparatus cleaning method, thin film forming method, and thin film forming apparatus

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10529603B2 (en) 2017-03-10 2020-01-07 Micromaterials, LLC High pressure wafer processing systems and related methods
US11705337B2 (en) 2017-05-25 2023-07-18 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10847360B2 (en) 2017-05-25 2020-11-24 Applied Materials, Inc. High pressure treatment of silicon nitride film
US10529585B2 (en) 2017-06-02 2020-01-07 Applied Materials, Inc. Dry stripping of boron carbide hardmask
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11469113B2 (en) 2017-08-18 2022-10-11 Applied Materials, Inc. High pressure and high temperature anneal chamber
US10636677B2 (en) 2017-08-18 2020-04-28 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11462417B2 (en) 2017-08-18 2022-10-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11177128B2 (en) 2017-09-12 2021-11-16 Applied Materials, Inc. Apparatus and methods for manufacturing semiconductor structures using protective barrier layer
US10643867B2 (en) 2017-11-03 2020-05-05 Applied Materials, Inc. Annealing system and method
US10720341B2 (en) 2017-11-11 2020-07-21 Micromaterials, LLC Gas delivery system for high pressure processing chamber
WO2019094481A1 (en) * 2017-11-11 2019-05-16 Micromaterials Llc Gas delivery system for high pressure processing chamber
US11527421B2 (en) 2017-11-11 2022-12-13 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US11756803B2 (en) 2017-11-11 2023-09-12 Applied Materials, Inc. Gas delivery system for high pressure processing chamber
US10854483B2 (en) 2017-11-16 2020-12-01 Applied Materials, Inc. High pressure steam anneal processing apparatus
US10685830B2 (en) 2017-11-17 2020-06-16 Applied Materials, Inc. Condenser system for high pressure processing system
US11610773B2 (en) 2017-11-17 2023-03-21 Applied Materials, Inc. Condenser system for high pressure processing system
US10636669B2 (en) 2018-01-24 2020-04-28 Applied Materials, Inc. Seam healing using high pressure anneal
US11881411B2 (en) 2018-03-09 2024-01-23 Applied Materials, Inc. High pressure annealing process for metal containing materials
US10998200B2 (en) 2018-03-09 2021-05-04 Applied Materials, Inc. High pressure annealing process for metal containing materials
US10714331B2 (en) 2018-04-04 2020-07-14 Applied Materials, Inc. Method to fabricate thermally stable low K-FinFET spacer
US11581183B2 (en) 2018-05-08 2023-02-14 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10566188B2 (en) 2018-05-17 2020-02-18 Applied Materials, Inc. Method to improve film stability
US10704141B2 (en) 2018-06-01 2020-07-07 Applied Materials, Inc. In-situ CVD and ALD coating of chamber to control metal contamination
US11361978B2 (en) 2018-07-25 2022-06-14 Applied Materials, Inc. Gas delivery module
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
US10675581B2 (en) 2018-08-06 2020-06-09 Applied Materials, Inc. Gas abatement apparatus
US11110383B2 (en) 2018-08-06 2021-09-07 Applied Materials, Inc. Gas abatement apparatus
US10957533B2 (en) 2018-10-30 2021-03-23 Applied Materials, Inc. Methods for etching a structure for semiconductor applications
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Also Published As

Publication number Publication date
JPS6430225A (en) 1989-02-01

Similar Documents

Publication Publication Date Title
JPH0748489B2 (en) Plasma processing device
TWI625757B (en) Pulsed remote plasma method and system
KR100282853B1 (en) Apparatus for thin film deposition using cyclic gas injection
US6935372B2 (en) Semiconductor processing reactive precursor valve assembly
TW576874B (en) Method of growing a thin film onto a substrate
KR20140110789A (en) Method and system for in-situ formation of intermediate reactive species
SE9904295D0 (en) Device for Hybrid Plasma Processing
JP2003212517A (en) System and process for supplying gas
JPS6448421A (en) Ashing method
JP4365785B2 (en) Deposition equipment
KR970060366A (en) Devices for Purifying Barrel Reactors
MY133830A (en) Method and system for monocrystalline epitaxial deposition
KR102610827B1 (en) Method and apparatus for providing improved gas flow to the processing volume of a processing chamber
US20190282948A1 (en) Semiconductor processing system
CN103930189B (en) For processing the equipment of air-flow
JPH08990A (en) Surface treatment method by gas jet and apparatus therefor
KR100487556B1 (en) Apparatus for depositing thin film on a substrate
TW202200830A (en) Sequential pulse and purge for ald processes
JPH0766130A (en) Chemical vapor deposition system
JP2003117344A (en) H2o supplying mechanism for detoxifying device and plasma detoxifying method
US7563328B2 (en) Method and apparatus for gas injection system with minimum particulate contamination
JPH11214362A (en) Plasma treatment apparatus
KR950027913A (en) Gas Inlet Device for Chemical Vapor Deposition Reactor
JPH02248390A (en) Molecular beam generator
JPS61272386A (en) Gas feeder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 13