JPH0745282A - Nickel electrode for alkaline storage battery - Google Patents

Nickel electrode for alkaline storage battery

Info

Publication number
JPH0745282A
JPH0745282A JP5208442A JP20844293A JPH0745282A JP H0745282 A JPH0745282 A JP H0745282A JP 5208442 A JP5208442 A JP 5208442A JP 20844293 A JP20844293 A JP 20844293A JP H0745282 A JPH0745282 A JP H0745282A
Authority
JP
Japan
Prior art keywords
nickel
nickel hydroxide
electrode
storage battery
nickel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5208442A
Other languages
Japanese (ja)
Inventor
Masaharu Watada
正治 綿田
Yuichi Matsumura
勇一 松村
Noboru Miyake
登 三宅
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP5208442A priority Critical patent/JPH0745282A/en
Publication of JPH0745282A publication Critical patent/JPH0745282A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a nickel electrode excellent in charging efficiency at the time of high temperature by preventing oxygen generation which is decomposition reaction of an electrolyte at charging time. CONSTITUTION:In a plate using nickel hydroxide serving as an active material, a metal element of zinc, cadmium, cobalt, lead, copper, ruthenium, indium or tungsten in a corrosion region by an alkaline water solution is contained in a particle fine hole of this nickel hydroxide. In this way, oxygen generating potential is shifted to negative, to obtain high oxygen overvoltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル・カドミウム
電池やニッケル金属水素化物電池等に用いられるアルカ
リ蓄電池用ニッケル電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel electrode for an alkaline storage battery used in a nickel-cadmium battery or a nickel metal hydride battery.

【0002】[0002]

【従来の技術】ニッケル・カドミウム電池やニッケル金
属水素化物電池等のアルカリ蓄電池の正極として、活物
質である水酸化ニッケルを多孔性ニッケル焼結体に含浸
した焼結式極板やニッケル繊維多孔体等の基板に充填し
たペースト式極板が用いられている。これらニッケル極
板を高温で充電した場合、水酸化ニッケルの酸化反応と
電解液の分解反応(酸素発生反応)が同時に進行するよ
うになり、極端な充電効率の低下を招くことが知られて
いる。高温での充電効率の優れたニッケル電極の開発が
大きな課題となっている。従来これを防止するために、
水酸化ニッケルに亜鉛やカドミウム等の固溶体添加や、
これら化合物の混合または粒子表面に含有させる等の方
法によって、酸素発生電位を貴にシフトさせ、酸素過電
圧を高めることが行われている。
2. Description of the Related Art As a positive electrode of an alkaline storage battery such as a nickel-cadmium battery or a nickel metal hydride battery, a sintered electrode plate or a nickel fiber porous body in which a porous nickel sintered body is impregnated with nickel hydroxide as an active material. A paste type electrode plate filled in a substrate such as is used. It is known that when these nickel electrode plates are charged at a high temperature, the oxidation reaction of nickel hydroxide and the decomposition reaction (oxygen generation reaction) of the electrolytic solution proceed at the same time, resulting in an extreme decrease in charging efficiency. . The development of nickel electrodes that have excellent charging efficiency at high temperatures has become a major issue. Conventionally, to prevent this,
Adding solid solution such as zinc or cadmium to nickel hydroxide,
It has been practiced to shift the oxygen generation potential to a noble level and increase the oxygen overvoltage by a method of mixing these compounds or incorporating them into the particle surface.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、固溶体
添加や遊離状態で混合あるいは粒子表面に含有させた元
素は放電容量に寄与しないために、活物質の単位体積当
りの容量の低下を招いたり、電解液中に一部溶解して負
極に析出し短絡等を生じるという問題がある。本発明
は、これら問題点を鑑みて、充電時における電解液の分
解反応である酸素発生を防止し、高温時の充電効率の優
れたニッケル電極を提供しようとするものである。
However, since the element added to the solid solution, mixed in the free state or contained in the particle surface does not contribute to the discharge capacity, the capacity per unit volume of the active material is lowered, and the electrolytic capacity is lowered. There is a problem that it is partially dissolved in the liquid and deposited on the negative electrode to cause a short circuit or the like. In view of these problems, the present invention aims to provide a nickel electrode which prevents generation of oxygen, which is a decomposition reaction of an electrolytic solution during charging, and has excellent charging efficiency at high temperatures.

【0004】[0004]

【課題を解決するための手段】本発明は、水酸化ニッケ
ルを活物質として用いる極板であって、該水酸化ニッケ
ル粒子の細孔(内部空孔)内に、アルカリ性水溶液にて
腐食領域にあるところの亜鉛、カドミウム、コバルト、
鉛、銅、銀、ルテニウム、インジウムまたはタングステ
ンの金属元素を含有させたことを特徴とするアルカリ蓄
電池用ニッケル電極である。
The present invention relates to an electrode plate using nickel hydroxide as an active material, which is provided in the pores (internal pores) of the nickel hydroxide particles in a corroded area with an alkaline aqueous solution. Zinc, cadmium, cobalt,
The nickel electrode for an alkaline storage battery is characterized by containing a metal element such as lead, copper, silver, ruthenium, indium or tungsten.

【0005】[0005]

【作 用】本発明者らは、窒素吸着法による細孔径分布
の測定から、水酸化ニッケル粒子は、平均半径が約50
Åの細孔を有し、その細孔容積(粒子内部空孔容積)が
10〜30%程度の多孔質体であり、粒子の表面積の殆
どがこの内部細孔によることを見出した。そして、アル
カリ性水溶液で腐食領域(コロージョン)にある金属元
素は、その細孔内へ容易に拡散して固定されることがわ
かった。特に、亜鉛、カドミウム、コバルト、鉛、銅、
銀、ルテニウム、インジウム、タングステンを水酸化ニ
ッケル粒子の細孔内に固定した場合には、充電時の酸素
発生電位を貴にシフトさせる作用があり、高い酸素過電
圧を得ることが可能となった。また、これら金属元素は
粒子の細孔の内部空孔に存在するために、活物質の単位
体積当りの容量は低下しないという利点も有する。
[Working] From the measurement of the pore size distribution by the nitrogen adsorption method, the present inventors have found that the nickel hydroxide particles have an average radius of about 50.
It has been found that the porous body has pores of Å and has a pore volume (void volume inside particles) of about 10 to 30%, and most of the surface area of the particles is due to the internal pores. Then, it was found that the metal element in the corroded region (corrosion) in the alkaline aqueous solution was easily diffused and fixed in the pores. In particular, zinc, cadmium, cobalt, lead, copper,
When silver, ruthenium, indium, and tungsten were fixed in the pores of the nickel hydroxide particles, there was an action of nobly shifting the oxygen generation potential during charging, and it became possible to obtain a high oxygen overvoltage. Further, since these metal elements are present in the inner pores of the pores of the particles, there is an advantage that the capacity per unit volume of the active material does not decrease.

【0006】[0006]

【実施例】本発明の実施例を以下に説明する。 (参考例1)参考例1の水酸化ニッケル粉末は、硫酸ニ
ッケル水溶液に硫酸アンモニウムを添加してニッケル・
アンミン錯体として安定化し、水酸化ナトリウム水溶液
を滴下しながら激しく撹拌し、反応時のpH値を11〜
13に制御することによって水酸化ニッケルを析出成長
させて作製した。得られた水酸化ニッケル粒子は球状で
あり、その内部細孔容積および細孔径分布を窒素吸着法
にて測定した結果、約0.03ml/gの内部空孔(全粒
子体積の約10%相当)を持ち、その平均細孔半径は2
0〜40Åであった。
EXAMPLES Examples of the present invention will be described below. Reference Example 1 The nickel hydroxide powder of Reference Example 1 was prepared by adding ammonium sulfate to an aqueous solution of nickel sulfate.
Stabilized as an ammine complex, and stirred vigorously while adding sodium hydroxide aqueous solution to adjust the pH value during the reaction to 11 to 11.
By controlling to 13, nickel hydroxide was deposited and grown. The nickel hydroxide particles obtained were spherical, and the internal pore volume and pore size distribution were measured by the nitrogen adsorption method. As a result, internal voids of about 0.03 ml / g (corresponding to about 10% of the total particle volume) ), And the average pore radius is 2
It was 0-40Å.

【0007】(参考例2)参考例2の水酸化ニッケル粉
末は、公知の中和法により作製した。得られた水酸化ニ
ッケル粒子は更に大きな内部空孔を有した無定形の粒子
であった。参考例1と2の水酸化ニッケル粒子の積算細
孔容積曲線および積算細孔表面積曲線を図1と2に示し
た。これらのことから、水酸化ニッケル粒子は微結晶の
集合した多孔質体であり、その表面積は殆ど粒子の内部
細孔によるものであることがわかる。尚、参考例1と参
考例2の細孔密度はそれぞれ10%、34%であり、水
酸化ニッケルの真密度は共に3.6g/mlであった。
Reference Example 2 The nickel hydroxide powder of Reference Example 2 was produced by a known neutralization method. The obtained nickel hydroxide particles were amorphous particles having larger internal pores. The integrated pore volume curve and integrated pore surface area curve of the nickel hydroxide particles of Reference Examples 1 and 2 are shown in FIGS. 1 and 2. From these, it is understood that the nickel hydroxide particles are a porous body in which microcrystals are aggregated, and the surface area thereof is mostly due to the internal pores of the particles. The pore densities of Reference Example 1 and Reference Example 2 were 10% and 34%, respectively, and the true densities of nickel hydroxide were both 3.6 g / ml.

【0008】(比較例)参考例1の水酸化ニッケル粉末
に導電剤を混合して、CMC水溶液でペースト状とし、
ニッケル繊維多孔体基板に充填してペースト式ニッケル
電極を作製した。この状態のニッケル電極を比較例とし
た。
(Comparative Example) The nickel hydroxide powder of Reference Example 1 was mixed with a conductive agent and made into a paste with a CMC aqueous solution.
A nickel fiber porous body substrate was filled to prepare a paste type nickel electrode. The nickel electrode in this state was used as a comparative example.

【0009】(実施例)次に、アルカリ性水溶液で腐食
領域(コロージョン)にある金属元素、例えば亜鉛、コ
バルト、鉛、ルテニウム銀、インジウムまたは銅などを
含有したKOH電解液中にて、ニッケル電極を浸漬ある
いは電気化学的に酸化還元を行い、水酸化ニッケル粒子
の内部空孔中にそれら金属元素を含有させて、本発明の
ニッケル電極を得た。
(Example) Next, a nickel electrode was formed in a KOH electrolytic solution containing a metal element in a corrosion region (corrosion), such as zinc, cobalt, lead, ruthenium silver, indium or copper, in an alkaline aqueous solution. The nickel electrode of the present invention was obtained by immersing or electrochemically performing redox reduction to contain the metal elements in the internal pores of the nickel hydroxide particles.

【0010】次に、比較例及び実施例の電極の断面をE
PMA分析した結果、金属元素は球状の水酸化ニッケル
粒子の表面や粒子間には分布せず、粒子内部に局在して
いるのが観察された。また、これら金属元素は、その後
の充放電の繰り返しにおいても、アルカリ電解液中に溶
出することなく、内部空孔中に固定されたまま存続し
た。別法として、水酸化ニッケル粒子と該金属元素の化
合物を共存させ、電気化学的に酸化還元させることによ
っても、本発明電極を得ることが出来た。また、アルカ
リ性水溶液で腐食領域にない金属元素では、この様な水
酸化ニッケル粒子の細孔内への拡散や局在化は認められ
なかった。
Next, the cross sections of the electrodes of the comparative example and the example are shown by E.
As a result of PMA analysis, it was observed that the metal element was not distributed on the surface of the spherical nickel hydroxide particles or between the particles but was localized inside the particles. Further, these metal elements remained fixed in the internal pores without elution into the alkaline electrolyte even after repeated charging and discharging. Alternatively, the electrode of the present invention can be obtained by coexisting nickel hydroxide particles and a compound of the metal element and electrochemically oxidizing and reducing them. In addition, such diffusion or localization of nickel hydroxide particles into the pores was not observed in the case of a metal element which was not present in the corroded region in the alkaline aqueous solution.

【0011】本発明のニッケル電極(亜鉛を粒子内部に
含有させた実施例)と比較例の電極の充電特性を図3に
示す。尚、充電々流は0.1C率、周囲温度は20℃で
あった。本発明品(実施例)では、充電末期の酸素発生
電位が貴に大きくシフトした。この酸素発生電位の貴へ
のシフトは、酸素過電圧の増大を示し、高温時の充電効
率の向上を意味している。
FIG. 3 shows the charging characteristics of the nickel electrode of the present invention (example in which zinc is contained in the particles) and the electrode of the comparative example. The charge flow rate was 0.1 C and the ambient temperature was 20 ° C. In the product of the present invention (Example), the oxygen generation potential at the end of charging was significantly shifted. This shift of the oxygen generation potential to noble indicates an increase in oxygen overvoltage, which means improvement in charging efficiency at high temperature.

【0012】[0012]

【発明の効果】以上のように、本発明によれば、活物質
の単位体積当りの容量低下を招くことなく、高温時の充
電効率の優れたアルカリ蓄電池用ニッケル電極を提供す
ることが出来るので、その工業的価値は極めて大であ
る。
As described above, according to the present invention, it is possible to provide a nickel electrode for an alkaline storage battery which is excellent in charging efficiency at high temperature without causing a decrease in capacity per unit volume of the active material. , Its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】 参考例1と参考例2の積算細孔容積曲線図FIG. 1 is a cumulative pore volume curve diagram of Reference Example 1 and Reference Example 2.

【図2】 参考例1と参考例2の積算表面積曲線図FIG. 2 is a cumulative surface area curve diagram of Reference Example 1 and Reference Example 2.

【図3】 実施例と比較例の充電特性のグラフFIG. 3 is a graph of charging characteristics of Example and Comparative Example.

フロントページの続き (72)発明者 押谷 政彦 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内Front Page Continuation (72) Inventor Masahiko Oshiya 6-6 Josaimachi, Takatsuki City, Osaka Prefecture Yuasa Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを活物質として用いる極
板であって、該水酸化ニッケル粒子の細孔内に、アルカ
リ性水溶液にて腐食領域にある亜鉛、カドミウム、コバ
ルト、鉛、銅、銀、ルテニウム、インジウムまたはタン
グステンの金属元素を含有させたことを特徴とするアル
カリ蓄電池用ニッケル電極。
1. An electrode plate using nickel hydroxide as an active material, wherein zinc, cadmium, cobalt, lead, copper, silver in a corrosive region in an alkaline aqueous solution is contained in pores of the nickel hydroxide particles. A nickel electrode for an alkaline storage battery, which contains a metal element such as ruthenium, indium or tungsten.
JP5208442A 1993-07-29 1993-07-29 Nickel electrode for alkaline storage battery Pending JPH0745282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5208442A JPH0745282A (en) 1993-07-29 1993-07-29 Nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5208442A JPH0745282A (en) 1993-07-29 1993-07-29 Nickel electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH0745282A true JPH0745282A (en) 1995-02-14

Family

ID=16556284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5208442A Pending JPH0745282A (en) 1993-07-29 1993-07-29 Nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0745282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297758A (en) * 2000-04-12 2001-10-26 Matsushita Electric Ind Co Ltd Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above
US6852448B2 (en) 2001-01-30 2005-02-08 Sanyo Electric Co., Ltd. Nickel electrode for alkaline secondary battery and alkaline secondary battery
US6946222B2 (en) 2001-02-05 2005-09-20 Sanyo Electric Co., Ltd. Sintered nickel electrode for alkaline storage battery, method of forming the same, and alkaline storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297758A (en) * 2000-04-12 2001-10-26 Matsushita Electric Ind Co Ltd Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above
US6852448B2 (en) 2001-01-30 2005-02-08 Sanyo Electric Co., Ltd. Nickel electrode for alkaline secondary battery and alkaline secondary battery
US6946222B2 (en) 2001-02-05 2005-09-20 Sanyo Electric Co., Ltd. Sintered nickel electrode for alkaline storage battery, method of forming the same, and alkaline storage battery

Similar Documents

Publication Publication Date Title
US4985318A (en) Alkaline battery with a nickel electrode
US4003754A (en) Hermetic alkaline storage battery
JPH09237630A (en) Active material and positive electrode for alkali storage battery
JPH0745282A (en) Nickel electrode for alkaline storage battery
JPH11307092A (en) Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
US5984982A (en) Electrochemical synthesis of cobalt oxyhydroxide
JP3324781B2 (en) Alkaline secondary battery
JPH0221098B2 (en)
JPS6196665A (en) Zinc alkaline primary battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
US3966493A (en) Rechargeable mercury electrode
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH0745281A (en) Nickel electrode for alkaline storage battery and alkaline storage battery using this nickel electrode
JPH06260166A (en) Nickel electrode for alkaline storage battery
JPH0568828B2 (en)
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP2000058062A (en) Non-sintered nickel positive electrode for alkaline storage battery
JP2003109586A (en) Manufacturing method of nickel electrode active material paste, nickel electrode active material paste, nickel electrode and alkali storage battery
JPH11260359A (en) Alkaline storage battery
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JPH09171837A (en) Nickel-hydrogen secondary battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JP2003142089A (en) Manufacturing method of nickel electrode active material, nickel electrode active material, manufacturing method of active material paste for nickel electrode, nickel electrode and alkaline storage battery
JP4120762B2 (en) Nickel electrode and nickel metal hydride storage battery using the same