JPH0743427B2 - Precipitation intensity measuring instrument - Google Patents

Precipitation intensity measuring instrument

Info

Publication number
JPH0743427B2
JPH0743427B2 JP3064080A JP6408091A JPH0743427B2 JP H0743427 B2 JPH0743427 B2 JP H0743427B2 JP 3064080 A JP3064080 A JP 3064080A JP 6408091 A JP6408091 A JP 6408091A JP H0743427 B2 JPH0743427 B2 JP H0743427B2
Authority
JP
Japan
Prior art keywords
circuit
signal
light
laser light
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3064080A
Other languages
Japanese (ja)
Other versions
JPH04278488A (en
Inventor
民之永 石丸
敏介 丸山
Original Assignee
新潟電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新潟電機株式会社 filed Critical 新潟電機株式会社
Priority to JP3064080A priority Critical patent/JPH0743427B2/en
Publication of JPH04278488A publication Critical patent/JPH04278488A/en
Publication of JPH0743427B2 publication Critical patent/JPH0743427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば気象観測や融雪装
置の自動制御等に用いられる降水強度計測器に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precipitation intensity measuring instrument used for, for example, weather observation and automatic control of a snow melting device.

【0002】[0002]

【従来の技術】従来この種の降水強度計測器として、気
象台等において、受水器内の中央にノズル筒を配置し、
ノズル筒の上部にノズル口を開口し、受水器内に水を入
れてその水面に油膜層を形成し、水面上で降水を受け、
水面より溢れる降水をノズル口よりノズル筒内に導入
し、ノズル筒の出口下方に受水枡を反転動作可能に配置
し、受水枡内が満水になると受水枡は反転して排水し、
この受水枡の反転回数を計数して降水強度を演算計測す
るものが知られている。
2. Description of the Related Art Conventionally, as a precipitation intensity measuring instrument of this type, in a weather station or the like, a nozzle cylinder is arranged in the center of a water receiver,
Open the nozzle mouth at the top of the nozzle cylinder, put water in the receiver to form an oil film layer on the water surface, receive precipitation on the water surface,
The precipitation overflowing from the water surface is introduced from the nozzle mouth into the nozzle cylinder, and the receiving basin is placed below the outlet of the nozzle cylinder so that it can be reversed.When the inside of the receiving basin is full, the receiving basin is reversed and drained,
It is known that the intensity of precipitation is calculated and measured by counting the number of inversions of the water receiving basin.

【0003】また融雪装置の自動制御等において、発光
素子と受光素子からなる光スイッチを配置し、光スイッ
チによって降ってくる雪や雨の粒子の数を計数して降水
強度を演算計測するものが知られている。
Further, in automatic control of a snow melting device, an optical switch composed of a light emitting element and a light receiving element is arranged and the number of particles of snow or rain falling by the optical switch is counted to calculate and measure precipitation intensity. Are known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
構造の場合、気象台等で用いられているものは、通常上
記受水枡の容積が降水量にして0.5mmとなってお
り、比較的に分解能が低いものであり、このため計測精
度が粗いものとなっており、また降水の捕捉率が風向や
風速によって大幅に変動するため正確な計測が期待でき
ず、また上記融雪装置の自動制御等で用いられているも
のは、降ってくる雪や雨の粒子が発光素子から発せられ
る細いビーム状の光を遮断することにより粒子数を計数
する構造であるため、粒子の捕捉率が低く、実際には雪
や雨水は風雨を伴って落ちてくるからこのような場合に
は粒子の捕捉効率がさらに低くなり、それだけ計測精度
が低下するという不都合を有している。
However, in the case of the above-mentioned conventional structure, the one used in a meteorological observatory or the like usually has a volume of the above water receiving basin of 0.5 mm in terms of precipitation, which is a relatively high resolution. However, the accuracy of measurement is coarse, and the accuracy of precipitation cannot be expected to be accurate because the capture rate of precipitation varies greatly depending on the wind direction and wind speed. What is used is a structure that counts the number of particles by blocking the thin beam of light emitted from the light emitting element by falling snow and rain particles, so the particle capture rate is low, Since snow and rainwater fall with wind and rain, in such a case, the particle capturing efficiency is further lowered, and the measurement accuracy is reduced accordingly.

【0005】[0005]

【課題を解決するための手段】本発明はこのような不都
合を解決することを目的とするもので、その要旨は、レ
ーザ光を発する発光素子と、該発光素子から発せられる
レーザ光を平面扇形にして或る厚さをもつ薄膜状に分散
させる分散レンズと、該分散レンズを通ったレーザ光を
平行光線になす平行レンズと、該平行レンズを通った薄
膜状のレーザ光を或る幅及び厚さをもつ光薄膜になすス
リットと、該スリットを通ったレーザ光を集光する集光
レンズと、該集光されたレーザ光を受ける受光素子と、
該受光素子により検出される上記或る厚さ及び或る幅を
もつ薄膜状の光薄膜を通過する雨や雪の粒子により減じ
られる光量変化から降水強度を演算計測する信号処理回
路とを備えてなり、該信号処理回路は、上記光薄膜を通
過する粒子の通過時間を横軸として振幅を粒子により遮
られる面積に相当する電圧波形をもつ信号を出力する減
光量検出回路と、この出力信号を増幅する増幅回路と、
この増幅された信号から球体積に換算された信号を出力
する3/2乗演算回路と、この信号のピーク値を保持す
るピークホールド回路と、このピーク値からパルス幅が
一定のパルス信号を出力する一定時間ゲート回路と、こ
のパルス信号を一定の周期で積算して単位時間当たりの
降水量を演算計測するクロック回路をもつ積算回路とか
らなることを特徴とする降水強度計測器にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve such an inconvenience, and its gist is to provide a light emitting element which emits laser light and a plane fan-shaped laser light emitted from the light emitting element. To disperse the thin-film laser light having a certain thickness into a thin film, a parallel lens for converting the laser light passing through the dispersive lens into parallel rays, and a thin-film laser light passing through the parallel lens for a certain width and A slit formed on the optical thin film having a thickness, a condenser lens for condensing the laser light passing through the slit, and a light receiving element for receiving the condensed laser light,
And a signal processing circuit for calculating and measuring precipitation intensity from a change in the amount of light attenuated by particles of rain or snow passing through the thin optical film having a certain thickness and a certain width detected by the light receiving element. And the signal processing circuit outputs a signal having a voltage waveform corresponding to an area whose amplitude is blocked by the particle with the transit time of the particle passing through the optical thin film as the horizontal axis, and this output signal. An amplification circuit that amplifies
A 3/2 calculation circuit that outputs a signal converted into a sphere volume from this amplified signal, a peak hold circuit that holds the peak value of this signal, and a pulse signal with a constant pulse width from this peak value A precipitation intensity measuring instrument characterized by comprising a gate circuit for a certain period of time and a integrating circuit having a clock circuit for calculating and measuring the amount of precipitation per unit time by integrating the pulse signal at a constant cycle.

【0006】[0006]

【作用】レーザ光からなる或る厚さ及び或る幅の薄膜状
の光薄膜が形成され、この光薄膜を雨や雪の粒子が通過
し、この通過により光量が減じられて光量変化が生じ、
減光量検出回路は上記光薄膜を通過する粒子の通過時間
を横軸として振幅を粒子により遮られる面積に相当する
電圧波形をもつ信号を出力し、増幅回路はこの出力信号
を増幅し、3/2乗演算回路はこの増幅された信号から
球体積に換算された信号を出力し、ピークホールド回路
はこの信号のピーク値を保持し、一定時間ゲート回路は
このピーク値からパルス幅が一定のパルス信号を出力
し、クロック回路をもつ積算回路はこのパルス信号を一
定の周期で積算して単位時間当たりの降水量を演算計測
し、これら信号処理回路により降水強度を計測すること
になる。
[Function] A thin optical film having a certain thickness and a certain width made of laser light is formed, and rain or snow particles pass through the optical thin film, and the light amount is reduced by this passage to cause a change in the light amount. ,
The dimming amount detection circuit outputs a signal having a voltage waveform corresponding to an area whose amplitude is blocked by the particle with the transit time of the particle passing through the optical thin film as the abscissa, and the amplifier circuit amplifies this output signal and outputs 3 / The square calculation circuit outputs a signal converted from this amplified signal into a sphere volume, the peak hold circuit holds the peak value of this signal, and the gate circuit holds the pulse with a constant pulse width from this peak value for a certain period of time. A signal is output, and an integrating circuit having a clock circuit integrates the pulse signals at a constant cycle to calculate and measure the amount of precipitation per unit time, and these signal processing circuits measure the precipitation intensity.

【0007】[0007]

【実施例】図1乃至図12は本発明の実施例を示し、1
は器体であって、器体1内に図3の如く細いビーム状の
レーザ光Lを発する例えばレーザダイオードである発光
素子2と、発光素子2から発せられるレーザ光Lを図4
の如く平面扇形の或る厚さをもつ薄膜状に分散させるロ
ッドレンズである分散レンズ3と、分散レンズ3を通っ
たレーザ光Lを図2、図5の如く平行光線になす円筒レ
ンズである平行レンズ4と、平行レンズ4を通った薄膜
状のレーザ光を図6の如く或る幅Bこの場合3cm及び
厚さN=1mmの光薄膜Fに仕切るスリット5と、スリ
ット5を通ったレーザ光Lを集光する円筒レンズである
集光レンズ6と、集光されたレーザ光を受ける例えばP
INフォトダイオードである受光素子7とをそれぞれ内
装し、器体1の上面及び下面にこの場合幅8cm、長さ
M=15cmの窓1aを開口して構成されている。
1 to 12 show an embodiment of the present invention.
3 is a body, and a light emitting element 2 such as a laser diode that emits a thin beam laser light L as shown in FIG. 3 and a laser light L emitted from the light emitting element 2 are shown in FIG.
As shown in FIG. 2 and FIG. 5, the dispersion lens 3 is a rod lens that disperses the light into a thin film having a flat fan shape and a cylindrical lens that makes the laser light L passing through the dispersion lens 3 into parallel rays. As shown in FIG. 6, the parallel lens 4, the slit 5 for partitioning the thin-film laser light passing through the parallel lens 4 into the optical thin film F having a certain width B, in this case, 3 cm and a thickness N = 1 mm, and the laser passing through the slit 5. A condenser lens 6 that is a cylindrical lens that condenses the light L, and a condenser lens 6 that receives the condensed laser light, for example, P
Each of the light receiving elements 7 is an IN photodiode, and a window 1a having a width of 8 cm and a length of M = 15 cm is opened on the upper surface and the lower surface of the body 1 in this case.

【0008】8は信号処理回路であって、図7の如く、
受光素子7を含む減光量検出回路9と、増幅回路10
と、3/2乗演算回路11と、ピークホールド回路1
2、一定時間ゲート回路13と、クロック回路14をも
つ積算回路15とから構成され、この場合さらに長時間
積算回路16及び記録計17を接続している。
Reference numeral 8 is a signal processing circuit, as shown in FIG.
Light reduction amount detection circuit 9 including light receiving element 7, and amplification circuit 10
, 3/2 arithmetic circuit 11, and peak hold circuit 1
2. It is composed of a gate circuit 13 for a fixed time and an integrating circuit 15 having a clock circuit 14. In this case, a long-time integrating circuit 16 and a recorder 17 are further connected.

【0009】この実施例は上記構成であるから、粒子捕
捉領域Rは幅B=3cm、長さM=15cmの面内とな
り、この面内に厚さN=1mmの水平な光薄膜Fが設定
されることになり、この場合上記捕捉領域Rの幅B×厚
さNの断面積分の全部の光量を受けた場合には出力電圧
が発生しないようになっており、しかして上記粒子捕捉
領域Rに雨や雪の粒子Wが落下して通過すると受光素子
7を含む減光量検出回路9より図8の如く幅が粒子の通
過時間T、振幅Hが粒子Wにより遮られる面積に相当す
る電圧をもつ信号P1・P2…が出力され、この出力信
号を増幅回路10で増幅し、この増幅された信号を3/
2乗演算回路11により図9の如くこの場合球体積に換
算された信号を出力し、この信号のピーク値をピークホ
ールド回路12により保持し、一定時間ゲート回路13
により図10の如く幅が一定時間Tとなるパルス信号を
出力させ、このパルス信号をクロック回路14をもつ積
算回路15により図11の如く周期T’の間で積算し、
この値を雨や雪の重量への換算係数をもって補正し、こ
れによりある時間における降水量/時間=降水強度を演
算計測し、長時間積算回路16により降水量を演算し、
記録計17で記録することになる。
Since this embodiment is constructed as described above, the particle trapping region R is in a plane having a width B = 3 cm and a length M = 15 cm, and a horizontal optical thin film F having a thickness N = 1 mm is set in this plane. In this case, the output voltage is not generated when the total amount of light of the cross-section integral of the width B of the trapping region R and the thickness N is received. When particles W of rain or snow fall and pass through, a voltage corresponding to the area in which the width is the passage time T of the particles and the amplitude H is blocked by the particles W is detected by the dimming amount detection circuit 9 including the light receiving element 7 as shown in FIG. The output signals P1 and P2 ... Are output, the output signal is amplified by the amplifier circuit 10, and the amplified signal is converted into 3 /
As shown in FIG. 9, the square calculation circuit 11 outputs a signal converted into a spherical volume in this case, and the peak value of this signal is held by the peak hold circuit 12, and the gate circuit 13 is held for a certain period of time.
10 outputs a pulse signal having a width of a constant time T as shown in FIG. 10, and the pulse signal is integrated by a integrating circuit 15 having a clock circuit 14 during a period T ′ as shown in FIG.
This value is corrected with a conversion factor to the weight of rain or snow, and thereby the precipitation amount / time = precipitation intensity at a certain time is calculated and measured, and the precipitation amount is calculated by the long time integration circuit 16,
It will be recorded by the recorder 17.

【0010】このようにレーザ光からなる或る幅及び厚
さをもった水平な薄膜状の光薄膜Fに雨や雪の粒子Wを
通過させ、この通過により減じられる光量変化によって
降水強度や降水量を計測するから、粒子捕捉率を著しく
高めることができ、それだけ計測精度を向上することが
でき、しかも分散レンズにより発光素子から発せられる
レーザ光Lを平面扇形にして或る厚さをもつ薄膜状に分
散させ、その或る厚さをもつレーザ光をスリット5によ
り或る幅及び厚さをもつ光薄膜Fに形成しているから、
光薄膜に形成することにより、粒子の通過時間を可及的
に短くでき、光薄膜の幅を広くして粒子捕捉率を高めて
同一時間内に光薄膜内に複数個の粒子が存在する機会が
増えたとしても受光素子7による光量変化の検出が容易
になって誤った計測を防ぐことができ、また図12の如
く粒子Wが水平な光薄膜Fを鉛直に通過するに要する時
間と風によって斜めに通過する際の光薄膜Fを上下に通
過する時間は同一となるため、風に影響されることなく
計測することができ、さらなる計測精度の向上を期する
ことができ、また信号処理回路8は、光薄膜を通過する
粒子の通過時間を横軸として振幅を粒子により遮られる
面積に相当する電圧波形をもつ信号を出力する減光量検
出回路9と、この出力信号を増幅する増幅回路10と、
この増幅された信号から球体積に換算された信号を出力
する3/2乗演算回路11と、この信号のピーク値を保
持するピークホールド回路12と、このピーク値からパ
ルス幅が一定のパルス信号を出力する一定時間ゲート回
路13と、このパルス信号を一定の周期で積算して単位
時間当たりの降水量を演算計測するクロック回路14及
び積算回路15とから構成しているから、極めて簡単な
構造と回路によって構成でき、低廉なものとすることが
できると共に、光薄膜を通過する粒子により遮られる面
積に相当する電圧波形をもつ信号を3/2乗演算回路1
1により球体積に換算された信号に変換して出力し、こ
れから降水強度を測定するようにしているから、降水強
度の計測精度を向上することができる。
As described above, rain or snow particles W are made to pass through the horizontal thin optical film F having a certain width and thickness made of laser light, and the intensity of precipitation or precipitation is changed by the change in the amount of light reduced by this passage. Since the amount is measured, the particle capture rate can be remarkably increased, the measurement accuracy can be improved accordingly, and the thin film having a certain thickness can be obtained by making the laser light L emitted from the light emitting element by the dispersion lens into a plane fan shape. Since the laser light having a certain thickness is dispersed by the slit 5 to form the optical thin film F having a certain width and thickness,
By forming it in the optical thin film, the transit time of the particles can be shortened as much as possible, and the width of the optical thin film can be widened to increase the particle capture rate, so that there is an opportunity to have multiple particles in the optical thin film within the same time. Even if the number of particles increases, it is possible to easily detect a change in the amount of light by the light receiving element 7 and prevent erroneous measurement, and the time and wind required for the particles W to pass vertically through the horizontal optical thin film F as shown in FIG. Since the time for vertically passing through the optical thin film F when passing diagonally is the same, the measurement can be performed without being affected by the wind, and the measurement accuracy can be further improved, and the signal processing can be performed. The circuit 8 includes a dimming amount detection circuit 9 that outputs a signal having a voltage waveform corresponding to an area whose amplitude is blocked by the particle, with the transit time of the particle passing through the optical thin film as the horizontal axis, and an amplifier circuit that amplifies this output signal. 10 and
A 3/2 calculation circuit 11 that outputs a signal converted into a sphere volume from this amplified signal, a peak hold circuit 12 that holds the peak value of this signal, and a pulse signal whose pulse width is constant from this peak value. It is composed of a gate circuit 13 for outputting a constant time, a clock circuit 14 for accumulating the pulse signal in a constant cycle to calculate and measure the amount of precipitation per unit time, and an accumulating circuit 15, so that the structure is extremely simple. And a circuit having a voltage waveform corresponding to an area blocked by particles passing through the optical thin film, and a 3/2 arithmetic circuit 1
Since the signal converted into the spherical volume by 1 is output and the precipitation intensity is measured from this, the measurement accuracy of the precipitation intensity can be improved.

【0011】尚、本発明は上記実施例に限定されるもの
ではなく、適宜改変して設計されるものである。
The present invention is not limited to the above-mentioned embodiment, but can be designed by appropriately modifying it.

【0012】[0012]

【発明の効果】本発明の降水強度計測器は上述の如く、
レーザ光からなる或る広がりをもった光薄膜に雨や雪の
粒子を通過させ、この通過により減じられる光量変化に
よって降水強度や降水量を計測するから、粒子捕捉率を
著しく高めることができ、それだけ計測精度を向上する
ことができ、しかも分散レンズにより発光素子から発せ
られるレーザ光Lを平面扇形にして或る厚さをもつ薄膜
状に分散させ、その或る厚さをもつレーザ光をスリット
により或る幅及び厚さをもつ光薄膜に形成しているか
ら、光薄膜に形成することにより、粒子の通過時間を可
及的に短くでき、光薄膜の幅を広くして粒子捕捉率を高
めて同一時間内に光薄膜内に複数個の粒子が存在する機
会が増えたとしても受光素子による光量変化の検出が容
易になって誤った計測を防ぐことができ、風に影響され
ることなく計測することができ、さらなる計測精度の向
上を期することができ、さらに、信号処理回路は光薄膜
を通過する粒子の通過時間を横軸として振幅を粒子によ
り遮られる面積に相当する電圧波形をもつ信号を出力す
る減光量検出回路と、この出力信号を増幅する増幅回路
と、この増幅された信号から球体積に換算された信号を
出力する3/2乗演算回路と、この信号のピーク値を保
持するピークホールド回路と、このピーク値からパルス
幅が一定のパルス信号を出力する一定時間ゲート回路
と、このパルス信号を一定の周期で積算して単位時間当
たりの降水量を演算計測するクロック回路及び積算回路
とから構成しているから極めて簡単な構造と回路によっ
て構成でき、低廉なものとすることができると共に、光
薄膜を通過する粒子により遮られる面積に相当する電圧
波形をもつ信号を3/2乗演算回路により球体積に換算
された信号に変換して出力し、これから降水強度を測定
するようにしているから、降水強度の計測精度を向上す
ることができ、かつ風に影響されることなく計測するこ
とができ、計測精度の向上を期することができ、また極
めて簡単な構造と回路によって構成でき、低廉なものと
することができ、広範囲での使用が可能となり、その効
果は絶大である。
As described above, the precipitation intensity measuring instrument of the present invention has the following features.
Rain and snow particles are passed through an optical thin film with a certain spread made of laser light, and the rainfall intensity and precipitation are measured by the change in the amount of light reduced by this passage, so the particle capture rate can be significantly increased, The measurement accuracy can be improved by that much, and the laser beam L emitted from the light emitting element is dispersed into a thin film having a certain thickness by the dispersion lens into a flat fan shape, and the laser beam having the certain thickness is slit. Since it is formed on the optical thin film having a certain width and thickness, the passage time of particles can be shortened as much as possible by forming on the optical thin film, and the width of the optical thin film can be widened to increase the particle capture rate. Even if the number of particles that exist in the optical thin film increases within the same time, it is easy to detect changes in the amount of light by the light-receiving element, which can prevent erroneous measurement and be affected by wind. Measure without In addition, the signal processing circuit can improve the measurement accuracy, and the signal processing circuit has a voltage waveform corresponding to the area whose amplitude is blocked by the particle with the transit time of the particle passing through the optical thin film as the horizontal axis. A dimming amount detection circuit, an amplifier circuit that amplifies this output signal, a 3/2 calculation circuit that outputs a signal converted from this amplified signal into a sphere volume, and a peak value of this signal is held A peak hold circuit, a gate circuit for outputting a pulse signal having a constant pulse width from the peak value, and a clock circuit for computing and measuring the amount of precipitation per unit time by integrating the pulse signal at a constant cycle, Since it is composed of an integrating circuit, it can be constructed with an extremely simple structure and circuit, can be made inexpensive, and the area blocked by particles passing through the optical thin film. Improving the measurement accuracy of precipitation intensity by converting a signal with a corresponding voltage waveform into a signal converted into a sphere volume by a 3/2 calculation circuit and outputting the converted signal. In addition, it is possible to measure without being affected by the wind, it is possible to improve the measurement accuracy, it can be configured with an extremely simple structure and circuit, it can be made inexpensive, and it can be used in a wide range. Can be used, and the effect is great.

【0013】以上、所期の目的を充分達成することがで
きる。
As described above, the intended purpose can be sufficiently achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】図1で示す本発明の実施例を示す説明平面図で
ある。
FIG. 2 is an explanatory plan view showing the embodiment of the present invention shown in FIG.

【図3】図1に示すレーザ光の断面図である。FIG. 3 is a sectional view of the laser light shown in FIG.

【図4】図1に示すレーザ光の断面図である。4 is a cross-sectional view of the laser light shown in FIG.

【図5】図1に示すレーザ光の断面図である。5 is a cross-sectional view of the laser light shown in FIG.

【図6】図1に示すレーザ光の断面図である。6 is a cross-sectional view of the laser light shown in FIG.

【図7】図1に示す本発明の実施例の信号処理回路のブ
ロック図である。
FIG. 7 is a block diagram of a signal processing circuit of the embodiment of the present invention shown in FIG.

【図8】出力信号の波形図である。FIG. 8 is a waveform diagram of an output signal.

【図9】出力信号の波形図である。FIG. 9 is a waveform diagram of an output signal.

【図10】出力信号の波形図である。FIG. 10 is a waveform diagram of an output signal.

【図11】出力信号の波形図である。FIG. 11 is a waveform diagram of an output signal.

【図12】光薄膜を通過する雨や雪の粒子の説明断面図
である。
FIG. 12 is an explanatory cross-sectional view of rain and snow particles passing through the optical thin film.

【符号の説明】[Explanation of symbols]

2 発光素子 3 分散レンズ 4 平行レンズ 5 スリット 6 集光レンズ 7 受光素子 8 信号処理回路 9 減光量検出回路 10 増幅回路 11 3/2乗演算回路 12 ピークホールド回路 13 一定時間ゲート回路 14 クロック回路 15 積算回路 L レーザ光 F 光薄膜 W 雨や雪の粒子 2 Light emitting element 3 Dispersion lens 4 Parallel lens 5 Slit 6 Condensing lens 7 Light receiving element 8 Signal processing circuit 9 Light reduction amount detection circuit 10 Amplification circuit 11 3/2 square calculation circuit 12 Peak hold circuit 13 Constant time gate circuit 14 Clock circuit 15 Integration circuit L Laser light F Light thin film W Rain and snow particles

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光を発する発光素子と、該発光素
子から発せられるレーザ光を平面扇形にして或る厚さを
もつ薄膜状に分散させる分散レンズと、該分散レンズを
通ったレーザ光を平行光線になす平行レンズと、該平行
レンズを通った薄膜状のレーザ光を或る幅及び厚さをも
つ光薄膜になすスリットと、該スリットを通ったレーザ
光を集光する集光レンズと、該集光されたレーザ光を受
ける受光素子と、該受光素子により検出される上記或る
厚さ及び或る幅をもつ薄膜状の光薄膜を通過する雨や雪
の粒子により減じられる光量変化から降水強度を演算計
測する信号処理回路とを備えてなり、該信号処理回路
は、上記光薄膜を通過する粒子の通過時間を横軸として
振幅を粒子により遮られる面積に相当する電圧波形をも
つ信号を出力する減光量検出回路と、この出力信号を増
幅する増幅回路と、この増幅された信号から球体積に換
算された信号を出力する3/2乗演算回路と、この信号
のピーク値を保持するピークホールド回路と、このピー
ク値からパルス幅が一定のパルス信号を出力する一定時
間ゲート回路と、このパルス信号を一定の周期で積算し
て単位時間当たりの降水量を演算計測するクロック回路
をもつ積算回路とからなることを特徴とする降水強度計
測器。
1. A light-emitting element that emits laser light, a dispersion lens that disperses the laser light emitted from the light-emitting element into a thin film having a certain thickness, and a laser light that has passed through the dispersion lens. A parallel lens that forms parallel rays, a slit that forms thin-film laser light that passes through the parallel lens into an optical thin film having a certain width and thickness, and a condenser lens that collects the laser light that passes through the slit. A light receiving element that receives the condensed laser beam, and a light amount change that is reduced by rain or snow particles passing through a thin optical film having a certain thickness and a certain width detected by the light receiving element And a signal processing circuit for calculating and measuring the precipitation intensity from the signal processing circuit, the signal processing circuit having a voltage waveform corresponding to an area whose amplitude is blocked by the particle, with the transit time of the particle passing through the optical thin film as the horizontal axis. Dimming to output signal A quantity detection circuit, an amplification circuit for amplifying the output signal, a 3/2 square calculation circuit for outputting a signal converted into a sphere volume from the amplified signal, and a peak hold circuit for holding a peak value of this signal And a gate circuit that outputs a pulse signal with a constant pulse width from this peak value for a certain period of time, and an integrating circuit that has a clock circuit that integrates this pulse signal at a constant period to calculate and measure the amount of precipitation per unit time. A precipitation intensity measuring instrument characterized by comprising.
JP3064080A 1991-03-05 1991-03-05 Precipitation intensity measuring instrument Expired - Fee Related JPH0743427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3064080A JPH0743427B2 (en) 1991-03-05 1991-03-05 Precipitation intensity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3064080A JPH0743427B2 (en) 1991-03-05 1991-03-05 Precipitation intensity measuring instrument

Publications (2)

Publication Number Publication Date
JPH04278488A JPH04278488A (en) 1992-10-05
JPH0743427B2 true JPH0743427B2 (en) 1995-05-15

Family

ID=13247754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3064080A Expired - Fee Related JPH0743427B2 (en) 1991-03-05 1991-03-05 Precipitation intensity measuring instrument

Country Status (1)

Country Link
JP (1) JPH0743427B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311312B1 (en) * 2011-12-30 2013-10-14 (주)이엔쓰리 환경 Measuring apparatus for present visibility and weather equipped with different light
CN109298205A (en) * 2018-11-27 2019-02-01 东南大学 Air velocity transducer based on double layer lens structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2786120B2 (en) * 1994-12-20 1998-08-13 エヌイーシー・メディカルシステムズ株式会社 Snowfall detector
JP4430659B2 (en) * 2006-12-25 2010-03-10 シーシーエス株式会社 Weather measurement equipment
JP5055476B2 (en) * 2009-11-18 2012-10-24 シーシーエス株式会社 Weather measurement equipment
JP2017044535A (en) * 2015-08-25 2017-03-02 新潟電機株式会社 Snowfall depth intensity measuring method and its device
NL2023081A (en) * 2019-05-07 2020-11-30

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435789A (en) * 1977-08-25 1979-03-16 Toshiba Corp Demand control apparatus
JPH02103445A (en) * 1988-10-12 1990-04-16 Kagaku Gijutsucho Kokuritsu Bosai Kagaku Gijutsu Center Optical flow-rate measuring apparatus for grain

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311312B1 (en) * 2011-12-30 2013-10-14 (주)이엔쓰리 환경 Measuring apparatus for present visibility and weather equipped with different light
CN109298205A (en) * 2018-11-27 2019-02-01 东南大学 Air velocity transducer based on double layer lens structure

Also Published As

Publication number Publication date
JPH04278488A (en) 1992-10-05

Similar Documents

Publication Publication Date Title
Hauser et al. A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions
EP0209521A1 (en) Precipitation identification by utilizing particulate size and velocity, extinction coefficients and humidity measurements
Illingworth et al. An optical disdrometer for the measurement of raindrop size spectra in windy conditions
FI98766C (en) Device and method for measuring visibility and prevailing weather conditions
JP4430659B2 (en) Weather measurement equipment
JP5055476B2 (en) Weather measurement equipment
JPH0743427B2 (en) Precipitation intensity measuring instrument
Etyemezian et al. Analysis of an optical gate device for measuring aeolian sand movement
AU654004B2 (en) Method and apparatus for measuring prevailing weather and meteorological visibility
CN103399363A (en) Online observation device and method for weather phenomena based on light attenuation and scattering theory
Mason et al. A photoelectric raindrop spectrometer
US20220373690A1 (en) Atmospheric sensor using programmable time-gated detection aperture
SE467553B (en) OPTICAL METHOD TO DETECT AND CLASSIFY RETURNS BY DETECTING SPRITT RESP BACKGROUND LIGHT FROM A BRIGHT
JP3532274B2 (en) Particle detector
Schmidt Measuring particle size and snowfall intensity in drifting snow
JP3521381B2 (en) Particle counting device
Buntov et al. Four-channel photoelectric counter of saltating sand particles
US20200333508A1 (en) Dual line diode array device and measurement method and measurement device for particle velocity
CN1036093C (en) Particle measuring method and particle detecting sensor thereof
US6590650B1 (en) Device for measuring the size of moving particles, in particular for pluviometric measurements
Del Guasta et al. A photodiode-based, low-cost telemetric-lidar for the continuous monitoring of urban particulate matter
RU119898U1 (en) OPTICAL ELECTRONIC TWO CHANNEL SEDIMENT METER
GB2211603A (en) Blade incidence tracking apparatus
Hasse et al. Measuring rain and rain drop distribution at sea
JP2001116691A (en) Visibility measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees