JPH0738182A - Light amplifier - Google Patents

Light amplifier

Info

Publication number
JPH0738182A
JPH0738182A JP5177719A JP17771993A JPH0738182A JP H0738182 A JPH0738182 A JP H0738182A JP 5177719 A JP5177719 A JP 5177719A JP 17771993 A JP17771993 A JP 17771993A JP H0738182 A JPH0738182 A JP H0738182A
Authority
JP
Japan
Prior art keywords
optical
pumping light
light source
coupler
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5177719A
Other languages
Japanese (ja)
Other versions
JP3247919B2 (en
Inventor
Shigeyuki Akiba
重幸 秋葉
Masatoshi Suzuki
正敏 鈴木
Koji Goto
光司 後藤
Haruo Abe
春夫 安部
Naoki Norimatsu
直樹 則松
Kuniaki Motojima
邦明 本島
Tadayoshi Kitayama
忠善 北山
Junichiro Yamashita
純一郎 山下
Eiichi Nakagawa
栄一 仲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK, Mitsubishi Electric Corp filed Critical Kokusai Denshin Denwa KK
Priority to JP17771993A priority Critical patent/JP3247919B2/en
Priority to US08/276,408 priority patent/US5510930A/en
Priority to FR9408863A priority patent/FR2708152B1/en
Publication of JPH0738182A publication Critical patent/JPH0738182A/en
Application granted granted Critical
Publication of JP3247919B2 publication Critical patent/JP3247919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To prevent the fluctuation of exciting beam power to be inputted to a light amplifier by inserting a light isolator between the exciting beam source and an optical coupler. CONSTITUTION:Optical isolators 13 and 14 are inserted between exciting beam sources 1, 2 and a 3dB coupler 4 so as not to cause injection synchronism. As another method, optical fiber which is much longer than the coherence length of the exciting beam sources 1 and 2 is inserted between the exciting beam sources 1, 2 and the 3dB coupler 4 so as to allow the coherence of the two beams inputted to the 3dB coupler 4 to be sufficiently low even when the injection synchronism has occurred. As the other method, FM modulation can be applied to the exciting beam sources 1 and 2, and the emission spectrum width can be widened to the same width of the injection synchronism or wider so as to prevent injection synchronism. Thus, the gain fluctuation which has occurred by the conventional constitution when rare earth added optical fiber is used is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバに希土類元
素を添加して増幅作用を持たせた光増幅器の励起方法に
係わり、特に複数の光ファイバ増幅器を複数の励起用光
源で励起する冗長化構成における励起光電力の安定化に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pumping method for an optical amplifier in which a rare earth element is added to an optical fiber to have an amplifying action, and more particularly, a redundant pumping method for pumping a plurality of optical fiber amplifiers by a plurality of pumping light sources. The present invention relates to stabilization of pumping light power in a generalized configuration.

【0002】[0002]

【従来の技術】光ファイバ増幅器は、従来の3R( Resha
ping, Retiming, Regenerating)機能を有する光中継器
と比較して、伝送速度に依存しない、中継器の簡素化が
可能、波長多重による大容量化が可能などの特長を有
し、海底光中継システムから加入者系の光CATV分配シス
テムまで幅広い応用が期待されている。光ファイバ増幅
器は一般にTHzオ−ダ−の帯域幅を持ち、その広帯域性
を生かすため、通常Gbit/s以上の大容量情報を光信号と
して増幅する。このような大容量情報を担う通信機器に
は非常に高い信頼性が要求され、特に光ファイバ増幅器
に使用される唯一の光能動素子である励起用光源の信頼
性を高めることは重要な課題である。しかし、励起用光
源は通常数10mW以上の高い出力が要求され、単体の信頼
度を向上させることには限界があるため、通常複数の励
起用光源を用いた冗長化構成が取られる。
2. Description of the Related Art An optical fiber amplifier is a conventional 3R (Resha
Compared to optical repeaters with ping, retiming, and regenerating functions, submarine optical repeater systems have the features that do not depend on transmission speed, that simplification of repeaters is possible, and that large capacity can be achieved by wavelength multiplexing. It is expected to have a wide range of applications from to optical CATV distribution systems for subscribers. An optical fiber amplifier generally has a bandwidth of THz order, and in order to take advantage of its wide band property, it usually amplifies large-capacity information of Gbit / s or more as an optical signal. Very high reliability is required for communication equipment that carries such large-capacity information, and it is an important issue to improve the reliability of the pumping light source, which is the only optically active element used in optical fiber amplifiers. is there. However, a pumping light source is usually required to have a high output of several tens of mW or more, and there is a limit to improving the reliability of a single unit. Therefore, a redundant configuration using a plurality of pumping light sources is usually adopted.

【0003】従来のこの種の冗長化構成としては、例え
ば米国特許5,173,957に示されたものがあり、図9は上
記文献に示された従来の冗長化構成のブロック図であ
る。図9において、1、2は励起用光源、3は励起用光
源の出力安定化駆動回路、4は3dBカプラ、5、6は光
合波器、7、8は希土類添加光ファイバ、9、11は信
号入力端子、10、12は信号出力端子である。 動作
について説明する。励起用光源1、2は出力安定化駆動
回路3により、例えば励起用光源1、2に内蔵されたモ
ニタ用フォトダイオ−ド電流が一定になるように駆動さ
れ、温度、電源電圧変動などが発生してもほぼ一定の光
出力を3dBカプラ4に入力する。3dBカプラ4はその入力
として互いに無相関な光が入力されると所望の特性どう
り入力光の電力を50%ずつ各出力ポ−トに出力し、光
合波器5、6を介して希土類添加光ファイバ7、8に励
起光を供給する。希土類添加光ファイバ7、8にはこの
励起光により反転分布が形成され、信号入力端子9、1
1から入力された微弱な光信号は所定の増幅度で増幅さ
れ、信号出力端子10、11から出力される。この構成
によれば、例えば励起用光源1が劣化して発光を停止し
ても励起用光源2からの励起光により正常動作時の50
%の励起光電力で動作することが可能であり、利得の減
少をシステムの回線設計により、問題とならない程度に
抑えることができる。3dBカプラ4を使用せず希土類添
加光ファイバ7を励起用光源1のみで励起する場合、励
起用光源1が発光を停止すると希土類添加光ファイバ7
は飽和吸収体として動作し、小信号電力の入力信号に対
しては大きな損失を持ち、希土類添加光ファイバ7を経
路とする回線は遮断状態となる。このように、冗長構成
を用いることによりシステムの信頼性を向上させること
が可能である。 以上は3dBカプラ4が50%の電力分
配器として理想的な動作をするとした場合の動作であ
る。つまり、本来励起用光源1、2は別個の光源である
ため、その周波数が等しい場合でも位相は独立に変動し
ており、励起用光源1、2のコヒ−レンス時間より充分
長い時間で平均化した3dBカプラ4の分岐比は一定とな
る。一般に励起用光源として用いられる半導体レ−ザの
コヒ−レンス時間は1μS以下であり、希土類添加光フ
ァイバ7、8として最も一般的に用いられるエルビウム
ド−プ光ファイバの励起光電力変動に対する応答時定数
の最小値10μSより充分小さい。従って希土類添加光
ファイバ7、8の応答時定数以内では励起光電力は一定
となり、その利得は変動しない。しかし、第9図に示し
た冗長化構成のキ−コンポ−ネントである3dBカプラ4
は、周波数の等しい2つの光を入力した場合、その分岐
比が入力される2つの光の位相関係により変動し、結果
的に希土類添加光ファイバ7、8の利得が変動する可能
性がある。励起用光源1、2は3dBカプラ4の不完全な
直進性や3dBカプラ4の出力ポ−トに接続されたデバイ
スからの反射により結合し、注入同期状態となった場
合、単体のコヒ−レンス時間以上の長い時間にわたって
位相関係が保たれる事がある。
As a conventional redundant configuration of this type, there is, for example, one shown in US Pat. No. 5,173,957, and FIG. 9 is a block diagram of the conventional redundant configuration shown in the above-mentioned document. In FIG. 9, 1 and 2 are pumping light sources, 3 is an output stabilizing drive circuit for pumping light sources, 4 is a 3 dB coupler, 5 and 6 are optical multiplexers, 7 and 8 are rare earth-doped optical fibers, and 9 and 11 are Signal input terminals 10 and 12 are signal output terminals. The operation will be described. The pumping light sources 1 and 2 are driven by the output stabilizing drive circuit 3 so that, for example, the monitor photodiode current built in the pumping light sources 1 and 2 becomes constant, and temperature, power supply voltage fluctuations, etc. occur. Even so, an almost constant optical output is input to the 3 dB coupler 4. The 3 dB coupler 4 outputs 50% of the power of the input light to each output port according to the desired characteristics when the lights having no correlation with each other are input as the input, and the rare earth addition is performed via the optical multiplexers 5 and 6. Excitation light is supplied to the optical fibers 7 and 8. An inversion distribution is formed in the rare earth-doped optical fibers 7, 8 by the excitation light, and the signal input terminals 9, 1,
The weak optical signal input from 1 is amplified by a predetermined amplification degree and output from the signal output terminals 10 and 11. According to this configuration, for example, even if the excitation light source 1 deteriorates and stops emitting light, the excitation light from the excitation light source 2 causes 50
It is possible to operate at a pumping light power of%, and the reduction in gain can be suppressed to a non-problematic level by the line design of the system. When the rare-earth-doped optical fiber 7 is pumped only by the pumping light source 1 without using the 3 dB coupler 4, the rare-earth-doped optical fiber 7 is stopped when the pumping light source 1 stops emitting light.
Operates as a saturation absorber, has a large loss with respect to an input signal of small signal power, and the line through the rare earth-doped optical fiber 7 is cut off. In this way, the reliability of the system can be improved by using the redundant configuration. The above is the operation when the 3 dB coupler 4 performs an ideal operation as a 50% power distributor. That is, since the pumping light sources 1 and 2 are originally separate light sources, the phases independently vary even when their frequencies are equal, and the averaging is performed in a time sufficiently longer than the coherence time of the pumping light sources 1 and 2. The branching ratio of the 3 dB coupler 4 is constant. The coherence time of a semiconductor laser generally used as a pumping light source is 1 μS or less, and the erbium-doped optical fiber most commonly used as the rare earth-doped optical fibers 7 and 8 responds to fluctuations in pumping light power. It is sufficiently smaller than the minimum value of the constant of 10 μS. Therefore, within the response time constant of the rare earth-doped optical fibers 7 and 8, the pumping light power becomes constant and the gain does not change. However, the 3 dB coupler 4 which is the key component of the redundant configuration shown in FIG.
When two lights having the same frequency are input, the branching ratio may change depending on the phase relationship between the two lights input, and as a result, the gains of the rare earth-doped optical fibers 7 and 8 may change. When the pumping light sources 1 and 2 are coupled by the imperfect linearity of the 3 dB coupler 4 or the reflection from the device connected to the output port of the 3 dB coupler 4 and the injection locking state is reached, the single coherence The phase relationship may be maintained for a long time, which is longer than the time.

【0004】図10は注入同期発生時の励起用光源の発
光スペクトラムを示す図である。図中、101は注入同
期が発生していない時の励起用光源1の発光スペクトラ
ム、102は注入同期が発生したときの励起用光源1の
発光スペクトラム、103は励起用光源1の注入同期引
込幅、104は励起用光源2の発光スペクトラムであ
る。励起用光源2より微弱な光パワ−が励起用光源1に結
合し、その発振周波数f2、f1が充分接近した場合、例
えば文献(応用物理学会編”半導体レ−ザの基礎”オ−
ム社58p(昭62))の述べられているように励起用光源1は
周波数f1の発振を停止し周波数f2の光を出力するよう
になる。この現象は注入同期と呼ばれている。このと
き、励起用光源1への光入力と光出力の周波数は一致し
(図10に示すようにf1がf2に移動する。)、位相
は注入同期が起こる以前の両者の周波数差(図10では
f1−f2に相当する。)に依存して-90度から+90度の
位相差に保たれる(コヒ−レントな状態)。従って注入
同期が発生した状態では、3dBカプラ4の分岐比は入力
される光の位相差に依存して変動することとなる。注入
同期は、f1、f2が以下の条件を満足する場合に発生
する。 |f1−f2| <Δf (1) ここでΔf は注入同期引込幅で、励起用光源1に入力さ
れる励起用光源2からの注入光の電界強度に比例する値
であり、以下の式で表わせる。
FIG. 10 is a diagram showing an emission spectrum of the excitation light source when injection locking occurs. In the figure, 101 is the emission spectrum of the excitation light source 1 when injection locking is not occurring, 102 is the emission spectrum of the excitation light source 1 when injection locking is occurring, and 103 is the injection locking pull-in width of the excitation light source 1. , 104 are the emission spectra of the excitation light source 2. When a weaker optical power than the excitation light source 2 is coupled to the excitation light source 1 and the oscillation frequencies f2 and f1 are sufficiently close to each other, for example, in the literature (edited by the Society of Applied Physics, "Basics of Semiconductor Laser")
58p (62), the excitation light source 1 stops the oscillation of the frequency f1 and outputs the light of the frequency f2. This phenomenon is called injection locking. At this time, the frequencies of the light input and the light output to the excitation light source 1 match (f1 moves to f2 as shown in FIG. 10), and the phase is the frequency difference between the two before injection locking (FIG. 10). Then, the phase difference is maintained from -90 degrees to +90 degrees (coherent state). Therefore, when injection locking occurs, the branching ratio of the 3 dB coupler 4 varies depending on the phase difference of the input light. Injection locking occurs when f1 and f2 satisfy the following conditions. | f1-f2 | <Δf (1) where Δf is the injection locking pull-in width, which is a value proportional to the electric field intensity of the injection light from the excitation light source 2 input to the excitation light source 1, Can be represented.

【0005】[0005]

【数1】 [Equation 1]

【0006】ここでPi、Plはそれぞれ励起用光源1
内部での注入光パワーおよび自励発振パワー、τp は励
起用光源1の内部共振器内で光子寿命、R1 は励起用光
源1の前面反射率である。一般に高出力の半導体レーザ
では光子寿命τp は3ps程度である。また前面反射率R
1 は高出力半導体レーザでは数%である。3dBカプラ4
の直進性を60dB、前面反射率R1 を3%とすると、注入
同期引込幅Δf は138MHzとなる。高出力の半導体レーザ
の発光スペクトラム線幅は数MHz程度であり、注入同期
が起こる確率は大きいことが分かる。 図11は注入同
期発生時の3dBカプラ分岐比変動特性を示す図であり、
図中105、106は3dBカプラ4の2つの出力ポート
の分岐比である。 励起用光源1、2から入力される光
の位相差をψとすると、 励起用光源1から見たスルー
ポートA、クロスポートBの分岐比LA、LBは以下の式で表
わせる。
Here, Pi and Pl are the excitation light source 1 respectively.
Internal injection light power and self-excited oscillation power, τp is a photon lifetime in the internal resonator of the excitation light source 1, and R1 is a front surface reflectance of the excitation light source 1. In general, a high-power semiconductor laser has a photon lifetime τp of about 3 ps. Also, the front reflectance R
1 is a few percent for high power semiconductor lasers. 3dB coupler 4
Assuming that the linearity is 60 dB and the front face reflectance R1 is 3%, the injection locking pull-in width Δf is 138 MHz. The emission spectrum line width of a high-power semiconductor laser is about several MHz, and it is clear that injection locking is highly likely to occur. FIG. 11 is a diagram showing a 3 dB coupler branch ratio variation characteristic when injection locking occurs,
In the figure, 105 and 106 are branching ratios of two output ports of the 3 dB coupler 4. When the phase difference between the lights input from the pumping light sources 1 and 2 is ψ, the branching ratios LA and LB of the through port A and the cross port B viewed from the pumping light source 1 can be expressed by the following formulas.

【0007】[0007]

【数2】 [Equation 2]

【0008】第3式から分かるように、コヒーレンスの
取れた2つの光を入力された場合3dBカプラ4の分岐比
は光の位相差ψの関数となり、ψが90度のときすべて
の光パワーがポートBから出力され、ψがー90度のと
きすべての光パワーがポートAから出力される。光の位
相差ψは励起用光源1、3dBカプラ4、励起用光源2を
結ぶファイバ長L、および励起用光源1、2の自励発振
周波数の差f1− f2で決定される。ファイバ長Lは
一定であるが、励起用光源1、2の発振周波数f1,f
2はランダムに変動しており、光の位相差ψの変動の主
たる要因である。この発振周波数f1,f2のランダム
な変動のため出力ポートA,Bの分岐比105、106は
相補的なランダムな変動特性を示す。自励発振周波数f
1,f2のランダムな変動は非常に低い周波数成分を含
んでおり、この低周波成分に希土類添加光ファイバ7、
8の利得が応答し変動する。この利得変動は希土類添加
光ファイバ7、8の利得において相補的であることが特
徴的である。
As can be seen from the third equation, when two lights having coherence are input, the branching ratio of the 3 dB coupler 4 becomes a function of the phase difference ψ of the light, and when ψ is 90 degrees, all the optical powers are It is output from port B, and when ψ is −90 degrees, all the optical power is output from port A. The phase difference ψ of light is determined by the excitation light source 1, the 3 dB coupler 4, the fiber length L connecting the excitation light source 2, and the difference f1-f2 between the self-oscillation frequencies of the excitation light sources 1 and 2. The fiber length L is constant, but the oscillation frequencies f1 and f of the excitation light sources 1 and 2 are
2 fluctuates randomly, and is the main factor of the fluctuation of the optical phase difference ψ. Due to the random fluctuations of the oscillation frequencies f1 and f2, the branching ratios 105 and 106 of the output ports A and B show complementary random fluctuation characteristics. Self-oscillation frequency f
The random fluctuation of 1 and f2 includes a very low frequency component, and the rare earth-doped optical fiber 7,
A gain of 8 will respond and will vary. This gain variation is characteristic in that the gains of the rare earth-doped optical fibers 7 and 8 are complementary.

【0009】[0009]

【発明が解決しようとする課題】以上のように、従来の
励起用光源の冗長化構成では励起用光源どうし結合によ
り注入同期が発生し、コヒーレンスの取れた2つの光が
3dBカプラに入力され、希土類添加光ファイバに入力さ
れる励起光電力が変動するため、結果的に希土類添加光
ファイバの利得そのものも変動すると言う問題があっ
た。
As described above, in the conventional redundant configuration of the pumping light source, injection locking occurs due to the coupling of the pumping light sources, and two coherent light beams are generated.
Since the pumping light power input to the 3 dB coupler and input to the rare-earth-doped optical fiber fluctuates, there is a problem that the gain itself of the rare-earth-doped optical fiber also fluctuates as a result.

【0010】[0010]

【課題を解決するための手段】本発明はかかる問題を解
決するためになされたもので、注入同期が発生しないよ
うに、励起用光源と3dBカプラの間に光アイソレ−タを
挿入したものである。また別の方法として、注入同期が
発生した場合でも、3dBカプラへ入力される2つの光の
コヒ−レンスが充分低くなるように、励起用光源と3dB
カプラの間に、励起用光源のコヒ−レンス長より充分長
い光ファイバを挿入するものである。また別の方法とし
て、注入同期が発生しないように、励起用光源にFM変調
をかけることにより発光スペクトル線幅を注入同期幅と
同等あるいはそれ以上に充分広くするものである。 ま
た別の方法として、注入同期が発生した場合でも3dBカ
プラで干渉が発生しないように、励起用光源の出力光の
偏波状態を右円偏波と左円偏波にするものである。
The present invention has been made to solve the above problems, and an optical isolator is inserted between a pumping light source and a 3 dB coupler so that injection locking does not occur. is there. As another method, even if injection locking occurs, the excitation light source and 3 dB are set so that the coherence of the two lights input to the 3 dB coupler is sufficiently low.
An optical fiber that is sufficiently longer than the coherence length of the pumping light source is inserted between the couplers. As another method, FM emission is applied to the excitation light source so that the injection locking does not occur, so that the emission spectrum line width is equal to or wider than the injection locking width. As another method, the polarization state of the output light of the pumping light source is changed to right circular polarization and left circular polarization so that interference does not occur in the 3 dB coupler even when injection locking occurs.

【0011】[0011]

【作用】本発明によれば、従来の構成で発生した希土類
添加光ファイバの利得変動を抑圧でき、励起用光源の冗
長化構成による高信頼化のメリットを生かしつつ安定な
動作を可能とするものである。
According to the present invention, it is possible to suppress the gain fluctuation of the rare earth-doped optical fiber generated in the conventional structure, and to realize stable operation while taking advantage of the high reliability due to the redundant structure of the pumping light source. Is.

【0012】[0012]

【実施例】実施例1図1は発明の第1の実施例を示すも
ので、13、14は光アイソレ−タである。従来例と同
一の部分には同一符号を付し説明を省く。 動作につい
て説明する。光アイソレ−タ13、14は通常1dB以下
の順方向挿入損と40dB程度の逆方向挿入損を有し、励起
用光源1、2から出力される励起光電力のロスを小さく
保ちつつ、励起用光源1、2間の結合を弱める作用を有
する。これにより注入同期引込幅Δfを小さくすること
ができる。第2式によれば、光アイソレ−タ13、14
の逆方向挿入損を40dB、3dBカプラ4の直進性による励
起用光源1、2の結合を60dBとすると、注入同期引込幅
Δfは1.38MHzとなり、通常の高出力半導体レ−ザの発
光スペクトラム線幅以下の値となり、注入同期の起こる
確率は極めて小さくなる。 図2は3dBカプラ分岐比変
動対反射減衰量特性の実測値である。ここで反射減衰量
は、励起用光源2から励起用光源1へ注入される光電力P2
と励起用光源1の出力光電力P1の比すなわち10log
P1/P2で定義しており、反射減衰量が大きいほど励
起用光源1、2間の結合が小さいことを意味する。3dB
カプラ分岐比変動量は、第11図における分岐比変動の
ピ−ク値で定義した。図2から分かるように、反射減衰
量が大きいほど分岐比変動は小さくなり、反射減衰量が
76dB以上では分岐比変動は無くなる。これは上述の注入
同期引込幅と励起用光源間の結合の関係を実験的に検証
するものであり、光アイソレ−タ挿入により分岐比変動
を充分に抑圧できることを示している。 以上の説明で
は励起用光源1が励起用光源2の光入力に注入同期する
場合を説明したが、一般には逆に励起用光源2が励起用
光源1に注入同期する場合も考えられる。このような場
合も考えて、第1図に示すように励起用光源1、2と3dB
カプラ4の間の両方に光アイソレ−タを挿入してある。
Embodiment 1 FIG. 1 shows a first embodiment of the invention, in which 13 and 14 are optical isolators. The same parts as those of the conventional example are designated by the same reference numerals and the description thereof will be omitted. The operation will be described. The optical isolators 13 and 14 usually have a forward insertion loss of 1 dB or less and a reverse insertion loss of about 40 dB, and keep the loss of pumping light power output from the pumping light sources 1 and 2 small while pumping light. It has the effect of weakening the coupling between the light sources 1 and 2. As a result, the injection locking pull-in width Δf can be reduced. According to the second equation, the optical isolators 13 and 14 are
If the reverse insertion loss is 40 dB and the coupling of the pumping light sources 1 and 2 due to the straightness of the 3 dB coupler 4 is 60 dB, the injection locking pull-in width Δf is 1.38 MHz, which is the emission spectrum line of a normal high-power semiconductor laser. The value is less than the width, and the probability of injection locking is extremely small. Figure 2 shows the measured values of the 3dB coupler branch ratio variation versus return loss characteristics. Here, the return loss is the optical power P2 injected from the excitation light source 2 to the excitation light source 1.
And the output light power P1 of the pumping light source 1, ie, 10 log
It is defined by P1 / P2, and the larger the return loss, the smaller the coupling between the excitation light sources 1 and 2. 3 dB
The coupler branch ratio variation amount was defined by the peak value of the branch ratio variation in FIG. As can be seen from FIG. 2, the greater the return loss, the smaller the change in the branching ratio, and the return loss is
The fluctuation of the branch ratio disappears at 76 dB or more. This is to experimentally verify the relationship between the injection locking pull-in width and the coupling between the pumping light sources, and shows that the branching ratio variation can be sufficiently suppressed by inserting the optical isolator. In the above description, the case where the pumping light source 1 is injection-locked with the optical input of the pumping light source 2 has been described. However, conversely, the pumping light source 2 may be injection-locked with the pumping light source 1. Considering such cases, as shown in Fig. 1, pumping light sources 1, 2 and 3 dB
An optical isolator is inserted between both the couplers 4.

【0013】実施例2.図3は発明の他の実施例を示す
図である。図中15は光ファイバであり、その長さは励
起用光源1、2のコヒ−レンス長より長く設定されてい
る。 動作を説明する。励起用光源2から励起用光源1
に入力される注入光により、励起用光源1は注入同期状
態となり、注入光とコヒ−レントな光を出力する。しか
し3dBカプラ4の入力での2つの入力光の光路長差は光
ファイバ15を挿入したことにより大きくなっており、
3dBカプラ4での2つの入力光どうしの位相関係がラン
ダムとなり(インコヒ−レントとなり)干渉は無視でき
るほど小さくなる。即ち、励起用光源2から出力された
光は直接3dBカプラ4へ入力される第1の経路と、3dBカ
プラ4を介して励起用光源1へ入力され、反射増幅され
て3dBカプラ4へ入力される第2の経路がある。第2の
経路の光路長は第1の経路と比較して2nLだけ長い。こ
こでnは光ファイバ15の屈折率で約1.48、Lは光ファイ
バ15の長さである。光路長差2nLが励起用光源2のコ
ヒ−レンス長より充分長ければ、第1の経路と第2の経
路を通って3dBカプラ4に入力される2つの光の干渉は
小さくなり、3dBカプラ4の分岐比変動は小さくなる。
図4は3dBカプラ分岐比変動のファイバ長依存性を示
す図である。測定で使用した励起用光源1、2の発光ス
ペクトラム線幅は約6MHzである。ガウス型の発光スペク
トラムを仮定するとコヒ−レンス長は32mとなる。一般
に光の可干渉性は光路長差に対して指数関数的に減少
し、コヒ−レンス長の5倍の光路長差があれば可干渉性
はほぼ無くなることが知られており、この場合光ファイ
バ15の長さLとして54mが必要となる。図4によると光
ファイバ15の長さLを50m程度にすると3dBカプラ4の
分岐比変動は0.1dB以下にするできる。さらに光ファイ
バ15の長さLを80m程度にすると分岐比変動は0.04dBと
ほぼ無視できる値にでき、本構成が有効であることを示
している。
Example 2. FIG. 3 is a diagram showing another embodiment of the invention. In the figure, reference numeral 15 is an optical fiber, the length of which is set longer than the coherence length of the excitation light sources 1 and 2. The operation will be described. Excitation light source 2 to excitation light source 1
The pumping light source 1 enters the pumping light source 1 into the injection locking state by the injection light, and outputs coherent light to the pumping light. However, the optical path length difference between the two input lights at the input of the 3 dB coupler 4 becomes large due to the insertion of the optical fiber 15,
The phase relationship between the two input lights in the 3 dB coupler 4 becomes random (becomes incoherent), and the interference becomes small enough to be ignored. That is, the light output from the excitation light source 2 is input to the excitation light source 1 via the first path that is directly input to the 3 dB coupler 4 and the 3 dB coupler 4, is reflected and amplified, and is input to the 3 dB coupler 4. There is a second route to The optical path length of the second path is 2nL longer than that of the first path. Here, n is the refractive index of the optical fiber 15 of about 1.48, and L is the length of the optical fiber 15. If the optical path length difference 2nL is sufficiently longer than the coherence length of the pumping light source 2, the interference of two lights input to the 3dB coupler 4 through the first path and the second path becomes small, and the 3dB coupler 4 The fluctuation of the branching ratio is small.
FIG. 4 is a diagram showing the fiber length dependency of the 3 dB coupler branch ratio variation. The emission spectrum line width of the excitation light sources 1 and 2 used in the measurement is about 6 MHz. Assuming a Gaussian emission spectrum, the coherence length is 32m. It is generally known that the coherence of light decreases exponentially with respect to the difference in optical path length, and if there is an optical path length difference of 5 times the coherence length, coherence almost disappears. As the length L of the fiber 15, 54 m is required. According to FIG. 4, when the length L of the optical fiber 15 is set to about 50 m, the branching ratio variation of the 3 dB coupler 4 can be set to 0.1 dB or less. Further, when the length L of the optical fiber 15 is set to about 80 m, the variation of the branching ratio can be set to 0.04 dB, which is a value that can be ignored, and this configuration is effective.

【0014】実施例3.以上の説明では励起用光源1が
励起用光源2の光入力に注入同期する場合を説明した
が、一般には逆に励起用光源2が励起用光源1に注入同
期する場合も考えられる。このような場合も考えて、図
5に示すように励起用光源1、2と3dBカプラ4の間の
両方に光ファイバ15、16を挿入すればいずれの場合
にも分岐比変動抑圧の効果を有する。
Example 3. In the above description, the case where the pumping light source 1 is injection-locked with the optical input of the pumping light source 2 has been described. However, conversely, the pumping light source 2 may be injection-locked with the pumping light source 1. Considering such a case as well, if optical fibers 15 and 16 are inserted between the pumping light sources 1 and 2 and the 3 dB coupler 4 as shown in FIG. 5, the branch ratio fluctuation suppression effect is obtained in any case. Have.

【0015】実施例4.図6はこの発明の他の実施例を
示す図であり、図中17、18は発振器である。動作を
説明する。励起用光源1、2はその駆動電流に発振器1
7、18から供給される交流電流を重畳される。半導体
レ−ザの場合を考えると、この交流電流によって数100M
Hz/mA程度の変調効率でFM変調がかけられ、光スペクト
ラム線幅はそれに応じて広くなる。例えば励起用光源
1、2のFM変調効率を500MHz/mAとすると、3mAp-pの変
調電流で励起用光源1、2の光スペクトラム線幅は1.5G
Hzとなり、従来例で計算した注入同期引込幅138MHzの1
0倍以上の値となる。これにより、たとえ注入同期が発
生したとしても、それによる3dBカプラ4の分岐比変動
は10分の1以下に抑えられる。
Example 4. FIG. 6 is a diagram showing another embodiment of the present invention, in which 17 and 18 are oscillators. The operation will be described. The excitation light sources 1 and 2 use the oscillator 1 for the drive current.
The alternating currents supplied from 7 and 18 are superimposed. Considering the case of a semiconductor laser, this AC current causes
FM modulation is applied with a modulation efficiency of approximately Hz / mA, and the optical spectrum linewidth widens accordingly. For example, assuming that the FM modulation efficiency of the excitation light sources 1 and 2 is 500 MHz / mA, the optical spectrum linewidth of the excitation light sources 1 and 2 is 1.5 G with a modulation current of 3 mAp-p.
It becomes 1 Hz of injection locking pull-in width 138MHz calculated in the conventional example.
The value is 0 times or more. As a result, even if injection locking occurs, the fluctuation of the branch ratio of the 3 dB coupler 4 due to the injection locking can be suppressed to 1/10 or less.

【0016】実施例5.以上では独立の発振器17、1
8を使用する場合について説明したが、図7に示すよう
に、1つの発振器17と移相器19を用いて同様の効果
を得ることができる。即ち、発振器17から出力される
交流電流は直接励起用光源1に入力される電流と移相器
19を介してその位相を遅延させて励起用光源2に入力
される電流とに分配される。移相器19を挿入したこと
により、励起用光源1、2の発光中心周波数は変動は同
相で変動することはなく、結果的に独立の2つの発振器
17、18を用いたのと同様に効果を得ることができ
る。
Example 5. Independent oscillator 17, 1
Although the case where 8 is used has been described, the same effect can be obtained by using one oscillator 17 and one phase shifter 19, as shown in FIG. That is, the alternating current output from the oscillator 17 is distributed to the current directly input to the excitation light source 1 and the current input to the excitation light source 2 with its phase delayed via the phase shifter 19. By inserting the phase shifter 19, the emission center frequencies of the excitation light sources 1 and 2 do not change in the same phase, and as a result, the same effect as using two independent oscillators 17 and 18 is obtained. Can be obtained.

【0017】実施例6.以上の説明では発振器17、1
8の発振周波数については限定しなかったが、この発振
周波数を希土類添加光ファイバ7、8の励起光電力変調
に対する応答周波数より高い値に設定することにより、
さらに高い効果を得ることができる。即ち、発振器1
7、18の発振周波数が希土類添加光ファイバ7、8の
励起光電力変調に対する応答周波数より高ければ、変調
電流で励起用光源1、2の出力が若干変動しても希土類
添加光ファイバ7、8の利得はほとんど変動しない。ま
た注入同期の発生周期も希土類添加光ファイバ7、8の
応答周波数以上となり、希土類添加光ファイバ7、8に
とっては励起光電力は一定に見え、その利得はほとんど
変動しない。
Embodiment 6. In the above description, the oscillators 17, 1
Although the oscillation frequency of 8 was not limited, by setting this oscillation frequency to a value higher than the response frequency of the rare earth-doped optical fibers 7 and 8 to the excitation light power modulation,
A higher effect can be obtained. That is, oscillator 1
If the oscillation frequencies of 7 and 18 are higher than the response frequencies of the rare earth-doped optical fibers 7 and 8 for pumping light power modulation, the rare earth-doped optical fibers 7 and 8 will change even if the outputs of the pumping light sources 1 and 2 slightly change due to the modulation current. The gain of is almost unchanged. The generation period of injection locking is also equal to or higher than the response frequency of the rare earth-doped optical fibers 7 and 8, and the pumping light power looks constant to the rare earth-doped optical fibers 7 and 8 and the gain thereof hardly changes.

【0018】実施例7.図8はこの発明の他の実施例を
示す図であり、図中20、21は4分の1波長板であ
る。動作を説明する。励起用光源1、2は直線偏波光を
4分の1波長板20、21に入力しており、その入射角
は4分の1波長板20、21の出力光の偏波状態が互い
に逆回転の円偏波となるように設定してある。通常の円
形のコアを有する光ファイバは円偏波を保存する特性を
有している。従って3dBカプラ4の入力光は互いに逆回
転の円偏波を保持しており、たとえ注入同期によって可
干渉性を有しても、偏波の直交性により干渉することは
無い。これにより、3dBカプラ4の分岐比は変動せず、
希土類添加光ファイバ7、8の利得は安定する。
Example 7. FIG. 8 is a diagram showing another embodiment of the present invention, in which 20 and 21 are quarter-wave plates. The operation will be described. The pumping light sources 1 and 2 input linearly polarized light into the quarter-wave plates 20 and 21, and the incident angles of the output lights of the quarter-wave plates 20 and 21 are opposite to each other. It is set to have circular polarization. An optical fiber having an ordinary circular core has a characteristic of preserving circularly polarized waves. Therefore, the input lights of the 3 dB coupler 4 hold circularly polarized waves that rotate in opposite directions to each other, and even if they have coherence due to injection locking, they do not interfere due to the orthogonality of polarization. As a result, the branching ratio of the 3dB coupler 4 does not change,
The gains of the rare earth-doped optical fibers 7 and 8 are stable.

【0019】[0019]

【発明の効果】この発明によれば、光増幅器の励起用光
源の冗長化構成を取って、高信頼性を保ちつつ励起光電
力を安定化でき、光増幅器の安定動作を確保できると言
う効果を有する。
According to the present invention, it is possible to stabilize the pumping light power while maintaining the high reliability by adopting the redundant structure of the pumping light source of the optical amplifier, and to secure the stable operation of the optical amplifier. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例を示す図。FIG. 1 is a diagram showing a first embodiment.

【図2】3dBカプラ分岐比変動対反射減衰量特性図。FIG. 2 is a characteristic diagram of a 3 dB coupler branch ratio variation vs. return loss.

【図3】第2の実施例を示すブロック図。FIG. 3 is a block diagram showing a second embodiment.

【図4】3dBカプラ分岐比変動のファイバ長依存性を示
す図。
FIG. 4 is a diagram showing fiber length dependency of 3 dB coupler branch ratio variation.

【図5】第3の実施例を示すブロック図。FIG. 5 is a block diagram showing a third embodiment.

【図6】第4の実施例を示すブロック図。FIG. 6 is a block diagram showing a fourth embodiment.

【図7】第5の実施例を示すブロック図。FIG. 7 is a block diagram showing a fifth embodiment.

【図8】第6の実施例を示すブロック図。FIG. 8 is a block diagram showing a sixth embodiment.

【図9】従来例を示すブロック図。FIG. 9 is a block diagram showing a conventional example.

【図10】注入同期発生時の励起用光源の発光スペクト
ラムを示す図。
FIG. 10 is a diagram showing an emission spectrum of an excitation light source when injection locking occurs.

【図11】注入同期発生時の3dBカプラ分岐比変動特性
[Figure 11] 3dB coupler branch ratio fluctuation characteristic diagram when injection locking occurs

【符号の説明】[Explanation of symbols]

1,2:励起用光源 3:出力安定化駆動回路 4:3dBカプラ 5,6:光合波器 7,8:希土類添加光ファイバ 13,14:光アイソレータ 15,16:光ファイバ 17,18:発振器 19:移相器 20,21:4分の1波長板 1,2: Pumping light source 3: Output stabilization drive circuit 4: 3dB coupler 5,6: Optical multiplexer 7,8: Rare earth doped optical fiber 13,14: Optical isolator 15,16: Optical fiber 17,18: Oscillator 19: Phase shifter 20, 21: Quarter wave plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 光司 東京都新宿区西新宿二丁目3番2号 国際 電信電話株式会社内 (72)発明者 安部 春夫 東京都新宿区西新宿二丁目3番2号 国際 電信電話株式会社内 (72)発明者 則松 直樹 東京都新宿区西新宿二丁目3番2号 国際 電信電話株式会社内 (72)発明者 本島 邦明 神奈川県鎌倉市大船五丁目1番1号 三菱 電機株式会社通信システム研究所内 (72)発明者 北山 忠善 神奈川県鎌倉市大船五丁目1番1号 三菱 電機株式会社通信システム研究所内 (72)発明者 山下 純一郎 神奈川県鎌倉市大船五丁目1番1号 三菱 電機株式会社電子システム研究所内 (72)発明者 仲川 栄一 神奈川県鎌倉市大船五丁目1番1号 三菱 電機株式会社電子システム研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Goto 2-3-2 Nishishinjuku, Shinjuku-ku, Tokyo International Telegraph and Telephone Corporation (72) Haruo Abe 2-3-2 Nishishinjuku, Shinjuku-ku, Tokyo No. International Telegraph and Telephone Corporation (72) Inventor Naoki Norimatsu 2-3-2 Nishishinjuku, Shinjuku-ku, Tokyo Within International Telegraph and Telephone Corporation (72) Inventor Kuniaki Motojima 5-1-1, Ofuna, Kamakura-shi, Kanagawa Mitsubishi Electric Corporation Communication Systems Laboratory (72) Inventor Tadayoshi Kitayama 5-1-1, Ofuna, Kamakura City, Kanagawa Prefecture Mitsubishi Electric Corporation Communication Systems Laboratory (72) Inventor Junichiro Yamashita 5-chome, Ofuna, Kamakura City, Kanagawa Prefecture No. 1 Mitsubishi Electric Corporation Electronic Systems Laboratory (72) Inventor Eiichi Nakagawa 5-1, Ofuna, Kamakura-shi, Kanagawa No. 1 Mitsubishi Electric Corporation Electronic Systems Research Center

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】希土類元素または遷移金属等のレーザー活
性物質を添加した光ファイバを、励起用光源から出力さ
れる励起光を光カプラを用いて合波、分配することによ
り励起する冗長化構成を取った光増幅器において、前記
励起用光源と前記光カプラの間に光アイソレ−タを挿入
したことを特徴とする光増幅装置。
1. A redundant configuration in which an optical fiber doped with a laser active substance such as a rare earth element or a transition metal is pumped by multiplexing and distributing pumping light output from a pumping light source using an optical coupler. In the optical amplifier thus taken, an optical amplifying device, wherein an optical isolator is inserted between the pumping light source and the optical coupler.
【請求項2】希土類元素または遷移金属等のレーザー活
性物質を添加した光ファイバを、励起用光源から出力さ
れる励起光を光カプラを用いて合波、分配することによ
り励起する冗長化構成を取った光増幅器において、前記
励起用光源と前記光カプラの間に前記励起用光源のコヒ
−レンス長より長い光ファイバを挿入したことを特徴と
する光増幅装置。
2. A redundant structure in which an optical fiber doped with a laser active substance such as a rare earth element or a transition metal is pumped by multiplexing and distributing pumping light output from a pumping light source using an optical coupler. In the optical amplifier thus taken, an optical amplifying device characterized in that an optical fiber longer than the coherence length of the pumping light source is inserted between the pumping light source and the optical coupler.
【請求項3】希土類元素または遷移金属等のレーザー活
性物質を添加した光ファイバを、励起用光源から出力さ
れる励起光を光カプラを用いて合波、分配することによ
り励起する冗長化構成を取った光増幅器において、前記
励起用光源の駆動電流に、交流電流を重畳したことを特
徴とする光増幅装置。
3. A redundant structure in which an optical fiber doped with a laser active substance such as a rare earth element or a transition metal is excited by multiplexing and distributing pumping light output from a pumping light source using an optical coupler. In the optical amplifier thus taken, an optical amplifying device characterized in that an alternating current is superposed on a drive current of the excitation light source.
【請求項4】発信器と移相器を用いて、複数の励起用光
源に重畳される交流電流の位相が異なるようにしたこと
を特徴とする請求項第3項に記載の光増幅装置。
4. The optical amplifying device according to claim 3, wherein the phase of the alternating currents superposed on the plurality of pumping light sources is different by using a transmitter and a phase shifter.
【請求項5】発振器の周波数を希土類元素または遷移金
属等のレーザー活性物質を添加した光ファイバの励起光
変調に対する応答周波数より高い周波数に設定したこと
を特徴とする請求項第3項及び請求項第4項に記載の光
増幅装置。
5. The frequency of the oscillator is set to a frequency higher than the response frequency for pumping light modulation of an optical fiber doped with a laser active substance such as a rare earth element or a transition metal. The optical amplifying device according to item 4.
【請求項6】希土類元素または遷移金属等のレーザー活
性物質を添加した光ファイバを、励起用光源から出力さ
れる励起光を光カプラを用いて合波、分配することによ
り励起する冗長化構成を取った光増幅器において、前記
励起用光源の出力に、直線偏波を右円偏波と左円偏波に
変換する部品を挿入したことを特徴とする光増幅装置。
6. A redundant configuration in which an optical fiber doped with a laser active substance such as a rare earth element or a transition metal is pumped by multiplexing and distributing pumping light output from a pumping light source using an optical coupler. In the optical amplifier thus taken, an optical amplifying device characterized in that a component for converting a linearly polarized wave into a right circularly polarized wave and a left circularly polarized wave is inserted into the output of the pumping light source.
JP17771993A 1993-07-19 1993-07-19 Optical amplifier Expired - Lifetime JP3247919B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP17771993A JP3247919B2 (en) 1993-07-19 1993-07-19 Optical amplifier
US08/276,408 US5510930A (en) 1993-07-19 1994-07-18 Light amplifying apparatus
FR9408863A FR2708152B1 (en) 1993-07-19 1994-07-18 Light amplifying device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17771993A JP3247919B2 (en) 1993-07-19 1993-07-19 Optical amplifier

Publications (2)

Publication Number Publication Date
JPH0738182A true JPH0738182A (en) 1995-02-07
JP3247919B2 JP3247919B2 (en) 2002-01-21

Family

ID=16035919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17771993A Expired - Lifetime JP3247919B2 (en) 1993-07-19 1993-07-19 Optical amplifier

Country Status (3)

Country Link
US (1) US5510930A (en)
JP (1) JP3247919B2 (en)
FR (1) FR2708152B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250428B2 (en) * 1995-09-28 2002-01-28 三菱電機株式会社 Optical amplifier
JP3327148B2 (en) * 1996-11-21 2002-09-24 ケイディーディーアイ株式会社 Optical amplifier and laser light generator
WO2000077957A1 (en) 1999-06-15 2000-12-21 Mitsubishi Denki Kabushiki Kaisha Dispersion compensating device and dispersion compensating system
US7170673B2 (en) * 1999-07-30 2007-01-30 Mitsubishi Denki Kabushiki Kaisha Optical amplifying repeater apparatus and optical amplifying/repeating transmission system
DE60036774T2 (en) * 1999-07-30 2008-07-24 Mitsubishi Denki K.K. OPTICAL GAIN REPEATER AND OPTICAL GAIN REPEATER AND TRANSMISSION ARRANGEMENT
US6636345B2 (en) * 2001-02-27 2003-10-21 Corning Incorporated Optical fiber pumping system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035344A (en) * 1983-08-08 1985-02-23 Hitachi Tobu Semiconductor Ltd Light emitting device and optical signal processor using light emitting device
US4554510A (en) * 1983-09-12 1985-11-19 The Board Of Trustees Of Leland Stanford Junior University Switching fiber optic amplifier
JPS61133688A (en) * 1984-12-03 1986-06-20 Fujitsu Ltd Semiconductor laser-wavelength controller
US5005937A (en) * 1989-04-14 1991-04-09 Nippon Telegraph And Telephone Corporation Optical branching equipment and optical network using the same
CA2019253C (en) * 1989-06-23 1994-01-11 Shinya Inagaki Optical fiber amplifier
JP3137632B2 (en) * 1989-08-31 2001-02-26 富士通株式会社 Optical communication system with optical fiber amplifier
US5058974A (en) * 1989-10-06 1991-10-22 At&T Bell Laboratories Distributed amplification for lightwave transmission system
JPH03215982A (en) * 1990-01-19 1991-09-20 Mitsubishi Electric Corp Fiber type light amplifier
DE4005867A1 (en) * 1990-02-24 1991-08-29 Standard Elektrik Lorenz Ag Fibre=optical amplifier with two=way coupler - connected to each end of fibre and to light pump
US5015054A (en) * 1990-02-26 1991-05-14 The United States Of America As Represented By The Department Of Energy Apparatus and method for increasing the bandwidth of a laser beam
JPH0834454B2 (en) * 1990-03-01 1996-03-29 国際電信電話株式会社 Optical repeater monitoring system
CA2037350C (en) * 1990-03-02 1994-11-08 Kenichi Abe Optical coupler
JP2544501B2 (en) * 1990-03-30 1996-10-16 シャープ株式会社 Microwave oven with inverter power supply
US5115338A (en) * 1990-05-30 1992-05-19 At&T Bell Laboratories Multi-stage optical amplifier
US5216728A (en) * 1991-06-14 1993-06-01 Corning Incorporated Optical fiber amplifier with filter
US5173957A (en) * 1991-09-12 1992-12-22 At&T Bell Laboratories Pump redundancy for optical amplifiers
US5187759A (en) * 1991-11-07 1993-02-16 At&T Bell Laboratories High gain multi-mode optical amplifier
EP0652613B1 (en) * 1991-11-08 1999-02-03 Mitsubishi Denki Kabushiki Kaisha Optical-fiber amplifier
US5241414A (en) * 1992-08-21 1993-08-31 At&T Bell Laboratories Fault tolerant optical amplifier arrangement

Also Published As

Publication number Publication date
FR2708152A1 (en) 1995-01-27
US5510930A (en) 1996-04-23
FR2708152B1 (en) 1997-05-30
JP3247919B2 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
Wu et al. High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser
US6342965B1 (en) Optical fiber amplifier and dispersion compensating fiber module for optical fiber amplifier
US6658189B2 (en) Broadband amplified spontaneous emission light source
Joergensen et al. 4 Gb/s optical wavelength conversion using semiconductor optical amplifiers
CN105428973B (en) Wide tunable single-frequency optical fiber laser light source for coherent light orthogonal frequency division multiplexing system
US7738165B2 (en) Amplified spontaneous emission reflector-based gain-clamped fiber amplifier
US5455835A (en) Article comprising an optical waveguide laser
JP3250428B2 (en) Optical amplifier
CN111373614A (en) Device for providing optical radiation
US5526174A (en) Optical amplification system
JP3247919B2 (en) Optical amplifier
US20210281036A1 (en) Broadband tm-doped optical fiber amplifier
JP2001036169A (en) Bilateral pumping light amplifier
KR100547868B1 (en) Gain Fixed Semiconductor Optical Amplifier Using Raman Amplification Principle
EP1131864B1 (en) Reduction of pulsations in dfb lasers
Frankel et al. Rapid continuous tuning of a single-polarization fiber ring laser
WO2002077686A1 (en) Multi-channel light source with high-power and highly flattened output
CN216413497U (en) Laser device
JP3273911B2 (en) Optical fiber amplifier, semiconductor laser module for excitation and optical signal transmission system
CN220527387U (en) Single-frequency optical fiber laser
JP3250473B2 (en) Optical amplifier
Zhou et al. Multiwavelength erbium-doped fiber ring laser using a LiNbO 3 multifunction chip for fiber gyroscope
JP2000261079A (en) Optical amplifier
Ooi et al. High-power single-wavelength SOA-based fiber-ring laser with an optical modulator
JPH08136959A (en) Optical amplifier

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 12

EXPY Cancellation because of completion of term