JPH073815B2 - Method of forming thin film - Google Patents

Method of forming thin film

Info

Publication number
JPH073815B2
JPH073815B2 JP2133841A JP13384190A JPH073815B2 JP H073815 B2 JPH073815 B2 JP H073815B2 JP 2133841 A JP2133841 A JP 2133841A JP 13384190 A JP13384190 A JP 13384190A JP H073815 B2 JPH073815 B2 JP H073815B2
Authority
JP
Japan
Prior art keywords
film
thin film
quality
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2133841A
Other languages
Japanese (ja)
Other versions
JPH0429312A (en
Inventor
信一 村松
光紀 蕨迫
直 松原
晴夫 伊藤
寿一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2133841A priority Critical patent/JPH073815B2/en
Publication of JPH0429312A publication Critical patent/JPH0429312A/en
Publication of JPH073815B2 publication Critical patent/JPH073815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は基板上に形成された薄膜を評価する工程を備え
た薄膜の形成方法に関する。
The present invention relates to a method of forming a thin film including a step of evaluating a thin film formed on a substrate.

【従来の技術】[Prior art]

半導体の超構造や超薄膜は素子構成要素として非常に重
要である。このような構造を有する半導体層を形成する
ためには、薄膜形成時に膜界面での凹凸など、乱れの無
いことが不可欠である。従来、このような制御のため、
原料供給や成膜電力、成膜圧力などを自動制御すること
が行なわれている。これにより、界面に乱れのない薄膜
を形成することが出来る。しかし、装置の状態、たとえ
ば、到達真空度や反応室内壁の汚染などにより薄膜の膜
質は大きく変化することが知られている。膜質の変化
は、薄膜界面の乱れと同様に無いことが素子作成上不可
欠である。そのため成膜時、特に成膜初期に膜質の変化
の有無をチェックすることが望ましい。これは、通常、
超構造薄膜の形成には数時間以上の成膜時間を必要とす
るため、すなわち、膜厚を制御するため1Å/s程度の低
速度で成膜を行い、かつ異なる層の間では反応容器を1x
10-6Torr程度にまで高真空化を行う時間が必要なため、
成膜後に膜質の不良が確認されたのでは製造上問題が大
きいためである。さらに、超構造薄膜形成時に膜質が変
化していく場合には、成膜後の評価では全体としての膜
質しか評価出来ず、このため、局所的に膜質の悪い層が
ある場合には膜質不良を見落とすことも有りうるためで
ある。望ましくは、単に基板上の薄膜ではなく、薄膜中
の界面近傍の膜質を評価できれば素子作製上非常に有力
である。 従来、成膜初期の膜質を評価する方法として、赤外偏光
を利用する方法がジャパン・ジャーナル・オブ・アプラ
イド・フィジクス、27(1988)第501頁から第505頁(Jp
n.J.Appl.Phys.27,pp501-505(1988))において論じら
れている。
Ultrastructures and ultrathin films of semiconductors are very important as device components. In order to form a semiconductor layer having such a structure, it is essential that there be no irregularities such as irregularities at the film interface during thin film formation. Conventionally, because of such control,
The supply of raw materials, film-forming power, film-forming pressure, etc. are automatically controlled. This makes it possible to form a thin film having no disturbance on the interface. However, it is known that the quality of the thin film changes greatly depending on the state of the apparatus, for example, the ultimate vacuum and the contamination of the inner wall of the reaction chamber. It is indispensable for device fabrication that there is no change in film quality as in the case of the disturbance of the thin film interface. Therefore, it is desirable to check whether or not there is a change in film quality during film formation, especially at the initial stage of film formation. This is usually
Since it takes several hours or more to form a superstructured thin film, that is, film formation is performed at a low speed of about 1Å / s to control the film thickness, and a reaction vessel is used between different layers. 1x
Since it takes time to increase the vacuum to about 10 -6 Torr,
The reason why the defective film quality is confirmed after the film formation is that there is a large problem in manufacturing. Furthermore, when the film quality changes during superstructure thin film formation, only the film quality as a whole can be evaluated in the evaluation after film formation. This is because it may be overlooked. Desirably, it is very effective in device fabrication if the quality of the film in the vicinity of the interface in the thin film can be evaluated, not just the thin film on the substrate. Conventionally, as a method for evaluating the film quality at the initial stage of film formation, a method using infrared polarized light has been used in Japan Journal of Applied Physics, 27 (1988), pages 501 to 505 (Jp.
nJAppl.Phys. 27 , pp501-505 (1988)).

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

この方法によって100Å以下の膜厚でも膜質を評価でき
るようになった。しかし、この方法で評価できるのは膜
全体の膜質である。従って、pin接合素子中のpi界面の
膜質を評価することや、a-SiN:H/a-Si:H/---/a-Si:H超
構造中の成膜初期のa-Si:Hの膜質を評価することは出来
ないという問題があった。 本発明の目的は、基板上に薄膜を形成するに当って、成
膜中の任意の膜厚部分の膜質を評価する工程を備えた成
膜方法を提供することにある。
With this method, it became possible to evaluate the film quality even with a film thickness of 100 Å or less. However, the quality of the entire film can be evaluated by this method. Therefore, it is necessary to evaluate the film quality of the pi interface in the pin-junction device, and the initial a-Si: film formation in the a-SiN: H / a-Si: H / --- / a-Si: H superstructure. There was a problem that the film quality of H could not be evaluated. An object of the present invention is to provide a film forming method including a step of evaluating the film quality of an arbitrary film thickness portion during film formation when forming a thin film on a substrate.

【課題を解決するための手段】[Means for Solving the Problems]

本発明の成膜方法では、薄膜中に本来存在せず、かつ導
入しても膜質への実質的な影響が無視できる元素を反応
容器内に導入し該元素を薄膜表面に結合させる。これに
より、成膜中、もしくは成膜後に、膜中の一部分の層の
膜質を評価できるようにしたことを特徴とする。
In the film forming method of the present invention, an element which does not originally exist in the thin film and whose introduction has a substantial effect on the film quality can be introduced into the reaction vessel to bond the element to the thin film surface. Thereby, it is possible to evaluate the film quality of a partial layer in the film during or after the film formation.

【作用】[Action]

本発明の方法においては、たとえばSiH4を原料としたプ
ラズマCVD法によるアモルファスシリコン(a−Si:H)
の形成において、成膜中にD2ガスを間欠的に導入する。
そしてそのたびに、SiとDの結合に起因する赤外吸収を
測定する。Si−DとSi−H結合による吸収波長が大きく
異なるため、Si−Dに起因する赤外吸収を評価すること
により薄膜表面の状態を評価できる。かつ、Si−DはSi
−Hと殆ど同じ化学的性質を持つことから、成膜後の薄
膜はD2を導入しない場合と同じものとして利用できる。 以下、実施例により本願発明に係る薄膜の形成方法につ
いて詳細に説明する。
In the method of the present invention, for example, amorphous silicon (a-Si: H) obtained by plasma CVD using SiH 4 as a raw material.
In the formation of, the D 2 gas is intermittently introduced during the film formation.
And each time, the infrared absorption resulting from the bond between Si and D is measured. Since the absorption wavelengths due to Si-D and Si-H bonds are greatly different, the state of the thin film surface can be evaluated by evaluating the infrared absorption due to Si-D. And Si-D is Si
Since it has almost the same chemical properties as -H, the thin film after film formation can be used as the same as when D 2 is not introduced. Hereinafter, a method for forming a thin film according to the present invention will be described in detail with reference to Examples.

【実施例】【Example】

実施例1 本発明の第1の実施例に係る薄膜の形成方法を第1図を
もちいて説明する。対向電極型のRFプラズマCVD装置
で、a−Si:H薄膜を形成した。RFプラズマCVD装置は真
空チャンバ1中にRF電極2、基板ホルダ3を有し、2つ
のKBr窓4、排気口5、原料ガス導入口6、光学検出用
ガス導入口7からなる。基板ホルダ3上にSUS基板8を
置き、第1図に示す位置に赤外光源9と赤外検出器10を
置いて基板8の赤外反射スペクトルを測定できる構成と
した。 まず、反応室内に原料ガス導入口6からH2;50sccm,Si
H4;2sccm,H2希釈の1%PH3;5sccmを導入し、0.5Torr、1
00Wの電力下でグロー放電させ、SUS基板上に300Åの微
結晶n型層を形成した。次に、光学検出用ガス導入口7
からSiD4;5sccmを導入し、0.5Torr,5Wで放電させ、50Å
のi型a−Si:Dを形成した。放電を止め、赤外光源9か
ら赤外光を入射角80度で入射し、赤外検出器10としてフ
ーリエ変換赤外分光器をもちいて測定した。Si−H結合
では2000−2100cm-1にSiH,SiH2,SiH3,(SiH2)nなどの
伸縮振動が見られるのに対して、Si−D結合では1500cm
-1付近にSi−Hと同じ分布のスペクトルが見られる。測
定の結果、SiD2とSiDの比(SiD2/SiD)は0.15であっ
た。SiD2/SiD=0.2以上であれば膜質が劣ることを意味
しており、成膜を中止する信号を成膜制御装置に送るよ
うにフィードバック機構が組まれている。この場合は、
このまま成膜が続けられた。これに対して、a−Si:Dを
形成しなければ、a−Si:H膜で膜質を評価しなければな
らないが、基板上にすでに存在する微結晶n型層中にも
Si−H結合があり、i型層界面部分の膜質を分離して評
価することは出来ない。この後、原料ガス導入口6から
SiH4;5sccmを導入し、0.5Torr,5Wで放電させ、5000Åの
i型層を形成し、次いで、SiH4;5sccm,CH4;10sccm,H2
%希釈のB2H6;5sccmを導入し、0.3Torr,5Wで放電させ、
100Åのp型層を形成した。この後、電子ビーム蒸着法
で透明電極としてITO(インジウムスズ酸化物)を700Å
形成して、太陽電池を作製した。本法に依れば、i型層
形成の始めに膜質の評価が出来るため、素子段階での不
良率を大幅に低減できた。 実施例2 SUS基板11上に第1図のプラズマCVD装置により、a−Si
N:H/a−Si:H多層薄膜を形成した。以下、第2図に従っ
てこれを示す。 SiH4;5sccm,NH3;10sccm,N2;20sccmを導入し、0.3Torr,5
Wで放電させて20Åのa−SiN:H膜12第1層を、次いでSi
H4;5sccmを導入し、0.5Torr,2Wで放電させて30Åのa−
Si:H膜13第2層を形成した。次に、第3層a−SiN:H膜1
2を第1層と同じに形成したあと、a−Si:H膜第4層形
成時に光学検出用ガス導入口7からD2を導入し、同時に
反応させた。これにより、a−Si:H:D膜14が形成され
た。このあと、偏光子を赤外光源9とKBr窓4の間に設
置し、入射面に平行と垂直の2つの場合について赤外吸
収スペクトルを測定し、その比を求めた。その結果、Si
−H,Si−DだけでなくN−D結合のピークが見られた。
すなわち、Dに関するピークに注目することで第4層目
のみの結合状態を評価出来た。この場合には、a−Si:
H:D膜中にNの混入していることを成膜中に検出出来
た。このあと、各極薄膜層形成ガスの切り換え時におけ
る高真空排気を当初より長くすることでNの混入を防
ぎ、a−SiN:H/a−Si:H構造を20回繰り返して超構造薄
膜を形成した。 実施例3 SUS基板11上に第1図のプラズマCVD装置により、a−G
e:H/a−Si:H多層薄膜を形成した。GeH4;5sccm,H2;50scc
mを導入し、0.5Torr,50Wで放電させて20Åのa−Ge:H膜
第1層を形成した。KBr窓4の外に赤外検出器10を設置
し、試料からの赤外発光を測定しタ。Ge−H,Ge−H2によ
る発光スペクトルが吸収スペクトルと同一波長に観察さ
れた。しかし、これとともにGeOHに起因するピークも見
られた。これはこの薄膜が第1層であり、かつ高電力下
で成膜されるため、反応室内壁の吸着物質が混入するも
のと考えられる。次にSiH4;5sccmを導入し、0.3Torr,5W
で放電させて30Åのa−Si:H膜第1層を形成した。この
ときには、成膜時の放電電力が低いためSiOHに起因する
発光ピークは見られなかった。 次いでGeH4;5sccm,D2:50sccmを導入し、0.5Torr,50Wで
放電させて20Åのa−Ge:H:D膜第2層を形成した。この
とき、第1層と違って膜中にDを含むために、GeODの発
光ピークを調べることにより、a−Ge:H:D第2層のみの
膜質を評価できる。この場合には、GeODによる発光がか
なりの強度で観測されたため、試料を準備室に退避し、
反応室の真空度のチェック、およびH2プラズマ放電処理
を行った。 このあと、a−Si:H/a−Ge:Hの積層膜を所定の膜厚に形
成した。成膜初期だけでなく成膜途中の膜質を評価する
ことで、反応装置の状態を的確に評価出来た。 なお、以上の例ではDを導入する場合のみについて示し
たが、FやClなどのハロゲンでもよいし、SiO2,Si3N4
などではHももちいることができる。また、成膜方法と
して、光CVD法やその他のCVD法や、スパッタ法、蒸着法
などでも同様に効果が得られる。また、材料としてGeや
Cを主成分とする薄膜でも同様の効果が得られる。
Example 1 A method for forming a thin film according to a first example of the present invention will be described with reference to FIG. An a-Si: H thin film was formed with a counter electrode type RF plasma CVD apparatus. The RF plasma CVD apparatus has an RF electrode 2 and a substrate holder 3 in a vacuum chamber 1, and comprises two KBr windows 4, an exhaust port 5, a raw material gas introduction port 6 and an optical detection gas introduction port 7. The SUS substrate 8 is placed on the substrate holder 3, and the infrared light source 9 and the infrared detector 10 are placed at the positions shown in FIG. 1 so that the infrared reflection spectrum of the substrate 8 can be measured. First, H 2 ; 50sccm, Si from the raw material gas inlet 6 into the reaction chamber
H 4; 2sccm, 1% PH 3 of diluted with H 2; introducing 5 sccm, 0.5 Torr, 1
Glow discharge was performed under a power of 00 W to form a 300 Å microcrystalline n-type layer on the SUS substrate. Next, the gas inlet 7 for optical detection
SiD 4 ; 5sccm was introduced from 0.5 to 5Torr, discharged at 5W, 50Å
I-type a-Si: D was formed. The discharge was stopped, infrared light was made incident from the infrared light source 9 at an incident angle of 80 degrees, and measurement was performed by using a Fourier transform infrared spectroscope as the infrared detector 10. Stretching vibrations such as SiH, SiH 2 , SiH 3 , and (SiH 2 ) n are observed at 2000-2100 cm -1 in Si-H bond, while 1500 cm in Si-D bond.
A spectrum with the same distribution as Si-H is seen near -1 . As a result of the measurement, the ratio of SiD 2 and SiD (SiD 2 / SiD) was 0.15. If SiD 2 / SiD = 0.2 or more, it means that the film quality is inferior, and a feedback mechanism is built in to send a signal to stop the film formation to the film formation controller. in this case,
The film formation was continued as it was. On the other hand, if a-Si: D is not formed, it is necessary to evaluate the film quality with the a-Si: H film, but even in the microcrystalline n-type layer that already exists on the substrate.
Since there is a Si-H bond, the film quality at the interface of the i-type layer cannot be evaluated separately. After this, from the source gas inlet 6
Introduce SiH 4 ; 5sccm, discharge at 0.5Torr, 5W to form 5000Å i-type layer, then SiH 4 ; 5sccm, CH 4 ; 10sccm, H 2 1
Introduce 5% of B 2 H 6 ; 5sccm diluted, discharge at 0.3Torr, 5W,
A 100Å p-type layer was formed. After this, 700 Å of ITO (Indium Tin Oxide) is used as a transparent electrode by electron beam evaporation method.
It formed and produced the solar cell. According to this method, the film quality can be evaluated at the beginning of the formation of the i-type layer, so that the defective rate at the device stage can be significantly reduced. Example 2 An a-Si film was formed on the SUS substrate 11 by the plasma CVD apparatus shown in FIG.
An N: H / a-Si: H multilayer thin film was formed. This will be shown below in accordance with FIG. SiH 4 ; 5sccm, NH 3 ; 10sccm, N 2 ; 20sccm introduced, 0.3Torr, 5
Discharge at W to deposit 20Å a-SiN: H film 12 first layer, then Si
Introduce H 4 ; 5sccm, discharge at 0.5Torr, 2W, and a- of 30Å
A second layer of Si: H film 13 was formed. Next, the third layer a-SiN: H film 1
After 2 was formed in the same manner as the first layer, D 2 was introduced from the gas inlet 7 for optical detection during the formation of the fourth layer of the a-Si: H film, and they were reacted at the same time. As a result, the a-Si: H: D film 14 was formed. Then, a polarizer was installed between the infrared light source 9 and the KBr window 4, and the infrared absorption spectra were measured for two cases, parallel and perpendicular to the incident surface, and the ratio thereof was obtained. As a result, Si
Not only -H and Si-D but also ND bond peaks were observed.
That is, the bonding state of only the fourth layer could be evaluated by paying attention to the peak regarding D. In this case, a-Si:
It was possible to detect that N was mixed in the H: D film during film formation. After that, high vacuum evacuation at the time of switching the respective ultra-thin film layer forming gas is made longer than at the beginning to prevent mixing of N, and the a-SiN: H / a-Si: H structure is repeated 20 times to form a superstructure thin film. Formed. Example 3 On the SUS substrate 11, using the plasma CVD apparatus shown in FIG.
An e: H / a-Si: H multilayer thin film was formed. GeH 4 ; 5sccm, H 2 ; 50scc
m was introduced, and discharge was performed at 0.5 Torr and 50 W to form a 20 Å a-Ge: H film first layer. An infrared detector 10 is installed outside the KBr window 4 to measure infrared emission from the sample. Ge-H, the emission spectrum due to Ge-H 2 was observed the absorption spectrum identical wavelength. However, along with this, a peak due to GeOH was also seen. It is considered that this thin film is the first layer and is formed under high power, so that the adsorbed substance on the inner wall of the reaction chamber is mixed. Then SiH 4 ; 5sccm was introduced, 0.3Torr, 5W
Was discharged to form a 30-Å a-Si: H film first layer. At this time, no emission peak due to SiOH was observed because the discharge power during film formation was low. Then GeH 4; 5sccm, D 2: 50sccm introduced, 0.5 Torr, to discharge at 50 W 20 Å of a-Ge: H: forming a D film second layer. At this time, unlike the first layer, since D is contained in the film, the film quality of only the a-Ge: H: D second layer can be evaluated by examining the emission peak of GeOD. In this case, since the emission by GeOD was observed at a considerable intensity, the sample was evacuated to the preparation room,
The degree of vacuum in the reaction chamber was checked, and H 2 plasma discharge treatment was performed. Then, a laminated film of a-Si: H / a-Ge: H was formed to a predetermined thickness. By evaluating not only the initial film formation but also the film quality during film formation, the state of the reactor could be evaluated accurately. In the above example, only the case of introducing D has been shown, but halogen such as F or Cl may be used, or SiO 2 , Si 3 N 4 may be used.
You can also use H in such cases. Further, as a film forming method, the same effect can be obtained by a photo CVD method, another CVD method, a sputtering method, an evaporation method, or the like. The same effect can be obtained with a thin film whose main component is Ge or C.

【発明の効果】【The invention's effect】

本発明に依れば、基板上に薄膜を形成する際に、薄膜中
の任意の膜厚方向部分の膜質を成膜中に評価できるの
で、膜質不良による素子不良を大幅に低減できる。
According to the present invention, when a thin film is formed on a substrate, the film quality of an arbitrary film thickness direction portion in the thin film can be evaluated during film formation, so that element defects due to poor film quality can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る薄膜の形成方法の1実施例の説明
のための薄膜の形成装置の概略断面図であり、第2図は
本発明の方法により形成した太陽電池の略断面図であ
る。 符号の説明 1……真空チャンバ、2……RF電極、3……基板ホル
ダ、4……KBr窓、5……排気口、6……原料ガス導入
口、7……光学検出用ガス導入口、8……SUS基板、9
……赤外光源、10……赤外検出器、11……SUS基板、12
……a−SiN:H膜、13……a−Si:H膜、14……a−Si:H:
D膜。
FIG. 1 is a schematic sectional view of a thin film forming apparatus for explaining one embodiment of a thin film forming method according to the present invention, and FIG. 2 is a schematic sectional view of a solar cell formed by the method of the present invention. is there. Explanation of symbols 1 ... Vacuum chamber, 2 ... RF electrode, 3 ... Substrate holder, 4 ... KBr window, 5 ... Exhaust port, 6 ... Raw material gas inlet port, 7 ... Optical detection gas inlet port , 8 ... SUS substrate, 9
...... Infrared light source, 10 ... Infrared detector, 11 ... SUS substrate, 12
... a-SiN: H film, 13 ... a-Si: H film, 14 ... a-Si: H:
D membrane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 晴夫 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 嶋田 寿一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Haruo Ito 1-280 Higashi Koigokubo, Kokubunji City, Tokyo Inside Hitachi Central Research Laboratory (72) Inventor Toshikazu Shimada 1-280 Higashi Koikeku, Tokyo Kokubunji City Hitachi Ltd. Central Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】薄膜形成用原料を基板上に供給し、該基板
上に上記薄膜形成用原料から成る第1の薄膜を形成する
第1の工程と、上記薄膜形成用原料の他に、上記薄膜形
成用原料の主要構成元素以外の元素で実質的に膜質に影
響を及ぼさない元素を上記基板上に供給し、上記基板上
に上記薄膜形成用原料の他に上記膜質に影響を及ぼさな
い元素を含む第2の薄膜を形成する第2の工程と、上記
第2の薄膜中における上記膜質に影響を及ぼさない元素
と上記薄膜形成用原料の構成元素との化学的結合状態を
検出する第3の工程を有することを特徴とする薄膜の形
成方法。
1. A first step of supplying a thin film forming raw material onto a substrate to form a first thin film made of the thin film forming raw material on the substrate; An element other than the main constituent elements of the thin film-forming raw material that does not substantially affect the film quality is supplied onto the substrate, and an element that does not affect the film quality other than the thin film-forming raw material on the substrate. And a second step of forming a second thin film containing the element, and a third step of detecting a chemical bonding state between an element that does not affect the film quality in the second thin film and a constituent element of the thin film forming raw material. A method for forming a thin film, comprising the steps of:
【請求項2】上記膜質に影響を及ぼさない元素は、H,D,
若しくはハロゲンのいずれかである請求項1記載の薄膜
の形成方法。
2. The elements which do not affect the film quality are H, D,
The method for forming a thin film according to claim 1, wherein the thin film is halogen or halogen.
JP2133841A 1990-05-25 1990-05-25 Method of forming thin film Expired - Fee Related JPH073815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133841A JPH073815B2 (en) 1990-05-25 1990-05-25 Method of forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133841A JPH073815B2 (en) 1990-05-25 1990-05-25 Method of forming thin film

Publications (2)

Publication Number Publication Date
JPH0429312A JPH0429312A (en) 1992-01-31
JPH073815B2 true JPH073815B2 (en) 1995-01-18

Family

ID=15114294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133841A Expired - Fee Related JPH073815B2 (en) 1990-05-25 1990-05-25 Method of forming thin film

Country Status (1)

Country Link
JP (1) JPH073815B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982020A (en) 1997-04-28 1999-11-09 Lucent Technologies Inc. Deuterated bipolar transistor and method of manufacture thereof
US6252270B1 (en) 1997-04-28 2001-06-26 Agere Systems Guardian Corp. Increased cycle specification for floating-gate and method of manufacture thereof
KR100353328B1 (en) * 1999-03-15 2002-09-18 주성엔지니어링(주) Method of forming TiN thin film
US6365511B1 (en) 1999-06-03 2002-04-02 Agere Systems Guardian Corp. Tungsten silicide nitride as a barrier for high temperature anneals to improve hot carrier reliability
JP2021195609A (en) * 2020-06-17 2021-12-27 東京エレクトロン株式会社 Deposition method and deposition apparatus

Also Published As

Publication number Publication date
JPH0429312A (en) 1992-01-31

Similar Documents

Publication Publication Date Title
Henrion et al. Spectroscopic investigations of hydrogen termination, oxide coverage, roughness, and surface state density of silicon during native oxidation in air
Beyer et al. Hydrogen stability in amorphous germanium films
Fortunato et al. Thin film position sensitive detector based on amorphous silicon p–i–n diode
AU2006310865A1 (en) Antireflective coating on solar cells and method for the production of such an antireflective coating
JPH073815B2 (en) Method of forming thin film
Finger et al. Defects in microcrystalline silicon prepared with hot wire CVD
Åbom et al. Influence of gate metal film growth parameters on the properties of gas sensitive field-effect devices
Kamineni et al. Extension of far UV spectroscopic ellipsometry studies of high-κ dielectric films to 130 nm
US20080207003A1 (en) Production method of semiconductor apparatus
Berti et al. Physico-chemical properties of photo-CVD silicon nitride thin films
JP3086926B2 (en) Method for forming silicon oxide film
Fortner et al. Raman scattering of amorphous germanium clusters and ultrathin films
JPH0587171B2 (en)
JPH01301506A (en) Production of hydrogenated amorphous carbon thin film
Drevillon et al. Electronic structure studies of plasma-deposited amorphous silicon
Liu et al. Properties of amorphous silicon-germanium films and devices deposited at higher growth rates
JP2654456B2 (en) Manufacturing method of high quality IGFET
Manfredotti et al. High quality hydrogenated amorphous silicon carbon layers as obtained by a particular photochemical vapor deposition method
Jolly et al. Structural and electrical properties of Ta2O5 thin films deposited on Si (100) from Ta (OC2H5) 5 precursor
Hazra et al. Spectroscopic ellipsometry for the characterization of the morphology of ultra-thin thermal CVD amorphous and nanocrystalline silicon thin films
Serenelli et al. Hydrogenated silicon sub-oxide film for an effective and thermal stable silicon surface passivation
Theye Optical absorption in amorphous semiconductor films
Kortea et al. Direct determination of the band offset in ALD-grown ZnO/hydrogenated amorphous silicon heterojunctions from XPS valence band spectra
Kröncke et al. Effect of O
Bertran et al. Effects of deposition temperature on properties of rf glow discharge amorphous silicon thin films

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees