JPH07318630A - Electrooptic apparatus - Google Patents

Electrooptic apparatus

Info

Publication number
JPH07318630A
JPH07318630A JP11297294A JP11297294A JPH07318630A JP H07318630 A JPH07318630 A JP H07318630A JP 11297294 A JP11297294 A JP 11297294A JP 11297294 A JP11297294 A JP 11297294A JP H07318630 A JPH07318630 A JP H07318630A
Authority
JP
Japan
Prior art keywords
target
image
photodetector
distance
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11297294A
Other languages
Japanese (ja)
Other versions
JP3143319B2 (en
Inventor
Yohei Nishitani
洋平 西谷
Katsumi Yamanaka
克己 山中
Takashi Kurokawa
孝 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Mitsubishi Electric Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP06112972A priority Critical patent/JP3143319B2/en
Publication of JPH07318630A publication Critical patent/JPH07318630A/en
Application granted granted Critical
Publication of JP3143319B2 publication Critical patent/JP3143319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PURPOSE:To shorten the time required for calculating the distance by providing an areal rangefinder for calculating the distance up to a target, along with the relative speed thereof, based on the number of pixels of a target image received from an optical detector, a drive processing section, and a signal processor and the variation thereof with time. CONSTITUTION:A servo mechanism 4b drives a suspended optical system 1 in the direction of view axis. A signal processor 5b detects a target based on an output image signal from a drive processor 3a and measures the number of pixels of the target image. An areal rangefinder 8 prestored with the area of a fighter viewed from the front, for example, calculates the distance up to a target fighter from the area of target image according to a formula satisfying the area of the fighter viewed from the front, the number of pixels of a target image, the angle of one pixel, and the target distance. In the formula, (r) represents the target distance, S represents the area of the fighter viewed from the front, (d) represents the area of the target image, and (kl) represents the angle of one pixel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電子光学機器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electro-optical device.

【0002】[0002]

【従来の技術】図11は従来の電子光学機器の構成を示
すもので、1は入射光を集光して結像するための光学
系、2aは結像された光を光電変換する光検出器、3a
は光検出器2aを駆動するとともにその出力を処理して
画像信号を出力する駆動処理器、4aは懸架した光学系
1の視軸方向を駆動するとともに光学系1の視軸方向を
出力するサーボ機構、5aは駆動処理器3aからの出力
画像信号から目標を検出するとともにサーボ機構4aか
らの視軸方向を用いて目標方位を算出する信号処理器、
6は自機の位置変化を検出する位置検出器、7は信号処
理器5aからの目標方位と位置検出器6からの位置変化
とから目標との距離を次式によって算出する角度測距器
である。
2. Description of the Related Art FIG. 11 shows a configuration of a conventional electronic optical apparatus. Reference numeral 1 is an optical system for condensing incident light to form an image, and 2a is a photodetector for photoelectrically converting the formed light. Bowl, 3a
Is a drive processor for driving the photodetector 2a, processing the output thereof and outputting an image signal, and 4a is a servo for driving the visual axis direction of the suspended optical system 1 and outputting the visual axis direction of the optical system 1. The mechanism 5a is a signal processor that detects the target from the output image signal from the drive processor 3a and calculates the target azimuth using the visual axis direction from the servo mechanism 4a.
6 is a position detector that detects a change in the position of the own device, and 7 is an angle rangefinder that calculates the distance to the target from the target azimuth from the signal processor 5a and the position change from the position detector 6 by the following formula is there.

【0003】[0003]

【数1】 [Equation 1]

【0004】図11の従来の装置において角度測距器7
は、目標を等速直線運動をしていると仮定し、一定時間
毎に視軸方向を測定した自機の位置を(XS1,YS1,Z
S1)(XS2,YS2,ZS2)(XS3,YS3,ZS3
(XS4,YS4,ZS4)、目標の位置を(Xt1,Yt1,Z
t1)(Xt2,Yt2,Zt2)(Xt3,Yt3,Zt3)、(X
t4,Yt4,Zt4)、目標の方位を(ψ1 ,θ1 )(ψ
2 ,θ2 )(ψ3 ,θ3 )(ψ4 ,θ4 )とすると、目
標は等速直線運動であるので、目標の相対位置には”数
1”の関係が成り立つとしていた。
In the conventional device shown in FIG. 11, the angle range finder 7 is used.
Assumes that the target is moving in a straight line at a constant velocity, and the position of its own device, which measures the visual axis direction at regular intervals, is (X S1 , Y S1 , Z
S1 ) (X S2 , Y S2 , Z S2 ) (X S3 , Y S3 , Z S3 )
(X S4 , Y S4 , Z S4 ) and the target position is (X t1 , Y t1 , Z
t1 ) (X t2 , Y t2 , Z t2 ) (X t3 , Y t3 , Z t3 ), (X
t4 , Y t4 , Z t4 ), and the target azimuth is (ψ 1 , θ 1 ) (ψ
2 , θ 2 ) (ψ 3 , θ 3 ) (ψ 4 , θ 4 ), the target is a constant-velocity linear motion, and therefore, the relation of the target relative position is expressed by the equation (1).

【0005】[0005]

【数2】 [Equation 2]

【0006】また、目標方位と目標の位置には”数2”
の関係が成り立つとしていた。
In addition, "number 2" is added to the target azimuth and the target position.
Was supposed to hold.

【0007】[0007]

【数3】 [Equation 3]

【0008】従って、目標の位置のXt1,Xt2,X
t3は”数3”の行列を解くことによって求めていた。
Therefore, X t1 , X t2 , X of the target position
t3 was calculated by solving the matrix of " Equation 3".

【0009】[0009]

【数4】 [Equation 4]

【0010】さらに、時刻tn における目標の相対位置
のYtn,Ztnは”数4”より求めていた。
Further, Y tn and Z tn of the target relative position at time t n are obtained from " Equation 4".

【0011】[0011]

【数5】 [Equation 5]

【0012】以上の処理によって求められた目標の位置
(Xt4,Yt4,Zt4)を、”数5”に代入することで目
標との距離rn を算出していた。
The target position (X t4 , Y t4 , Z t4 ) obtained by the above process is substituted into "Equation 5" to calculate the distance r n to the target.

【0013】[0013]

【発明が解決しようとする課題】上記のような電子光学
機器を、例えば戦闘機に搭載し火器管制装置の一部とし
て使用する場合、短時間で測距できることと、脅威度の
判定ができることが要求されるが、上記従来の電子光学
機器では、目標との距離を算出するまでの時間が長く、
加えて目標の識別機能及び動向監視機能を保有していな
いという問題があった。
When the above electro-optical device is mounted on, for example, a fighter and used as a part of a fire control system, it is possible to measure the distance in a short time and determine the degree of threat. Although required, in the above-mentioned conventional electro-optical device, it takes a long time to calculate the distance to the target.
In addition, there is a problem that it does not have a target identification function and trend monitoring function.

【0014】この発明は、上記のような課題を解決する
ためになされたもので、目標との距離算出までの時間を
短縮できる電子光学機器を供給することを目的としてい
る。
The present invention has been made to solve the above problems, and an object thereof is to provide an electro-optical device capable of shortening the time until the distance to the target is calculated.

【0015】また、目標の機種を識別する電子光学機器
を供給することを目的としている。
It is another object of the present invention to provide an electro-optical device that identifies a target model.

【0016】また、目標の動向を監視する電子光学機器
を供給することを目的としている。
It is another object of the present invention to provide an electro-optical device for monitoring the trend of the target.

【0017】[0017]

【課題を解決するための手段】この発明にかかる電子光
学機器においては、目標画像の画素数から目標との距離
を算出することで、距離算出に要する時間を短縮する機
能を設けた。
The electro-optical device according to the present invention is provided with a function of shortening the time required for distance calculation by calculating the distance to the target from the number of pixels of the target image.

【0018】また、目標画像の輝度から目標との距離を
算出することで、距離算出に要する時間を短縮する機能
を設けた。
Further, a function is provided to reduce the time required for distance calculation by calculating the distance from the target from the brightness of the target image.

【0019】また、目標方位と自機の位置変化とから目
標との距離を算出し、算出した距離と目標画像の画素数
を用いて目標の面積を求めることで、目標の機種を識別
する機能を設けた。
A function of identifying the target model by calculating the distance to the target from the target azimuth and the change in the position of the own device and obtaining the target area using the calculated distance and the number of pixels of the target image. Was set up.

【0020】また、測距装置からの目標との距離情報と
目標画像の画素数を用いて目標の面積を求めることで、
目標の機種を識別する機能を設けた。
Further, by obtaining the area of the target by using the distance information to the target from the distance measuring device and the number of pixels of the target image,
A function was provided to identify the target model.

【0021】また、目標画像の輝度または輝度の時間変
化から目標を識別する機能を設けた。
Further, a function is provided for identifying the target from the brightness of the target image or the time change of the brightness.

【0022】また、複数波長帯の目標画像の輝度または
輝度の時間変化から目標を識別する機能を設けた。
Further, a function is provided for identifying the target from the brightness of the target image in a plurality of wavelength bands or the time change of the brightness.

【0023】[0023]

【作用】この発明における電子光学機器では、目標画像
の画素数から目標との距離を算出することで、距離算出
に要する時間を短縮する。
In the electro-optical device according to the present invention, the distance to the target is calculated from the number of pixels of the target image, thereby shortening the time required for calculating the distance.

【0024】また、目標画像の輝度から目標との距離を
算出することで、距離算出に要する時間を短縮する。
Further, by calculating the distance from the target from the brightness of the target image, the time required for calculating the distance can be shortened.

【0025】また、目標方位と自機の位置変化とから目
標との距離を算出し、算出した距離と目標画像の画素数
を用いて目標の面積を求めることで、目標の機種を識別
する。
Further, the target model is identified by calculating the distance to the target from the target azimuth and the change in the position of the own machine and obtaining the target area using the calculated distance and the number of pixels of the target image.

【0026】さらに、例えばレーダ装置等の他の測距装
置からの目標との距離情報と目標画像の画素数を用いて
目標の面積を求めることで、目標の機種を識別する。
Further, the target model is identified by obtaining the target area by using the distance information to the target from another distance measuring device such as a radar device and the number of pixels of the target image.

【0027】また、目標画像の輝度または輝度の時間変
化から目標を識別する。
Further, the target is identified from the brightness of the target image or the time change of the brightness.

【0028】また、複数波長帯の目標画像の輝度または
輝度の時間変化から目標を識別する。
Further, the target is identified from the brightness of the target image in a plurality of wavelength bands or the time change of the brightness.

【0029】[0029]

【実施例】【Example】

実施例1.図1はこの発明における一実施例を示す図で
あり、1,2a,3aは従来の装置と同一、4bは懸架
した光学系1の視軸方向を駆動するサーボ機構、5bは
駆動処理器3aの出力画像信号から目標を検出するとと
もに目標画像の画素数を計測する信号処理器、8は信号
処理器5bからの目標画像の画素数を用いて、例えば目
標は航空機目標のなかで最も脅威度の高い戦闘機であ
り、正面から接近することを前提として、目標との距離
及び目標の相対速度を算出する面積測距器である。図2
は正面から接近する戦闘機目標の目標画像を示した図で
ある。
Example 1. FIG. 1 is a diagram showing an embodiment of the present invention. Reference numerals 1, 2a and 3a are the same as those of a conventional apparatus, 4b is a servo mechanism for driving the suspended optical system 1 in the visual axis direction, and 5b is a drive processor 3a. Signal processor for detecting the target from the output image signal and measuring the number of pixels of the target image, and 8 using the number of pixels of the target image from the signal processor 5b, for example, the target is the most dangerous degree among the aircraft targets. It is a high fighter, and is an area rangefinder that calculates the distance to the target and the relative speed of the target on the assumption that they approach from the front. Figure 2
FIG. 4 is a diagram showing a target image of a fighter target approaching from the front.

【0030】[0030]

【数6】 [Equation 6]

【0031】例えば、面積測距器8は、正面から接近す
る戦闘機目標は図2に示す画像となることから、正面か
ら見た戦闘機の面積をあらかじめ保持しておくことによ
り、正面から見た戦闘機の面積Sと、目標画像の画素数
dと、一画素が見張る角度k1と、目標距離rとの間に
成り立つ関係式”数6”より、目標画像の面積dから戦
闘機目標の距離rを算出する。例えば、脅威となる戦闘
機の正面から見た目標が10m2 とする場合、一画素の
見張る角度が1mrad×1mradである光検出器を
用いて得られた目標画像の画素数が10画素であったと
すると、目標の距離は1000mと算出される。
For example, in the area range finder 8, since the fighter target approaching from the front becomes the image shown in FIG. 2, the area of the fighter seen from the front is held in advance so that the fighter sees from the front. The area S of the fighter, the number d of pixels of the target image, the angle k1 at which one pixel is watched, and the target distance r Calculate the distance r. For example, if the target seen from the front of the fighter, which is a threat, is 10 m 2 , then the number of pixels in the target image obtained using a photodetector with a 1-pixel watching angle of 1 mrad × 1 mrad is 10 pixels. Then, the target distance is calculated to be 1000 m.

【0032】[0032]

【数7】 [Equation 7]

【0033】また2つの異なる時刻t0 ,t1 (=t0
+Δt)における目標画像の面積dt0,dt1から求めた
戦闘機目標との距離rt0,rt1から”数7”より戦闘機
目標の相対速度drを求める。
Two different times t 0 , t 1 (= t 0
+ Δt), the relative velocity dr of the fighter target is calculated from “Equation 7” from the distances r t0 and r t1 to the fighter target calculated from the areas d t0 and d t1 of the target image.

【0034】実施例2.図3はこの発明における他の実
施例を示す図であり、1,2a,3aは従来の装置と同
一、4bは実施例1と同一、5cは駆動処理器3の出力
画像信号から目標を検出するとともに目標画像の各画素
の輝度を計測する信号処理器、9は信号処理器5cから
の目標画像の各画素の輝度を用いて、目標画像の平均輝
度及び平均輝度の時間変化を求め、目標との距離及び目
標の相対速度を算出する輝度測距器である。図4は目標
との距離と輝度との関係を示した図である。
Example 2. FIG. 3 is a diagram showing another embodiment of the present invention. Reference numerals 1, 2a and 3a are the same as those of the conventional apparatus, 4b is the same as that of the first embodiment, and 5c is a target detected from the output image signal of the drive processor 3. A signal processor that measures the brightness of each pixel of the target image, and 9 uses the brightness of each pixel of the target image from the signal processor 5c to obtain the average brightness of the target image and the time change of the average brightness, and the target It is a luminance range finder that calculates the distance to and the target relative speed. FIG. 4 is a diagram showing the relationship between the distance to the target and the brightness.

【0035】図3の構成において、輝度測距器9は、目
標の輝度と距離との間に図4に示す関係があることか
ら、目標の平均輝度データを距離を変数としてあらかじ
め保持しておき、目標画像の各画素の輝度から目標画像
の平均輝度を求め、あらかじめ保持しておいた目標の平
均輝度と照合して、目標画像の輝度と保持データとが一
致する距離を目標との距離と判定する。
In the configuration of FIG. 3, the luminance range finder 9 holds the target average luminance data in advance with the distance as a variable, because the relationship between the target luminance and the distance is as shown in FIG. , The average brightness of the target image is calculated from the brightness of each pixel of the target image, and the average brightness of the target that has been held in advance is compared, and the distance at which the brightness of the target image and the held data match is the distance to the target. judge.

【0036】また2つの異なる時刻t0 ,t1 (=t0
+Δt)における目標画像の輝度ht1,ht2から求めた
目標との距離rt0,rt1から”数7”より目標の相対速
度drを求める。
Two different times t 0 , t 1 (= t 0
At + Δt), the target relative speed dr is calculated from "Equation 7" from the distances r t0 and r t1 to the target calculated from the brightness h t1 and h t2 of the target image.

【0037】実施例3.図5はこの発明における他の実
施例を示す構成図であり、1,2a〜4a,6,7は従
来の装置と同一、5dは駆動処理器3aの出力画像信号
から目標を検出し、目標画像の画素数を計測するととも
にサーボ機構4aからの視軸方向から目標方位を算出す
る信号処理器、10は信号処理器5dからの目標画像の
画素数と角度測距器7からの目標との距離とから目標の
面積を求め、例えば目標が爆撃機、戦闘機、ミサイルの
いずれであるかを識別する面積機種識別器である。
Example 3. FIG. 5 is a block diagram showing another embodiment of the present invention. Reference numerals 1, 2a to 4a, 6, 7 are the same as those of the conventional apparatus, and 5d is a target for detecting a target from an output image signal of the drive processor 3a. The signal processor 10, which measures the number of pixels of the image and calculates the target azimuth from the direction of the visual axis from the servo mechanism 4a, includes the number of pixels of the target image from the signal processor 5d and the target from the angle range finder 7. It is an area type identifier for determining the area of the target from the distance and for identifying whether the target is a bomber, a fighter, or a missile.

【0038】[0038]

【数8】 [Equation 8]

【0039】例えば面積機種識別器10を、爆撃機の面
積S1と戦闘機の面積S2とミサイルの面積S3との間
にはS1>S2>S3の関係があることを用いて、爆撃
機の面積S1、戦闘機の面積S2、ミサイルの面積S3
をあらかじめ保持しておき、角度測距器7からの目標の
距離rと信号処理器5dからの目標画像の画素数dと、
一画素が見張る角度k1との間に成り立つ関係式が”数
8”より、目標の面積Sを算出して、保有データのS
1,S2,S3と比較して、目標の面積SがS1,S
2,S3のいずれの面積に最も近い値であるかを判定す
ることで、目標が爆撃機、戦闘機、ミサイルのいずれで
あるかを識別するように構成する。
For example, the area model identifier 10 is used to show that the area S1 of the bomber, the area S2 of the fighter, and the area S3 of the missile have a relationship of S1>S2> S3. S1, fighter area S2, missile area S3
Is held in advance, and the target distance r from the angle range finder 7 and the pixel number d of the target image from the signal processor 5d,
The target area S is calculated from the relational expression “Equation 8” that holds between the angle k1 at which one pixel is watched, and S of the held data is calculated.
Compared with 1, S2, S3, the target area S is S1, S
It is configured to identify whether the target is a bomber, a fighter, or a missile by determining which of the areas 2 and S3 has the closest value.

【0040】実施例4.また、図6に示す実施例のよう
に、実施例3の図5に示した位置検出器6と角度測距器
7との代わりに目標との距離を測定する測距装置とし
て、例えばレーダ装置11を用いることで、同様の効果
が期待できる。
Example 4. Further, as in the embodiment shown in FIG. 6, instead of the position detector 6 and the angle range finder 7 shown in FIG. 5 of the third embodiment, as a range finder for measuring a distance to a target, for example, a radar device By using 11, the same effect can be expected.

【0041】実施例5.図7はこの発明における他の実
施例を示す構成図であり、1は従来の装置と同一、4b
は実施例1と同一、5cは実施例2と同一、2bは3〜
5μm帯の赤外光を光電変換する光検出素子を使用した
光検出器、3bは光検出器2bを駆動するとともにその
出力を処理して画像信号を出力する駆動処理器、12は
信号処理器5からの目標画像の各画素の輝度から、目標
画像の平均輝度を算出して輝度の時間変化を求めて、例
えば戦闘機目標のアフターバーナー使用・火器発射有無
等の目標の動向を監視する輝度目標識別器である。図8
は一例として戦闘機がアフターバーナーを使用した場合
と、火器を発射した場合の目標からの3〜5μm帯放射
輝度の時間変化を示した図であり、81はアフターバー
ナー使用目標、82は火器発射目標を示している。
Example 5. FIG. 7 is a block diagram showing another embodiment of the present invention, where 1 is the same as the conventional device, 4b.
Is the same as in Example 1; 5c is the same as Example 2;
A photodetector using a photodetector that photoelectrically converts infrared light in the 5 μm band, 3b drives the photodetector 2b, processes the output thereof, and outputs an image signal, and 12 denotes a signal processor. From the brightness of each pixel of the target image from 5, the average brightness of the target image is calculated and the time change of the brightness is obtained, and for example, a brightness target that monitors the trend of the target such as afterburner use of the fighter target and whether or not firearms are fired It is a discriminator. Figure 8
Is a diagram showing a temporal change of 3-5 μm band radiance from a target when a fighter uses an afterburner and when firing a firearm as an example, 81 is an afterburner use target, and 82 is a firearm firing target. Shows.

【0042】例えば、輝度目標識別器12は、戦闘機目
標がアフターバーナーを使用した場合と、火器を発射し
た場合とを、3〜5μm帯での目標の放射輝度の減衰時
の時間変化率に図8に示す特性の違いがあることを用い
て、識別するように構成する。
For example, the brightness target discriminator 12 shows the time change rate when the radiance of the target is attenuated in the 3 to 5 μm band when the fighter target uses the afterburner and when the firearm is fired. It is configured to be identified by using the difference in characteristics shown in FIG.

【0043】実施例6.図9はこの発明における他の実
施例を示す構成図であり、1は従来の装置と同一、4b
は実施例1と同一、2bは3〜5μm帯の赤外光を光電
変換する光検出器、2cは8〜12μm帯の赤外光を光
電変換する光検出器、3bは光検出器2bを駆動すると
ともにその出力を処理して画像信号を出力する駆動処理
器、3cは光検出器2cを駆動するとともにその出力を
処理して画像信号を出力する駆動処理器、5eは駆動処
理器3bと駆動処理器3c各々の出力画像信号から目標
を検出するとともに目標画像の3〜5μm帯での各画素
の輝度と8〜12μm帯での各画素の輝度とを計測する
信号処理器、13は信号処理器5eからの目標画像の3
〜5μm帯での各画素の輝度と8〜12μm帯での各画
素の輝度とから、3〜5μm及び8〜12μm各々の波
長帯における目標画像の平均輝度を算出して、各々の波
長帯での目標画像の平均輝度の時間変化を求めて、目標
が接近・離隔・並進のいずれの状態にあるかを識別する
とともに、例えばアフターバーナー使用・火器発射の有
無を識別する複数波長輝度目標識別器である。図10は
例えば戦闘機目標が接近・離隔・並進している場合に、
目標が発射する8〜12μm帯での輝度の変化を示した
図であり、101は並進目標、102は接近目標、10
3は離隔目標である。また、3〜5μm帯での目標の放
射輝度についても図11と同様に、目標の相対運動によ
る変化特性がある。
Example 6. FIG. 9 is a block diagram showing another embodiment of the present invention, 1 being the same as the conventional apparatus, 4b
Is the same as in Example 1, 2b is a photodetector for photoelectrically converting infrared light in the 3 to 5 μm band, 2c is a photodetector for photoelectrically converting infrared light in the 8 to 12 μm band, and 3b is a photodetector 2b. A drive processor 3c for driving and processing the output thereof to output an image signal, a drive processor 3c for driving the photodetector 2c and processing the output thereof and outputting an image signal, 5e is a drive processor 3b. A signal processor for detecting the target from the output image signal of each drive processor 3c and measuring the luminance of each pixel in the 3-5 μm band and the luminance of each pixel in the 8-12 μm band of the target image, and 13 is a signal 3 of the target image from the processor 5e
The average brightness of the target image in each wavelength band of 3 to 5 μm and 8 to 12 μm is calculated from the brightness of each pixel in the ˜5 μm band and the brightness of each pixel in the 8 to 12 μm band, and In addition to identifying whether the target is approaching, separating, or translating by obtaining the time change of the average brightness of the target image of, the multi-wavelength brightness target classifier that identifies the use of afterburner and the presence or absence of firearm firing is there. Figure 10 shows, for example, when a fighter target is approaching, separating, or translating,
It is the figure which showed the change of the brightness | luminance in the 8-12 micrometer band which a target emits, 101 is a translational target, 102 is an approach target, 10
3 is a separation target. Similarly to FIG. 11, the target radiance in the 3 to 5 μm band also has a change characteristic due to the relative movement of the target.

【0044】複数波長輝度目標識別器13は、戦闘目標
が接近・離隔・並進している場合に、目標の輝度変化に
例えば図10に示す8〜12μm帯の放射輝度特性の違
いがあることを用いて、戦闘目標が接近・離隔・並進の
いずれの状態にあるかを識別するとともに、上記実施例
5の輝度目標識別器12と同一の方法で目標のアフター
バーナー使用・火器発射の有無を識別する。例えば、8
〜12μm帯での目標の画像の輝度変化が増加方向にあ
る場合は、接近、減少方向にある場合は離隔・変化がな
い場合は並進と判定する。目標の運動方向の識別につい
ては、もちろん3〜5μm帯の輝度変化を用いても良
い。また、両波長を融合した処理を行っても良い。
The multi-wavelength luminance target discriminator 13 determines that when the battle target is approaching, separating, or translating, there is a difference in the target luminance change, for example, in the radiance characteristic in the 8 to 12 μm band shown in FIG. It is used to identify whether the battle target is in the approaching, separating, or translating state, and also to identify whether the target afterburner is used or whether the firearm is fired by the same method as the luminance target discriminator 12 of the fifth embodiment. . For example, 8
When the change in the luminance of the target image in the .about.12 .mu.m band is in the increasing direction, it is determined to approach, and when it is in the decreasing direction, it is determined to be the translation when there is no separation / change. For identification of the target movement direction, it is of course possible to use a luminance change in the 3 to 5 μm band. Moreover, you may perform the process which fused both wavelengths.

【0045】この発明における電子光学機器では、目標
画像の画素数から目標との距離を算出することで、距離
算出に要する時間を短縮できる。
In the electro-optical device according to the present invention, by calculating the distance to the target from the number of pixels of the target image, the time required for calculating the distance can be shortened.

【0046】また、目標画像の輝度から目標との距離を
算出することで、距離算出に要する時間を短縮できる。
Further, by calculating the distance to the target from the brightness of the target image, the time required for calculating the distance can be shortened.

【0047】また、目標方位と自機の位置変化とから目
標との距離を算出し、算出した距離と目標画像の画素数
を用いて目標の面積を求めることで、目標の機種を識別
できる。
Further, the target model can be identified by calculating the distance to the target from the target azimuth and the change in the position of the own machine and obtaining the target area using the calculated distance and the number of pixels of the target image.

【0048】さらに、測距装置からの目標との距離情報
と目標画像の画素数を用いて目標の面積を求めること
で、目標の機種を識別できる。
Further, the target model can be identified by obtaining the target area using the distance information to the target from the distance measuring device and the number of pixels of the target image.

【0049】また、目標画像の輝度または輝度の時間変
化から目標を識別できる。
Further, the target can be identified from the brightness of the target image or the time change of the brightness.

【0050】また、複数波長帯の目標画像の輝度または
輝度の時間変化から目標を識別できる。
Further, the target can be identified from the brightness of the target image in a plurality of wavelength bands or the time change of the brightness.

【0051】[0051]

【発明の効果】以上説明したように、この発明における
電子光学機器では、目標測距時間の短縮、目標の識別が
可能となり、使い勝手の高機能な電子光学機器を入手で
きるという利点がある。
As described above, the electronic optical device according to the present invention has the advantages that the target distance measuring time can be shortened and the target can be identified, and the highly functional electronic optical device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】正面から接近する戦闘機目標の目標画像を示す
図である。
FIG. 2 is a diagram showing a target image of a fighter target approaching from the front.

【図3】この発明の実施例2を示す構成図である。FIG. 3 is a configuration diagram showing a second embodiment of the present invention.

【図4】目標の距離と輝度との関係を示す図である。FIG. 4 is a diagram showing a relationship between a target distance and brightness.

【図5】この発明の実施例3を示す構成図である。FIG. 5 is a configuration diagram showing a third embodiment of the present invention.

【図6】この発明の実施例4を示す構成図である。FIG. 6 is a configuration diagram showing a fourth embodiment of the present invention.

【図7】この発明の実施例5を示す構成図である。FIG. 7 is a configuration diagram showing a fifth embodiment of the present invention.

【図8】3〜5μm帯での目標の輝度変化を示す図であ
る。
FIG. 8 is a diagram showing a target luminance change in a 3 to 5 μm band.

【図9】この発明の実施例6を示す構成図である。FIG. 9 is a configuration diagram showing a sixth embodiment of the present invention.

【図10】8〜12μm帯での目標の輝度変化を示す図
である。
FIG. 10 is a diagram showing a target luminance change in an 8 to 12 μm band.

【図11】従来の電子光学機器を示す構成図である。FIG. 11 is a configuration diagram showing a conventional electro-optical device.

【符号の説明】[Explanation of symbols]

1 光学系 2 光検出器 3 駆動処理器 4 サーボ機構 5 信号処理器 6 位置検出器 7 角度測距器 8 面積測距器 9 輝度測距器 10 面積機種識別器 11 レーダ装置 12 輝度目標識別器 13 複数波長輝度目標識別器 DESCRIPTION OF SYMBOLS 1 Optical system 2 Photodetector 3 Drive processor 4 Servo mechanism 5 Signal processor 6 Position detector 7 Angle range finder 8 Area range finder 9 Brightness range finder 10 Area model classifier 11 Radar device 12 Brightness target classifier 13 Multi-wavelength luminance target classifier

フロントページの続き (72)発明者 黒川 孝 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内Front page continuation (72) Inventor Takashi Kurokawa 325 Kamimachiya, Kamakura City Mitsubishi Electric Corporation Kamakura Factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 入射光を集光し結像するための光学系
と、結像された光を光電変換する光検出器と、前記光検
出器を駆動するとともにその出力を処理して画像信号を
出力する駆動処理器と、前記光学系を懸架し視軸方向を
駆動するサーボ機構と、前記駆動処理器の出力画像信号
から目標を検出するとともに目標画像の画素数の計測を
行う信号処理器と、前記信号処理器からの目標画像の画
素数及び画素数の時間変化から目標との距離及び目標の
相対速度を算出する面積測距器とを有することを特徴と
する電子光学機器。
1. An optical system for collecting and forming an image of incident light, a photodetector for photoelectrically converting the formed light, and a photodetector for driving the photodetector and processing the output thereof. , A servo mechanism that suspends the optical system and drives in the visual axis direction, and a signal processor that detects the target from the output image signal of the drive processor and measures the number of pixels of the target image. And an area range finder for calculating the distance to the target and the relative velocity of the target from the number of pixels of the target image from the signal processor and the temporal change of the number of pixels.
【請求項2】 入射光を集光し結像するための光学系
と、結像された光を光電変換する光検出器と、前記光検
出器を駆動するとともにその出力を処理して画像信号を
出力する駆動処理器と、前記光学系を懸架し視軸方向を
駆動するサーボ機構と、前記駆動処理器の出力画像信号
から目標を検出するとともに目標画像の輝度の計測を行
う信号処理器と、前記信号処理器からの目標画像の輝度
及び輝度の時間変化から目標との距離及び目標の相対速
度を算出する輝度測定器とを有することを特徴とする電
子光学機器。
2. An optical system for condensing and forming an image of incident light, a photodetector for photoelectrically converting the formed light, and a photodetector which drives the photodetector and processes its output. A drive processor that outputs a signal, a servo mechanism that suspends the optical system and drives the visual axis direction, and a signal processor that detects a target from the output image signal of the drive processor and measures the brightness of the target image. And a brightness measuring device for calculating a distance to the target and a relative speed of the target from the brightness of the target image from the signal processor and a temporal change of the brightness.
【請求項3】 入射光を集光し結像するための光学系
と、結像された光を光電変換する光検出器と、前記光検
出器を駆動するとともにその出力を処理して画像信号を
出力する駆動処理器と、前記光学系を懸架し視軸方向を
駆動するとともに前記光学系の視軸方向を出力するサー
ボ機構と、前記駆動処理器からの出力画像信号から目標
を検出するとともに目標画像の画素数の計測を行い、前
記サーボ機構からの視軸方向を用いて目標方位を算出す
る信号処理器と、自機の位置変化を検出する位置検出器
と、前記信号処理器からの目標方位と前記位置検出器か
らの位置変化信号とから目標との距離を算出する角度測
距器と、前記角度測距器からの目標との距離情報と前記
信号処理器からの目標画像の画素数とを用いて目標の機
種を識別する面積機種識別器とを有することを特徴とす
る電子光学機器。
3. An optical system for collecting and forming an image of incident light, a photodetector for photoelectrically converting the formed light, and a photodetector for driving the photodetector and processing the output thereof. And a servo mechanism that drives the visual axis direction by suspending the optical system and outputs the visual axis direction of the optical system, and detects a target from an output image signal from the drive processor. A signal processor that measures the number of pixels of the target image and calculates a target azimuth using the visual axis direction from the servo mechanism, a position detector that detects a position change of the own device, and a signal processor from the signal processor. An angle range finder that calculates the distance to the target from the target azimuth and the position change signal from the position detector, distance information to the target from the angle range finder, and pixels of the target image from the signal processor Area model that identifies target model using number and An electro-optical device having a discriminator.
【請求項4】 入射光を集光し結像するための光学系
と、結像された光を光電変換する光検出器と、前記光検
出器を駆動するとともにその出力を処理して画像信号を
出力する駆動処理器と、前記光学系を懸架し視軸方向を
駆動するサーボ機構と、前記駆動処理器からの出力画像
信号から目標を検出するとともに目標画像の画素数の計
測を行う信号処理器と、目標との距離を測定する測距装
置と、前記測距装置からの目標との距離情報と前記信号
処理器からの目標画像の画素数とを用いて目標の機種を
識別する面積機種識別器とを有することを特徴とする電
子光学機器。
4. An optical system for condensing and forming an image of incident light, a photodetector for photoelectrically converting the formed light, and an image signal for driving the photodetector and processing the output thereof. A drive processor that outputs a signal, a servo mechanism that suspends the optical system and drives the visual axis direction, and a signal processing that detects a target from an output image signal from the drive processor and measures the number of pixels of the target image. Device, a distance measuring device for measuring the distance to the target, an area model for identifying the target model using the distance information to the target from the distance measuring device and the number of pixels of the target image from the signal processor An electro-optical device having a discriminator.
【請求項5】 入射光を集光し結像するための光学系
と、結像された光を光電変換する光検出器と、前記光検
出器を駆動するとともにその出力を処理して画像信号を
出力する駆動処理器と、前記光学系を懸架し視軸方向を
駆動するサーボ機構と、前記駆動処理器からの出力画像
信号から目標を検出するとともに目標画像の輝度の計測
を行う信号処理器と、前記信号処理器からの目標画像の
輝度または輝度の時間変化から目標を識別する輝度目標
識別器を有することを特徴とする電子光学機器。
5. An optical system for collecting and forming an image of incident light, a photodetector for photoelectrically converting the formed light, and a photodetector for driving the photodetector and processing the output thereof. , A servo mechanism that suspends the optical system and drives in the visual axis direction, and a signal processor that detects the target from the output image signal from the drive processor and measures the brightness of the target image. And an intensity target discriminator that discriminates the target from the luminance of the target image from the signal processor or a temporal change in the luminance.
【請求項6】 入射光を集光し結像するための光学系
と、結像された光を光電変換する異なる波長帯に感度を
持つ複数の光検出器と、前記光検出器を駆動するととも
にその出力を処理して画像信号を出力する駆動処理器
と、前記光学系を懸架し視軸方向を駆動するサーボ機構
と、前記複数の駆動処理器各々からの出力画像信号から
目標を検出するとともに各々の目標画像の輝度の計測を
行う信号処理器と、前記信号処理器からの複数の目標画
像の輝度または輝度の時間変化から目標を識別する複数
波長輝度目標識別器を有することを特徴とする電子光学
機器。
6. An optical system for collecting and forming an image of incident light, a plurality of photodetectors sensitive to different wavelength bands for photoelectrically converting the formed light, and driving the photodetector. A drive processor that processes the output and outputs an image signal, a servo mechanism that suspends the optical system and drives in the visual axis direction, and a target is detected from the output image signals from each of the plurality of drive processors. Along with, a signal processor for measuring the brightness of each target image, and a multi-wavelength brightness target discriminator for discriminating the target from the brightness of the plurality of target images from the signal processor or the time change of the brightness are characterized. Electro-optical equipment to do.
JP06112972A 1994-05-26 1994-05-26 Electro-optical equipment Expired - Lifetime JP3143319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06112972A JP3143319B2 (en) 1994-05-26 1994-05-26 Electro-optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06112972A JP3143319B2 (en) 1994-05-26 1994-05-26 Electro-optical equipment

Publications (2)

Publication Number Publication Date
JPH07318630A true JPH07318630A (en) 1995-12-08
JP3143319B2 JP3143319B2 (en) 2001-03-07

Family

ID=14600176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06112972A Expired - Lifetime JP3143319B2 (en) 1994-05-26 1994-05-26 Electro-optical equipment

Country Status (1)

Country Link
JP (1) JP3143319B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030074967A (en) * 2002-03-15 2003-09-22 동광전자 주식회사 optical measuring method
JP2008134150A (en) * 2006-11-28 2008-06-12 Mitsubishi Electric Corp Image target identifying device
KR20160019065A (en) * 2013-06-13 2016-02-18 바스프 에스이 Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021777A1 (en) 2008-04-30 2009-11-05 Eugster/Frismag Ag Process for the preparation of a drink and beverage preparation device for carrying out the method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030074967A (en) * 2002-03-15 2003-09-22 동광전자 주식회사 optical measuring method
JP2008134150A (en) * 2006-11-28 2008-06-12 Mitsubishi Electric Corp Image target identifying device
KR20160019065A (en) * 2013-06-13 2016-02-18 바스프 에스이 Detector for optically detecting at least one object
JP2016529474A (en) * 2013-06-13 2016-09-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting at least one object
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Also Published As

Publication number Publication date
JP3143319B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
JPH07318630A (en) Electrooptic apparatus
US5001348A (en) Method and apparatus for recognizing the start and motion of objects
DK0617872T3 (en) Method and apparatus for video imaging of audience reactions
IL46945A (en) Target identification apparatus
GB2149141A (en) Day and night sighting apparatus
EP1515162B1 (en) Device for detecting optical and optoelectronic objects
JPS62223634A (en) Color deciding device
US20090179993A1 (en) System for detecting movement of a camera, camera comprising a system for detecting movement of a camera
CA2209610A1 (en) Optical range and speed detection system
JPS61135842A (en) Substance recognition system for a car
RU2478898C1 (en) Method of target identification and device to this end
RU2731880C1 (en) Method of generating digital multispectral television signals
EP1113240B1 (en) In-action boresight
JPS62194413A (en) Three-dimensional coordinate measuring instrument
US20240020875A1 (en) Method for determining a camera pose in a multi-camera system, computer program, machine-readable medium and control unit
RU2114373C1 (en) Method of missile control and device for its realization
EP0107425A3 (en) Radiation pattern change detection
JP7131870B1 (en) Imaging device
JP3368730B2 (en) Guiding device
JP3409455B2 (en) Infrared imaging device
JPH0354289B2 (en)
JP3354638B2 (en) Ranging device with pyroelectric infrared sensor
JP2593045B2 (en) Optical one-axis receiving system
JPS6315180A (en) Infrared source detector for flight body
JPH03262100A (en) Synchronizing light emitting system for airplane warning light

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20131222

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

EXPY Cancellation because of completion of term