JPH07317918A - Seal device for rotary type heat exchanger - Google Patents

Seal device for rotary type heat exchanger

Info

Publication number
JPH07317918A
JPH07317918A JP10984494A JP10984494A JPH07317918A JP H07317918 A JPH07317918 A JP H07317918A JP 10984494 A JP10984494 A JP 10984494A JP 10984494 A JP10984494 A JP 10984494A JP H07317918 A JPH07317918 A JP H07317918A
Authority
JP
Japan
Prior art keywords
seal member
heat exchanger
rotary heat
seal
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10984494A
Other languages
Japanese (ja)
Inventor
Masahiro Nagae
正浩 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10984494A priority Critical patent/JPH07317918A/en
Publication of JPH07317918A publication Critical patent/JPH07317918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Devices (AREA)

Abstract

PURPOSE:To prevent irregular abrasion of a seal member by using a bellows type energizing member for a seal member in contact with a rotary storage rotor in operation of a rotary type heat exchanger and pressing a noncontact part in the seal member central part by high gas pressure in operating the heat exchanger so as to make pressure contact with the heat storage rotor face. CONSTITUTION:A seal device comprises an outward open bellows 7, a flange 8 abutting on the bellows 7, and a seal member 90. The seal member 90 comprises an approximately D-shaped spring member 91, the first seal member 92 attached to the outer circumferential side of the spring member 91, and the second seal member 93 attached to the internal circumferential side of the spring part 91. The spring member 91 comprises two inclined faces 91a, 91b and a spring part 91c for connecting the both. High internal pressure acts on the bellows 7 at rated operation so as to enlarge the bellows 7. Therefore, a part which is in a noncontact state during inoperative time is pressurized so that the seal member 90 is uniformly put in pressure contact with a storage rotor 1 and a reduction gear 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は回転式熱交換器のシール
装置に関し、特に、ガスタービン機関から排出される排
気ガスの熱を利用して、ガスタービン機関への吸入空気
を加熱する用途等に使用される回転式熱交換器における
シール装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary heat exchanger seal device, and more particularly, to use the heat of exhaust gas discharged from a gas turbine engine to heat intake air to the gas turbine engine. The present invention relates to a sealing device in a rotary heat exchanger used in.

【0002】[0002]

【従来の技術】一般に、ガスタービン機関では排気ガス
の熱を蓄熱式熱交換器によって蓄え、蓄えた熱を利用し
て吸入空気の温度を上昇させ、排気ガスの熱を有効に活
用して機関の熱効率を高めることが行われている。これ
は、ガスタービン機関は元来、部分負荷での燃料消費率
が悪く、部分負荷での使用頻度が高い自動車用等に使用
されるガスタービン機関では、部分負荷での燃料消費率
を向上するために吸気を加熱して燃焼器における温度上
昇を補助する蓄熱式熱交換器が用いられているのであ
る。そして、この蓄熱式熱交換器としては、ハニカム状
の蓄熱板をケーシング内で回転させて効率良く熱交換を
行う回転式熱交換器が使用される。
2. Description of the Related Art Generally, in a gas turbine engine, the heat of exhaust gas is stored by a heat storage type heat exchanger, the temperature of intake air is raised by utilizing the stored heat, and the heat of exhaust gas is effectively utilized to produce an engine. The thermal efficiency of is being increased. This is because the gas turbine engine originally has a low fuel consumption rate under partial load, and the gas turbine engine used for automobiles and the like that is frequently used under partial load improves the fuel consumption rate under partial load. Therefore, a heat storage type heat exchanger is used which heats the intake air to assist the temperature rise in the combustor. As the heat storage heat exchanger, there is used a rotary heat exchanger that efficiently rotates heat by rotating a honeycomb heat storage plate in the casing.

【0003】図6は自動変速機付の自動車に搭載され
る、熱交換器を備えた従来の二軸式ガスタービン機関の
一般的な構成の一例を示すものである。図6において、
Cはコンプレッサ、HEは回転式熱交換器、CCは燃焼
器、CTはコンプレッサタービンであり、コンプレッサ
CとコンプレッサタービンCTとは回転軸にて直結さ
れ、燃焼器CCにはアクチュエータA1を介して燃料が
供給されている。吸入空気(以下吸気という)はコンプ
レッサCにて圧縮され、熱交換器HEにて予熱され、燃
焼器CCにて燃料と混合されて燃焼し、その燃焼ガスが
コンプレッサタービンCTを回転させる。このコンプレ
ッサタービンCTとコンプレッサCと燃焼器CCとは総
称してガスジェネレータと呼ばれることもあり、このコ
ンプレッサタービンCTの回転数がコンプレッサCの圧
縮度を左右する。コンプレッサタービンCTを駆動した
燃焼ガスは、アクチュエータA2に調整される可変ノズ
ルVNを経てパワタービン (出力タービン) PTを駆動
した後、熱交換器HEを経て排気ガスとなって大気に排
出される。
FIG. 6 shows an example of a general structure of a conventional two-shaft gas turbine engine equipped with a heat exchanger, which is mounted on a vehicle with an automatic transmission. In FIG.
C is a compressor, HE is a rotary heat exchanger, CC is a combustor, CT is a compressor turbine, and the compressor C and the compressor turbine CT are directly connected by a rotary shaft, and the combustor CC is fueled via an actuator A1. Is being supplied. Intake air (hereinafter referred to as intake air) is compressed by the compressor C, preheated by the heat exchanger HE, mixed with fuel by the combustor CC and burned, and the combustion gas rotates the compressor turbine CT. The compressor turbine CT, the compressor C, and the combustor CC are sometimes collectively referred to as a gas generator, and the rotation speed of the compressor turbine CT affects the compression degree of the compressor C. The combustion gas that drives the compressor turbine CT drives the power turbine (output turbine) PT through the variable nozzle VN adjusted by the actuator A2, and then passes through the heat exchanger HE to be discharged as exhaust gas to the atmosphere.

【0004】ガスジェネレータの起動は、コンプレッサ
Cの回転軸上に設けられたフロントギヤF/Gを、クラ
ッチ内蔵のスタータSMによって回転させることによっ
て行われる。また、アクチュエータA1は制御回路CONT
からの指令によって燃料を燃焼器CCに供給し、アクチ
ュエータA2は制御回路CONTからの指令によって可変ノ
ズルVNの開度を調整する。この制御回路CONTには、ア
クセルペダルの開度や図示しないセンサからの機関の運
転状態パラメータが入力されており、制御回路CONTは機
関の運転状態に応じてアクチュエータA1, A2を駆動
する。
The gas generator is started by rotating a front gear F / G provided on the rotary shaft of the compressor C by a starter SM with a built-in clutch. Further, the actuator A1 is a control circuit CONT
The fuel is supplied to the combustor CC according to the command from the actuator A2, and the actuator A2 adjusts the opening degree of the variable nozzle VN according to the command from the control circuit CONT. The opening degree of the accelerator pedal and the engine operating state parameter from a sensor (not shown) are input to the control circuit CONT, and the control circuit CONT drives the actuators A1 and A2 according to the operating state of the engine.

【0005】以上が二軸式ガスタービンGTの構成であ
り、パワタービンPTの回転は減速歯車R/Gによって
減速されて自動変速機A/Tに伝えられ、シフト状態に
応じた回転数に変換された後に差動歯車Dを介して車輪
Wに伝達される。なお、一般に、図6のの位置の吸気
圧をP3 、の位置の温度をT4 というように、吸気圧
Pや温度Tに付された添え字は、○で囲まれた番号の位
置の吸気圧Pや温度Tを示す。
The above is the configuration of the two-shaft gas turbine GT. The rotation of the power turbine PT is decelerated by the reduction gear R / G and transmitted to the automatic transmission A / T to be converted into the number of rotations according to the shift state. After that, it is transmitted to the wheels W via the differential gear D. In general, the intake pressure at the position in FIG. 6 is P 3 , and the temperature at the position is T 4 , so that the subscripts attached to the intake pressure P and the temperature T indicate the positions of the numbers circled by ○. The intake pressure P and the temperature T are shown.

【0006】図6に示した二軸式ガスタービンGTにお
ける回転式熱交換器HEは、ハニカム状の蓄熱ロータ1
が減速ギヤ2およびパワタービンの駆動軸と連動するシ
ャフト3により低圧排気ガス通路5と高圧吸気通路6と
を横切って回転して熱交換を行うようになっている。従
って、この回転式熱交換器HEでは、ケーシング4内に
おいて蓄熱ロータ1に当接して高圧吸気と低圧排気ガス
とを密封、シールするシール部材9と、このシール部材
9を付勢するベローズ7とを備えたシール装置が高圧吸
気の漏洩を防止して性能を向上するための重要な構成要
素となっている。
The rotary heat exchanger HE in the two-shaft gas turbine GT shown in FIG.
Is rotated across a low pressure exhaust gas passage 5 and a high pressure intake passage 6 by a reduction gear 2 and a shaft 3 which is interlocked with a drive shaft of a power turbine to perform heat exchange. Therefore, in this rotary heat exchanger HE, the seal member 9 that abuts the heat storage rotor 1 in the casing 4 to seal and seal the high-pressure intake air and the low-pressure exhaust gas, and the bellows 7 that urges the seal member 9. The sealing device provided with is an important component for preventing leakage of high-pressure intake air and improving performance.

【0007】このシール装置は、熱交換器HEのケーシ
ング4内に軸支した円板状の蓄熱ロータ1の端面に当接
するシール部材9と、これに対向するケーシング4の内
壁に固着されるフランジ8と、これらシール部材9とフ
ランジ8との間に介装される断面が略V字状をしたベロ
ーズ7とから構成されている。高温側のフランジ8とシ
ール部材9は略θ形状、または略D形状と略C形状のを
組み合わせた形状をしており、低温側のフランジ8とシ
ール部材9は略D形状をしている。このため、図6から
も分かるように、高温低圧の排気ガスと低温低圧の排気
ガスの通路には略D形状のベローズ7が使用され、高温
高圧吸気の通路には略C形状のベローズ7が使用され
る。
In this sealing device, a sealing member 9 is in contact with an end surface of a disk-shaped heat storage rotor 1 axially supported in a casing 4 of a heat exchanger HE, and a flange fixed to an inner wall of the casing 4 facing the sealing member 9. 8 and a bellows 7 having a substantially V-shaped cross section interposed between the seal member 9 and the flange 8. The high temperature side flange 8 and the seal member 9 have a substantially θ shape or a combination of a substantially D shape and a substantially C shape, and the low temperature side flange 8 and the seal member 9 have a substantially D shape. Therefore, as can be seen from FIG. 6, a substantially D-shaped bellows 7 is used for the passages of the high-temperature low-pressure exhaust gas and the low-temperature low-pressure exhaust gas, and a substantially C-shaped bellows 7 is used for the high-temperature high-pressure intake passage. used.

【0008】図7(a) は図6において使用される略D形
状のベローズ7の斜視図である。図6に示した回転式熱
交換器HEでは、低圧排気ガス通路5と高圧吸気通路6
は略D形状の開口によりケーシング4に接続しており、
この開口をシールするベローズ7も、直線部7aと湾曲
部7bとを備えた略D形状をしている。図7(b) はこの
ベローズ7を使用したシール装置10の要部の構成を示
す断面図である。シール装置10は、熱交換器のケーシ
ング4内に軸支した円板状の蓄熱ロータ1の端面に当接
するシール部材9と、これに対向するケーシングの内壁
に固着されるフランジ8と、これらシール部材9とフラ
ンジ8との間に介装されるベローズ7とから構成されて
いる。ベローズ7は耐熱金属薄膜材料から構成されてお
り、環状のどの部分の断面も略V形状または略U形状を
している。また、このベローズ7の各基端部はシール部
材9およびフランジ8の各対向面部分にそれぞれ溶接さ
れており、ガスタービンの高圧吸気通路5と低圧排気ガ
ス通路7との間をシールするようになっている。
FIG. 7 (a) is a perspective view of the substantially D-shaped bellows 7 used in FIG. In the rotary heat exchanger HE shown in FIG. 6, the low pressure exhaust gas passage 5 and the high pressure intake passage 6 are
Is connected to the casing 4 through a substantially D-shaped opening,
The bellows 7 that seals this opening also has a substantially D shape including a straight portion 7a and a curved portion 7b. FIG. 7B is a sectional view showing the configuration of the main part of a sealing device 10 using this bellows 7. The sealing device 10 includes a seal member 9 that comes into contact with an end surface of a disk-shaped heat storage rotor 1 that is axially supported in a casing 4 of a heat exchanger, a flange 8 that is fixed to an inner wall of the casing that faces the seal member 9, and these seals. The bellows 7 is interposed between the member 9 and the flange 8. The bellows 7 is made of a heat-resistant metal thin film material, and the cross section of any part of the ring shape is substantially V-shaped or U-shaped. Further, each base end portion of the bellows 7 is welded to each facing surface portion of the seal member 9 and the flange 8 so as to seal between the high pressure intake passage 5 and the low pressure exhaust gas passage 7 of the gas turbine. Has become.

【0009】このようなシール装置10の構成について
は、特開昭53−15651号公報にも開示があり、こ
の公報に記載のシール装置では、ベローズの外周に断面
略U字状の形状制御板を設け、シール部材を蓄熱ロータ
に垂直に圧接させている。
The structure of such a seal device 10 is also disclosed in Japanese Patent Laid-Open No. 53-15651. In the seal device described in this publication, a shape control plate having a substantially U-shaped cross section is provided on the outer periphery of the bellows. Is provided, and the seal member is pressed vertically against the heat storage rotor.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、以上の
ように構成された回転式熱交換器におけるシール装置で
は、運転時に高圧の内圧がベローズ7の開き側に加わる
と、図7(b) に矢印G,gで示すように、シール部材9
のベローズ7に押される側に応力が集中し、図7(c) に
示すように、応力が集中する側のシール部材9が偏磨耗
し、偏磨耗によるガス漏れが発生するという問題点があ
った。この偏磨耗については、特開昭53−15651
号公報に開示のシール装置においても、形状制御板が断
面U字状であるため、U字開口部側の変位量が最も多く
なり、これに接する部分のシール部材が偏磨耗するとい
う恐れがあった。
However, in the sealing device in the rotary heat exchanger configured as described above, when a high internal pressure is applied to the opening side of the bellows 7 during operation, an arrow is drawn in FIG. 7 (b). As indicated by G and g, the seal member 9
The stress is concentrated on the side pressed by the bellows 7, and as shown in FIG. 7 (c), the seal member 9 on the side where the stress is concentrated is unevenly worn, which causes gas leakage due to uneven wear. It was Regarding this uneven wear, JP-A-53-15651
Also in the sealing device disclosed in the publication, since the shape control plate has a U-shaped cross section, the displacement amount on the U-shaped opening side is the largest, and there is a risk that the sealing member in the portion in contact therewith is unevenly worn. It was

【0011】そこで、本発明は、回転式熱交換器におけ
るシール装置において、回転式熱交換器の定格運転時に
シール部材が均一の力で蓄熱ロータに押し当てられるよ
うにして、シール部材の偏磨耗を防止して回転式熱交換
器のシール装置の耐久性を向上させることを目的とす
る。
In view of the above, according to the present invention, in the sealing device for a rotary heat exchanger, the seal member is pressed against the heat storage rotor with a uniform force during the rated operation of the rotary heat exchanger, so that the seal member is unevenly worn. It is an object of the present invention to prevent the above and improve the durability of the sealing device of the rotary heat exchanger.

【0012】[0012]

【課題を解決するための手段】前記目的を達成する本発
明の回転式熱交換器のシール装置は、通気性を有する回
転蓄熱ロータを内蔵したケーシングに、低温高圧気体用
と高温低圧気体用の入出力開口が前記回転蓄熱ロータを
介して対向するように2組設けられ、これら低温高圧気
体と高温低圧気体とを混じることなくこの回転蓄熱ロー
タを通過させて熱交換を行う回転式熱交換器のシール装
置であって、前記回転蓄熱ロータに接触するシール部
材、およびこのシール部材を前記回転蓄熱ロータに押し
当てる付勢部材により、前記低温高圧気体と高温低圧気
体とを前記ケーシング内部で分離した回転式熱交換器の
シール装置において、前記付勢部材に、前記回転式熱交
換器の作動時に高圧気体の圧力で前記シール部材を前記
回転蓄熱ロータに押し当てる力を増すベローズ状の付勢
部材を使用すると共に、前記シール部材に、前記回転式
熱交換器の非作動時にこのシール部材の前記回転蓄熱ロ
ータへの接触面の、シール部材の長手方向に沿った中央
部側を非接触状態にする別の付勢手段を取り付け、前記
回転式熱交換器の作動時に、高圧気体の圧力で増大され
た前記付勢部材の付勢力により、前記シール部材の全面
が均一に前記回転蓄熱ロータに押し当てられるようにし
たことを特徴としている。
A seal device for a rotary heat exchanger according to the present invention that achieves the above object has a casing containing a rotary heat storage rotor having air permeability, which is used for low-temperature high-pressure gas and high-temperature low-pressure gas. Two sets of input / output openings are provided so as to face each other through the rotary heat storage rotor, and the low temperature high pressure gas and the high temperature low pressure gas are allowed to pass through the rotary heat storage rotor to perform heat exchange without being mixed with each other. In the sealing device, the low-temperature high-pressure gas and the high-temperature low-pressure gas are separated inside the casing by a seal member that comes into contact with the rotary heat storage rotor and an urging member that presses the seal member against the rotary heat storage rotor. In the rotary heat exchanger seal device, the biasing member pushes the seal member to the rotary heat storage rotor by the pressure of high-pressure gas when the rotary heat exchanger is activated. A bellows-like urging member that increases the contact force is used, and the seal member has a contact surface of the seal member with the rotary heat storage rotor when the rotary heat exchanger is not operating, in the longitudinal direction of the seal member. Attaching another biasing means for bringing the central portion side along with it into a non-contact state, the biasing force of the biasing member increased by the pressure of the high pressure gas during the operation of the rotary heat exchanger causes the sealing member to move. The entire surface is uniformly pressed against the rotary heat storage rotor.

【0013】[0013]

【作用】本発明の回転式熱交換器のシール装置によれ
ば、回転蓄熱ロータに接触するシール部材の付勢部材
に、回転式熱交換器の作動時に高圧気体の圧力でシール
部材を回転蓄熱ロータに押し当てる力を増すベローズ状
の付勢部材を使用し、シール部材に、回転式熱交換器の
非作動時にこのシール部材の回転蓄熱ロータへの接触面
の、シール部材の長手方向に沿った中央部側を非接触状
態にする別の付勢手段を取り付けているので、回転式熱
交換器の作動時に、シール部材の長手方向に沿った中央
部側は、高圧気体の圧力で増大された付勢部材の付勢力
により押され、シール部材の長手方向に沿った周縁部側
は別の付勢手段の付勢力により押され、回転式熱交換器
の定格運転時に、シール部材の全面が均一に回転蓄熱ロ
ータに押し当てられる。この結果、回転式熱交換器のシ
ール装置の偏磨耗が防止され、回転式熱交換器のシール
装置の耐久性が向上する。
According to the seal device for a rotary heat exchanger of the present invention, the biasing member of the seal member contacting the rotary heat storage rotor is rotated by the pressure of the high pressure gas during operation of the rotary heat exchanger. A bellows-like urging member that increases the force applied to the rotor is used, and the seal member has a contact surface of the seal member with the rotary heat storage rotor when the rotary heat exchanger is not operating, along the longitudinal direction of the seal member. Since another urging means for bringing the central portion side into a non-contact state is attached, the central portion side along the longitudinal direction of the seal member is increased by the pressure of the high pressure gas when the rotary heat exchanger is operated. Is pushed by the biasing force of the biasing member, and the peripheral edge side along the longitudinal direction of the seal member is pushed by the biasing force of another biasing means, and the entire surface of the seal member is pushed during the rated operation of the rotary heat exchanger. Evenly pressed against the rotating heat storage rotor As a result, uneven wear of the seal device of the rotary heat exchanger is prevented, and durability of the seal device of the rotary heat exchanger is improved.

【0014】[0014]

【実施例】以下添付図面を用いて本発明の実施例を詳細
に説明する。図1は本発明の一実施例の回転式熱交換器
のシール装置20が組み込まれた回転式熱交換器HEの
全体構成を示す構成図である。図1において、図6,7
にて説明した従来のガスタービン機関における回転式熱
交換器のシール装置の構成部材と同じ構成部品について
は同じ符号(記号)が付されている。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a configuration diagram showing an overall configuration of a rotary heat exchanger HE in which a sealing device 20 for a rotary heat exchanger according to an embodiment of the present invention is incorporated. In FIG. 1, FIGS.
The same reference numerals (symbols) are given to the same components as the components of the seal device for the rotary heat exchanger in the conventional gas turbine engine described in Section 2.

【0015】図1に示した回転式熱交換器HEにおいて
も、ハニカム状の蓄熱ロータ1が減速ギヤ2およびパワ
タービンの駆動軸と連動するシャフト3により低圧排気
ガス通路6と高圧吸気通路5とを横切って回転して熱交
換を行うようになっている。低圧排気ガス通路6と高圧
吸気通路5とは、ケーシング4に略D形状の開口によっ
て接続している。41はケーシング4内の低温高圧空気
溜まりである。
Also in the rotary heat exchanger HE shown in FIG. 1, the honeycomb-shaped heat storage rotor 1 connects the low pressure exhaust gas passage 6 and the high pressure intake passage 5 by the shaft 3 which is interlocked with the reduction gear 2 and the drive shaft of the power turbine. It is designed to rotate across and exchange heat. The low-pressure exhaust gas passage 6 and the high-pressure intake passage 5 are connected to the casing 4 by a substantially D-shaped opening. Reference numeral 41 is a low-temperature high-pressure air pool in the casing 4.

【0016】そして、ケーシング4の内部で高圧吸気と
低圧排気ガスとを密封、シールするこの実施例のシール
装置20は、略C形状、或いは略D形状の外開きのベロ
ーズ7、ベローズ7に当接するフランジ8、およびシー
ル部材90とから構成されている。ベローズ7は、例え
ば、耐熱金属薄膜材料からなる同形状の2枚のベローズ
板70を接合することによって構成される。この実施例
では、外開きベローズ7が使用されており、ベローズ7
のどの部分の局部断面も略V形状になっている。そし
て、フランジ8はケーシング4に固着されている。
The sealing device 20 of this embodiment, which seals and seals the high pressure intake air and the low pressure exhaust gas inside the casing 4, corresponds to the bellows 7 and the bellows 7 which are substantially C-shaped or D-shaped and which open outward. It is composed of a flange 8 and a sealing member 90 which are in contact with each other. The bellows 7 is configured by joining two bellows plates 70 of the same shape made of a heat-resistant metal thin film material, for example. In this embodiment, an outer opening bellows 7 is used.
The local cross section of any of the parts is substantially V-shaped. The flange 8 is fixed to the casing 4.

【0017】シール部材90、例えば、略D形状のシー
ル部材90は、図2に示すように、略D形状のばね部材
91、このばね部材91の外周側に取り付ける第1のシ
ール部材92、およびばね部材91の内周側に取り付け
る第2のシール部材93とから構成されている。第1の
シール部材92と第2のシール部材93とは、図3に示
すように、カーボン材料で構成された接触板92a,9
3aが取付板92b,93bに接着されて構成されてお
り、その肉厚は等しいが、幅は、第1のシール部材92
の方が第2のシール部材93よりも短くなっている。そ
して、この実施例では、第1のシール部材92と第2の
シール部材93とはねじ94によってばね部材91に取
り付けられるようになっている。また、この実施例で
は、ばね部材91に第1のシール部材92と第2のシー
ル部材93とが取り付けられた状態で、両者の間にはス
ペースが設けられるようになっている。
As shown in FIG. 2, the seal member 90, for example, the substantially D-shaped seal member 90, has a substantially D-shaped spring member 91, a first seal member 92 attached to the outer peripheral side of the spring member 91, and The second seal member 93 is attached to the inner peripheral side of the spring member 91. The first seal member 92 and the second seal member 93 are, as shown in FIG. 3, contact plates 92a, 9a made of a carbon material.
3a is adhered to the mounting plates 92b and 93b and has the same thickness, but the first sealing member 92 has the same width.
Is shorter than the second seal member 93. Then, in this embodiment, the first seal member 92 and the second seal member 93 are attached to the spring member 91 by screws 94. Further, in this embodiment, with the first seal member 92 and the second seal member 93 attached to the spring member 91, a space is provided between them.

【0018】ばね部材91は平坦ではなく、2つの斜面
91a,91bと、これらの斜面91a,91bを結ぶ
ばね部91cとから構成されている。そして、2つの斜
面91a,91bとは180°に近い所定角度θをなし
ている。図3(b) は、ばね部材91に第1のシール部材
92と第2のシール部材93とを取り付けた状態を示す
局部断面図である。このように、この実施例の回転式熱
交換器のシール装置では、シール部材90には2つの第
1のシール部材92と第2のシール部材93があり、第
1のシール部材92と第2のシール部材93とは一平面
上になく、シール部材90の長手方向の中央部側に向か
って窪むように傾斜している。従って、このシール部材
90を蓄熱ロータ1に押し付けた状態で取り付ければ、
シール部材90の第1のシール部材92のロータの外側
の端部と、第2のシール部材93のロータの内側の端部
がばね部材91によって蓄熱ロータ1に押し付けられ、
第1のシール部材92のロータの内側の端部と、第2の
シール部材93のロータの外側の端部は蓄熱ロータ1か
ら離れた状態になる。そして、ばね部材91のばね部9
1cが開く方向に変形すると、第1のシール部材92と
第2のシール部材93の蓄熱ロータ1に対する接触面積
が増大する。
The spring member 91 is not flat but is composed of two slopes 91a and 91b and a spring portion 91c connecting the slopes 91a and 91b. The two slopes 91a and 91b form a predetermined angle θ close to 180 °. FIG. 3B is a local sectional view showing a state in which the first seal member 92 and the second seal member 93 are attached to the spring member 91. As described above, in the seal device for the rotary heat exchanger of this embodiment, the seal member 90 includes the two first seal members 92 and the second seal members 93, and the first seal member 92 and the second seal member 92 are provided. The seal member 93 is not on one plane, and is inclined so as to be recessed toward the central portion side in the longitudinal direction of the seal member 90. Therefore, if the seal member 90 is attached to the heat storage rotor 1 while being pressed,
A rotor outer end of the first seal member 92 of the seal member 90 and a rotor inner end of the second seal member 93 are pressed against the heat storage rotor 1 by the spring member 91.
The inner end of the rotor of the first seal member 92 and the outer end of the rotor of the second seal member 93 are separated from the heat storage rotor 1. Then, the spring portion 9 of the spring member 91
When 1c is deformed in the opening direction, the contact area between the first seal member 92 and the second seal member 93 with respect to the heat storage rotor 1 increases.

【0019】図4(a) は回転式熱交換器HEの非作動時
の図3のシール部材90を使用した回転式熱交換器のシ
ール装置の動作を示す要部断面図である。この例では、
蓄熱ロータ1の外周部に嵌め込まれた減速ギヤ(リング
ギア)2は歯底部が厚くなっており、蓄熱ロータ1のコ
ア面1aと面一になっている。そして、図3(b) のよう
に構成されたシール部材90は、その第1のシール部材
92の端部が減速ギヤ2の歯底部に当たるように取付け
られている。
FIG. 4A is a sectional view showing the operation of the sealing device of the rotary heat exchanger using the seal member 90 of FIG. 3 when the rotary heat exchanger HE is not operating. In this example,
The reduction gear (ring gear) 2 fitted on the outer peripheral portion of the heat storage rotor 1 has a thick bottom portion and is flush with the core surface 1 a of the heat storage rotor 1. The seal member 90 configured as shown in FIG. 3B is attached so that the end portion of the first seal member 92 abuts on the tooth bottom portion of the reduction gear 2.

【0020】このシール部材90は、フランジ8との間
に設けられたベローズ7によって所定の力で押圧されて
いる。従って、回転式熱交換器HEの非動作時には、減
速ギヤ2の歯底部と蓄熱ロータ1とは、図3のように構
成されたシール部材90の第1のシール部材92の端部
と第2のシール部材93の端部から点線で示すような押
し付け力を受けていることになる。
The seal member 90 is pressed by the bellows 7 provided between the seal member 90 and the flange 8 with a predetermined force. Therefore, when the rotary heat exchanger HE is not operating, the tooth bottom portion of the reduction gear 2 and the heat storage rotor 1 are connected to the end portion of the first seal member 92 and the second end portion of the seal member 90 configured as shown in FIG. Therefore, the pressing force as shown by the dotted line is received from the end of the sealing member 93.

【0021】図4(a) に示した部位が、図1のA部であ
るとすると、図4(a) の状態から回転式熱交換器HEが
動作して定格運転状態になると、図4(a) のベローズ7
の外開き側には、ケーシング4内の低温高圧空気溜まり
41の高圧の内圧が加わり、ベローズ7は高圧の内圧に
よって押し広げられてシール部材90を一層強い力で押
し付ける。この状態が図4(b) に示す状態である。
If the portion shown in FIG. 4 (a) is the portion A of FIG. 1, when the rotary heat exchanger HE operates from the state of FIG. (a) Bellows 7
The high pressure internal pressure of the low-temperature high-pressure air reservoir 41 in the casing 4 is applied to the outward opening side of the bellows 7, and the bellows 7 is spread by the high pressure internal pressure to press the seal member 90 with a stronger force. This state is shown in FIG. 4 (b).

【0022】図4(b) に示すように、回転式熱交換器H
Eの定格運転時に、ベローズ7が高圧の内圧によって押
し広げられてシール部材90が一層強い力で押し付けら
れると、シール部材90は第1のシール部材92と第2
のシール部材93の減速ギヤ2の歯底部と蓄熱ロータ1
への当接部を支点にして変形し、第1のシール部材92
と第2のシール部材93はその全面が減速ギヤ2の歯底
部と蓄熱ロータ1に押し付けられるようになる。
As shown in FIG. 4 (b), the rotary heat exchanger H
During the rated operation of E, when the bellows 7 is expanded by the high internal pressure and the seal member 90 is pressed with a stronger force, the seal member 90 is separated from the first seal member 92 and the second seal member 92.
Bottom portion of the reduction gear 2 of the seal member 93 and the heat storage rotor 1
The first seal member 92 is deformed by using the contact portion to the fulcrum as a fulcrum.
With this, the entire surface of the second seal member 93 is pressed against the tooth bottom portion of the reduction gear 2 and the heat storage rotor 1.

【0023】この時、ベローズ7から減速ギヤ2の歯底
部と蓄熱ロータ1に伝わる力は、図4(b) に実線の矢印
F,F′で示すように、シール部材90のベローズ7が
当接する部位から離れた部位の方が小さい。一方、第1
のシール部材92と第2のシール部材93の全面が減速
ギヤ2の歯底部と蓄熱ロータ1に押し付けられる状態で
は、ばね部材91によって第1のシール部材92と第2
のシール部材93が減速ギヤ2の歯底部と蓄熱ロータ1
に押し付けられる力は、図4(b) に点線の矢印f,f′
で示すように、シール部材90のベローズ7が当接する
部位から離れた部位の方が大きい。
At this time, the force transmitted from the bellows 7 to the tooth bottom portion of the reduction gear 2 and the heat storage rotor 1 is applied to the bellows 7 of the seal member 90 as shown by solid arrows F and F'in FIG. 4 (b). The area away from the contact area is smaller. On the other hand, the first
In the state where the entire surfaces of the seal member 92 and the second seal member 93 are pressed against the tooth bottom portion of the reduction gear 2 and the heat storage rotor 1, the first seal member 92 and the second seal member 92 are pressed by the spring member 91.
The sealing member 93 of the reduction gear 2 and the heat storage rotor 1
The force to be applied to the arrow is shown by the dotted arrows f and f'in Fig. 4 (b).
As shown in, the portion of the sealing member 90 that is far from the portion with which the bellows 7 abuts is larger.

【0024】そこで、シール部材90のばね部材91の
付勢力を調節することにより、回転式熱交換器HEの定
格運転時に、第1のシール部材92と第2のシール部材
93がの全面が、均一な力で減速ギヤ2の歯底部と蓄熱
ロータ1に押し付けられるようにすることが可能であ
る。そして、シール部材90の第1のシール部材92と
第2のシール部材93の全面が均一の力で減速ギヤ2の
歯底部と蓄熱ロータ1に押し付けられると、第1と第2
のシール部材92,93の偏磨耗が防止され、ガス漏れ
を抑えた状態で回転式熱交換器のシール装置の耐久性が
向上する。
Therefore, by adjusting the urging force of the spring member 91 of the seal member 90, the entire surface of the first seal member 92 and the second seal member 93 during the rated operation of the rotary heat exchanger HE, It is possible to press the tooth bottom portion of the reduction gear 2 and the heat storage rotor 1 with a uniform force. Then, when the entire surfaces of the first sealing member 92 and the second sealing member 93 of the sealing member 90 are pressed against the tooth bottom portion of the reduction gear 2 and the heat storage rotor 1 with a uniform force, the first and second sealing members 92 and 93 are pressed.
The uneven wear of the seal members 92, 93 is prevented, and the durability of the seal device of the rotary heat exchanger is improved while suppressing gas leakage.

【0025】なお、ガスタービン機関では、始動時、ア
イドル時にはベローズ7のシール部材90の第1のシー
ル部材92と第2のシール部材93の一部が減速ギヤ2
の歯底部と蓄熱ロータ1に押し付けられることになる
が、ガスタービン機関においては、定格運転時間の方
が、始動、アイドル運転時間よりも遙かに長いので、シ
ーブ部材90に偏磨耗が発生する可能性は小さい。
In the gas turbine engine, at the time of starting and idling, a part of the first seal member 92 and the second seal member 93 of the seal member 90 of the bellows 7 is part of the reduction gear 2.
However, in the gas turbine engine, the rated operation time is much longer than the start-up and idle operation times, so uneven wear occurs in the sheave member 90. Possibility is small.

【0026】図5(a) は本発明の回転式熱交換器のシー
ル装置におけるシール部材90の別の実施例を示してお
り、図3(b) と同じ部位の局部断面図である。この実施
例でも前述の実施例と同じ構成部材には同じ符号が付さ
れている。この実施例のシール部材90が前述の実施例
と異なる点は、ばね部材91′の形状のみである。前述
の実施例では、ばね部材90は2つの斜面91a,91
bと、これらの斜面91a,91bを結ぶばね部91c
とから構成されており、2つの斜面91aと91bとは
180°に近い所定角度θをなしていた。一方、この実
施例では、ばね部材90′には2つの斜面91a′,9
1b′があり、前述の実施例と同様に、180°に近い
所定角度θ′をなしているが、これらの斜面91a′,
91b′を結ぶばね部91cがなく、2つの斜面91
a′と91b′とは延長されてそのまま接続部91dに
おいて接続されている。
FIG. 5 (a) shows another embodiment of the seal member 90 in the seal device for a rotary heat exchanger of the present invention, and is a local sectional view of the same portion as FIG. 3 (b). Also in this embodiment, the same components as those in the above-mentioned embodiments are designated by the same reference numerals. The sealing member 90 of this embodiment differs from the above-described embodiments only in the shape of the spring member 91 '. In the above-described embodiment, the spring member 90 has two slopes 91a and 91a.
b and a spring portion 91c connecting the slopes 91a and 91b.
And the two slopes 91a and 91b form a predetermined angle θ close to 180 °. On the other hand, in this embodiment, the spring member 90 'has two slopes 91a', 9 '.
1b 'and forms a predetermined angle .theta.' Close to 180.degree. As in the above-mentioned embodiment, these slopes 91a ',
There is no spring portion 91c connecting 91b 'and two slopes 91
The a'and 91b 'are extended and connected as they are at the connecting portion 91d.

【0027】この実施例のシール部材90′は、前述の
実施例のシール部材90とばね部材91′が異なるだけ
であり、この実施例の作用、効果については前述の実施
例と同じである。図5(b) は本発明の回転式熱交換器の
シール装置におけるシール部材90の更に別の実施例を
示しており、図3(b) と同じ部位の局部断面図である。
この実施例でも前述の実施例と同じ構成部材には同じ符
号が付されている。
The seal member 90 'of this embodiment is different from the seal member 90 of the above-described embodiment only in the spring member 91', and the operation and effect of this embodiment are the same as those of the above-mentioned embodiment. FIG. 5 (b) shows still another embodiment of the seal member 90 in the seal device for a rotary heat exchanger of the present invention, and is a local cross-sectional view of the same portion as FIG.
Also in this embodiment, the same components as those in the above-mentioned embodiments are designated by the same reference numerals.

【0028】この実施例のシール部材90が前述の実施
例と異なる点は、ばね部材91″のばね部91eの形状
のみである。前述の実施例では、ばね部材90は2つの
斜面91a,91bと、これらの斜面91a,91bを
結ぶばね部91cとから構成されており、2つの斜面9
1aと91bとは180°に近い所定角度θをなしてお
り、ばね部91cは略コ字状をしていた。一方、この実
施例では、ばね部91eが円弧状をしていている点のみ
が異なる。
The seal member 90 of this embodiment differs from the above-mentioned embodiment only in the shape of the spring portion 91e of the spring member 91 ". In the above-mentioned embodiment, the spring member 90 has two inclined surfaces 91a and 91b. And a spring portion 91c connecting these slopes 91a and 91b.
1a and 91b form a predetermined angle θ close to 180 °, and the spring portion 91c has a substantially U-shape. On the other hand, this embodiment is different only in that the spring portion 91e has an arc shape.

【0029】この実施例のシール部材90″は、前述の
実施例のシール部材90とばね部材91″が異なるだけ
であり、この実施例の作用、効果については前述の実施
例と同じである。このように、ばね部材の形状について
は種々の形状が考えられ、その形状は以上説明した実施
例に限定されるものではない。
The seal member 90 "of this embodiment is different from the seal member 90 of the above-mentioned embodiment only in the spring member 91", and the operation and effect of this embodiment are the same as those of the above-mentioned embodiment. As described above, various shapes can be considered as the shape of the spring member, and the shape is not limited to the embodiment described above.

【0030】以上のように、本発明の回転式熱交換器の
シール装置では、これをガスタービン機関の熱交換器H
Eに採用した場合、通常、最もコンプレッサ下流側の圧
力が大きくなる定格運転時に、シール部材が均一な力で
減速ギヤの歯底部または蓄熱コアに当接されるため、シ
ール部材の偏磨耗が防止され、シール部材の耐久性が向
上する。
As described above, in the seal device for the rotary heat exchanger of the present invention, this is applied to the heat exchanger H of the gas turbine engine.
When adopted in E, the seal member normally contacts the bottom of the reduction gear or the heat storage core with a uniform force during rated operation where the pressure on the most downstream side of the compressor becomes large, so uneven wear of the seal member is prevented. Therefore, the durability of the seal member is improved.

【0031】[0031]

【発明の効果】以上説明したように、本発明の回転式熱
交換器のシール装置によれば、回転式熱交換器の定格運
転時にシール部材が均一の力で蓄熱ロータに押し当てら
れるので、シール部材の偏磨耗が防止され、回転式熱交
換器のシール装置の耐久性が向上するという効果があ
る。
As described above, according to the seal device for a rotary heat exchanger of the present invention, the seal member is pressed against the heat storage rotor with a uniform force during the rated operation of the rotary heat exchanger. There is an effect that uneven wear of the seal member is prevented and durability of the seal device of the rotary heat exchanger is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシール装置を使用した回転式熱交換器
の全体構成を示す断面図である。
FIG. 1 is a cross-sectional view showing an overall configuration of a rotary heat exchanger using a sealing device of the present invention.

【図2】図1の回転式熱交換器のシール装置におけるシ
ール部材の一実施例の構成を示す組立斜視図である。
FIG. 2 is an assembled perspective view showing a configuration of an embodiment of a seal member in the seal device for the rotary heat exchanger of FIG.

【図3】(a) は図2の回転式熱交換器のシール装置にお
けるシール部材を形成するための組立断面図、(b) は
(a) のシール部材の組立後の局部断面図である。
3 (a) is an assembled sectional view for forming a seal member in the sealing device for the rotary heat exchanger of FIG. 2, and FIG.
It is a local sectional view after the assembly of the seal member of (a).

【図4】(a) は回転式熱交換器の非作動時の図3のシー
ル部材を使用した回転式熱交換器のシール装置の動作を
示す要部拡大説明図、(b) は回転式熱交換器の作動時の
(a) の回転式熱交換器のシール装置の動作を示す要部拡
大説明図である。
4 (a) is an enlarged explanatory view of a main part showing the operation of the sealing device of the rotary heat exchanger using the seal member of FIG. 3 when the rotary heat exchanger is not in operation, and FIG. 4 (b) is a rotary type When the heat exchanger is operating
FIG. 7 is an enlarged explanatory view of a main part showing the operation of the seal device for the rotary heat exchanger of (a).

【図5】(a) は本発明の回転式熱交換器のシール装置に
おけるシール部材の別の実施例の局部断面図、(b) は本
発明の回転式熱交換器のシール装置におけるシール部材
の更に別の実施例の局部断面図である。
FIG. 5 (a) is a partial cross-sectional view of another embodiment of the seal member in the rotary heat exchanger seal device of the present invention, and FIG. 5 (b) is a seal member in the rotary heat exchanger seal device of the present invention. FIG. 8 is a local sectional view of still another embodiment of the present invention.

【図6】自動変速機付の自動車に搭載される、熱交換器
を備えた従来の二軸式ガスタービン機関の一般的な構成
の一例を示す構成図である。
FIG. 6 is a configuration diagram showing an example of a general configuration of a conventional two-shaft gas turbine engine equipped with a heat exchanger, which is mounted on an automobile with an automatic transmission.

【図7】(a) は図6に用いられるベローズの斜視図、
(b) は図9のシール装置の要部断面図、(c) は従来のシ
ール装置におけるシール部材の偏磨耗を説明する説明図
である。
7 (a) is a perspective view of the bellows used in FIG. 6,
9B is a cross-sectional view of a main part of the sealing device of FIG. 9, and FIG. 9C is an explanatory diagram for explaining uneven wear of the sealing member in the conventional sealing device.

【符号の説明】[Explanation of symbols]

1…蓄熱ロータ 2…減速ギヤ 4…ケーシング 5…低圧排気ガス通路 6…高圧吸気通路 7…ベローズ 8…フランジ 20…本発明のシール装置 90…シール部材 91,91′,91″…ばね部材 91a,91a′,91a″…斜面 91b,91b′,91b″…斜面 91c,91e…ばね部 92…第1のシール部材 92a,93a…接触板 92b,93b…取付板 93…第2のシール部材 HE…回転式熱交換器 DESCRIPTION OF SYMBOLS 1 ... Heat storage rotor 2 ... Reduction gear 4 ... Casing 5 ... Low pressure exhaust gas passage 6 ... High pressure intake passage 7 ... Bellows 8 ... Flange 20 ... Sealing device 90 of the present invention 90 ... Sealing members 91, 91 ', 91 "... Spring member 91a , 91a ', 91a "... Slopes 91b, 91b', 91b" ... Slopes 91c, 91e ... Spring portion 92 ... First seal members 92a, 93a ... Contact plates 92b, 93b ... Mounting plate 93 ... Second seal member HE … Rotary heat exchanger

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 通気性を有する回転蓄熱ロータを内蔵し
たケーシングに、低温高圧気体用と高温低圧気体用の入
出力開口が前記回転蓄熱ロータを介して対向するように
2組設けられ、これら低温高圧気体と高温低圧気体とを
混じることなくこの回転蓄熱ロータを通過させて熱交換
を行う回転式熱交換器のシール装置であって、前記回転
蓄熱ロータに接触するシール部材、およびこのシール部
材を前記回転蓄熱ロータに押し当てる付勢部材により、
前記低温高圧気体と高温低圧気体とを前記ケーシング内
部で分離した回転式熱交換器のシール装置において、 前記付勢部材に、前記回転式熱交換器の作動時に高圧気
体の圧力で前記シール部材を前記回転蓄熱ロータに押し
当てる力を増すベローズ状の付勢部材を使用すると共
に、 前記シール部材に、前記回転式熱交換器の非作動時にこ
のシール部材の前記回転蓄熱ロータへの接触面の、シー
ル部材の長手方向に沿った中央部側を非接触状態にする
別の付勢手段を取り付け、 前記回転式熱交換器の作動時に、高圧気体の圧力で増大
された前記付勢部材の付勢力により、前記シール部材の
全面が均一に前記回転蓄熱ロータに押し当てられるよう
にしたことを特徴とする回転式熱交換器のシール装置。
1. A casing containing a breathable rotary heat storage rotor is provided with two sets of input / output openings for a low-temperature high-pressure gas and a high-temperature low-pressure gas so as to face each other through the rotary heat storage rotor. A seal device for a rotary heat exchanger that performs heat exchange by passing through this rotary heat storage rotor without mixing a high-pressure gas and a high-temperature low-pressure gas, the seal member contacting the rotary heat storage rotor, and this seal member By the biasing member pressed against the rotary heat storage rotor,
In the seal device of the rotary heat exchanger, wherein the low-temperature high-pressure gas and the high-temperature low-pressure gas are separated inside the casing, the biasing member includes the seal member at the pressure of the high-pressure gas during the operation of the rotary heat exchanger. While using a bellows-like biasing member that increases the force pressing against the rotary heat storage rotor, the seal member, of the contact surface of the seal member to the rotary heat storage rotor when the rotary heat exchanger is not operating, Attaching another urging means for bringing the central portion side along the longitudinal direction of the seal member into a non-contact state, the urging force of the urging member increased by the pressure of the high-pressure gas during the operation of the rotary heat exchanger. The sealing device for a rotary heat exchanger is characterized in that the entire surface of the sealing member is uniformly pressed against the rotary heat storage rotor.
JP10984494A 1994-05-24 1994-05-24 Seal device for rotary type heat exchanger Pending JPH07317918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10984494A JPH07317918A (en) 1994-05-24 1994-05-24 Seal device for rotary type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10984494A JPH07317918A (en) 1994-05-24 1994-05-24 Seal device for rotary type heat exchanger

Publications (1)

Publication Number Publication Date
JPH07317918A true JPH07317918A (en) 1995-12-08

Family

ID=14520636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10984494A Pending JPH07317918A (en) 1994-05-24 1994-05-24 Seal device for rotary type heat exchanger

Country Status (1)

Country Link
JP (1) JPH07317918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19848564A1 (en) * 1997-10-29 1999-05-20 Mitsubishi Motors Corp Exhaust gas recirculation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19848564A1 (en) * 1997-10-29 1999-05-20 Mitsubishi Motors Corp Exhaust gas recirculation
DE19848564C2 (en) * 1997-10-29 2000-11-16 Mitsubishi Motors Corp Cooling device for recirculated exhaust gas
US6161528A (en) * 1997-10-29 2000-12-19 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Recirculating exhaust gas cooling device

Similar Documents

Publication Publication Date Title
JP4715396B2 (en) Fluid control valve
US7080510B2 (en) Exhaust gas sealing system for turbocharger
JP3842943B2 (en) Variable turbocharger
US6739579B1 (en) Exhaust valve for combustion engines
JP3851923B2 (en) Exhaust gas turbocharger for internal combustion engine
JP2002195029A (en) Turbocharger with by-pass valve capable of operation for promoting rapid decomposition action of catalytic converter
JP2003113945A (en) Shaft sealing mechanism and turbine
JPH05248253A (en) Waste gate valve for turbocharger
US7104060B2 (en) Exhaust energy recovery system for combustion engine
JP4062811B2 (en) Gas seal device for variable capacity turbocharger
JPH07317918A (en) Seal device for rotary type heat exchanger
WO2001050047A1 (en) Exhaust valve for combustion engines
JP2012117483A (en) Stationary blade type turbocharger
JP6384522B2 (en) Engine exhaust system
JP2009243374A (en) Supercharger
JP5845650B2 (en) Wastegate valve
US11885231B2 (en) Turbocharger
WO2022113619A1 (en) Supercharger
JP2870377B2 (en) Sealing device for rotary heat exchanger
US11236667B2 (en) Flap device for opening and closing a wastegate channel in a turbine housing of a turbocharger, turbocharger, and method for production
US11359538B2 (en) Valve
JPH07208886A (en) Sealing device for rotary type heat exchanger
JP2001248709A (en) Clutch piston with friction lining for lock-up clutch and its manufacture
JPH07318273A (en) Supporting device for rotary heat exchanger
WO2024038495A1 (en) Turbine housing, turbine, and supercharger