JPH07302130A - Power controller - Google Patents

Power controller

Info

Publication number
JPH07302130A
JPH07302130A JP6113416A JP11341694A JPH07302130A JP H07302130 A JPH07302130 A JP H07302130A JP 6113416 A JP6113416 A JP 6113416A JP 11341694 A JP11341694 A JP 11341694A JP H07302130 A JPH07302130 A JP H07302130A
Authority
JP
Japan
Prior art keywords
power
solar cell
power conversion
control device
conversion means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6113416A
Other languages
Japanese (ja)
Inventor
Tomoichirou Oota
智市郎 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6113416A priority Critical patent/JPH07302130A/en
Publication of JPH07302130A publication Critical patent/JPH07302130A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To effectively take the electric power out of plural battery units which are conneted in series and/or in parallel to each other. CONSTITUTION:A power controller takes the electric power out of plural battery units SB and is provided with the 1st power inverter means EFT, L and D which are placed against each unit SB, a control means CNT which detects the fluctuation of the output voltage-output current curve of each unit SB and controls the 1st power inverter means corresponding to each unit SB so as to acquire the maximum output from each unit SB, and a 2nd power inverter means INV1 which inverts the electric power obtained by synthesizing the output of the 1st power inverter means into the electric power of the prescribed value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池等の電源から
電力を効率よく取り出す制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for efficiently extracting electric power from a power source such as a solar cell.

【0002】[0002]

【従来の技術】近年、省エネルギーの観点から、太陽光
エネルギーを太陽電池により電力に変換する太陽光発電
装置が注目を浴びている。
2. Description of the Related Art In recent years, from the viewpoint of energy saving, a solar power generation device which converts solar energy into electric power by a solar cell has been attracting attention.

【0003】この太陽電池の素体であるウエハーは、1
素子当り0.5V程度の起電力がありそのウエハーを数
十枚組み合わせて太陽電池のパネルは作られている。そ
して、実際に発電するために、要求されている発電電力
量に見合うように各々のパネルを数枚から数十枚を直列
と並列に接続し組み合わせた発電モジュールを構成し、
電力を発生させている。
The wafer, which is the body of this solar cell, is 1
There is an electromotive force of about 0.5 V per element, and several tens of wafers are combined to form a solar cell panel. Then, in order to actually generate power, a power generation module is constructed by connecting several panels to several tens of them in series and parallel so as to meet the required amount of power generation,
Generating power.

【0004】この太陽電池モジュールの出力は、図3に
示されるように、その時の日照や気温、太陽電池の劣化
量により取り出せる電力が大幅に変動するため、一定の
動作条件では取り出せる電力が限られてしまい、理想的
な太陽光線下では10%程度の電力変換効率があるにも
かかわらず実際の自然環境にて発電を行なうと、太陽電
池の動作点が理想的な所から外れるため、理想状態の半
分の電力も取り出せないなどの欠点があった。
As shown in FIG. 3, the output of this solar cell module varies greatly depending on the sunshine, the temperature, and the amount of deterioration of the solar cell at that time. Therefore, the power that can be extracted is limited under certain operating conditions. If you generate electricity in an actual natural environment despite the fact that there is a power conversion efficiency of about 10% under ideal sunlight, the operating point of the solar cell will deviate from the ideal position, so the ideal state There was a defect that it could not take out half the power of the above.

【0005】その対策として、太陽電池パネルの近傍に
パネルに使用している太陽電池素子の特性によく似た電
池パネル出力検出用の太陽電池を配置し、疑似的に太陽
電池パネルの動作点を推定し制御値を決定する方法や、
太陽電池の動作点が温度の影響を受けやすい事を利用し
て太陽電池パネルの裏側に温度検出素子を配置し、その
パネル裏面温度から太陽電池の動作点を決定する方法な
どが使用されていた。
As a countermeasure, a solar cell for detecting the output of the battery panel, which closely resembles the characteristics of the solar cell element used in the panel, is arranged near the solar cell panel, and the operating point of the solar cell panel is simulated. How to estimate and determine the control value,
Utilizing the fact that the operating point of a solar cell is easily affected by temperature, a method was used in which a temperature detecting element was placed on the back side of the solar cell panel and the operating point of the solar cell was determined from the temperature on the back surface of the panel. .

【0006】[0006]

【発明が解決しようとする課題】ところが、太陽電池パ
ネルの近傍に電池パネル出力検出用の太陽電池を配置し
たパイロット出力検知方法では、その出力検知用太陽電
池と、電力取り出し用太陽電池の日射量が完全には一致
せず、また電力取り出し用太陽電池のみ日陰になる等の
可能性なども有り太陽電池の発電電力を最大限取り出し
てはいなかった。
However, in the pilot output detection method in which the solar cell for detecting the battery panel output is arranged in the vicinity of the solar cell panel, the solar radiation for the output detecting solar cell and the solar cell for extracting electric power is used. However, there was a possibility that only the solar cells for electric power extraction would be shaded, and the maximum amount of electric power generated by the solar cells was not extracted.

【0007】また、太陽電池パネルの裏側に温度検出素
子を配置し、そのパネル裏面温度から太陽電池の動作点
を決定する方法では、太陽電池の温度特性に関しては補
正できるが、パネル全体が均一の温度になっているとは
限らず、また、日射量とパネル裏面温度とは特に相関関
係は無いため、その時の太陽電池の発電電力の最大値を
取り出しているとは言い難かった。
Further, in the method of arranging the temperature detecting element on the back side of the solar cell panel and determining the operating point of the solar cell from the temperature on the back surface of the panel, the temperature characteristic of the solar cell can be corrected, but the entire panel is uniform. It is not always the temperature, and there is no particular correlation between the amount of solar radiation and the back surface temperature of the panel, so it was hard to say that the maximum value of the power generated by the solar cell at that time was taken out.

【0008】その対策として図4に示す電力制御装置の
ように太陽電池発生電圧Vinと電池出力電流Iinから図
3の太陽電池VーI直線の変動を検出して、その変動量
から最大電力演算回路MPP1により最大電力点を検出
し、その電力制御値を直流ー交流電力変換用インバータ
INV1に与える事で、太陽電池の動作点を最大電力点
に追尾させる方法も考え出されていた。しかし、この方
法でも多数のパネルを直並列接続された時などは、各々
の太陽電池変換効率や温度特性が違うため各パネルの特
性を平均化した最大電力点で動作せざるを得ない。その
ため各々の太陽電池パネルは、光ー電力変換効率の最大
点から外れた点で動作するので、各太陽電池パネルの発
電電力を効率よく取り出すことは出来なかった。
As a countermeasure, the fluctuation of the solar cell VI straight line in FIG. 3 is detected from the solar cell generated voltage Vin and the battery output current Iin as in the power controller shown in FIG. 4, and the maximum power is calculated from the fluctuation amount. A method has been devised in which the maximum power point is detected by the circuit MPP1 and the power control value is given to the DC-AC power conversion inverter INV1, so that the operating point of the solar cell is tracked to the maximum power point. However, even with this method, when a large number of panels are connected in series and parallel, the solar cell conversion efficiency and temperature characteristics are different, so that the characteristics of each panel must be averaged to operate at the maximum power point. Therefore, each solar cell panel operates at a point outside the maximum point of the light-power conversion efficiency, so that the power generated by each solar cell panel cannot be efficiently extracted.

【0009】また前記V−I曲線から最大電力動作点を
検出する方法では、図2の一日の発電量の図に示される
ように最大電力点を追尾すると太陽電池発生電圧Vbatt
が大幅に変動する形になり、直流電圧を交流電力に変換
するインバータ部の入力電圧が大幅に変動するので、直
流−交流変換インバータ部の制御幅が広がり動作安定度
が低下しやすく、またインバータ入力電圧が変動するた
め電力変換効率が低下してしまう欠点が有った。
Further, in the method of detecting the maximum power operating point from the VI curve, the solar cell generated voltage Vbatt is obtained when the maximum power point is tracked as shown in the diagram of the daily power generation amount of FIG.
Fluctuates drastically, and the input voltage of the inverter unit that converts DC voltage into AC power fluctuates significantly, so the control range of the DC-AC conversion inverter unit widens and the operation stability tends to decrease, and Since the input voltage fluctuates, the power conversion efficiency is reduced.

【0010】本発明は、上述の従来例における問題点に
鑑みてなされたもので、各太陽電池パネルから効率良く
電力を取り出し、もって太陽電池モジュール、ひいては
太陽光発電装置全体としての電力変換効率を向上させる
電力制御装置を提供することを目的とする。
The present invention has been made in view of the problems in the above-mentioned conventional example, and efficiently takes out electric power from each solar cell panel, thereby improving the electric power conversion efficiency of the solar cell module and the entire solar power generation device. An object of the present invention is to provide an improved power control device.

【0011】[0011]

【問題点を解決するための手段】上記問題点を解決する
ため、本発明では、各太陽電池パネルなどの電池ユニッ
ト毎に直流ー直流変換器など第一の電力変換手段を設
け、そのユニットのV−I曲線の変動を検出し、その変
動量から最大電力点を検出し前記第一の電力変換手段の
動作点を決定する制御手段を用いる事により、各電池ユ
ニットの動作点を最も効率の良い点に設定し、ユニット
毎の電力変換器の出力を合わせた電力をまとめて、第二
の電力変換、例えば直流ー交流変換を行なう事で、電池
発電電力を効率よく取り出す事を可能にしたものであ
る。
In order to solve the above-mentioned problems, in the present invention, a first power conversion means such as a DC-DC converter is provided for each battery unit such as each solar cell panel, and By using the control means for detecting the fluctuation of the VI curve, detecting the maximum power point from the fluctuation amount, and determining the operating point of the first power conversion means, the operating point of each battery unit is determined to be the most efficient. By setting it to a good point and combining the power combined with the output of the power converter for each unit and performing a second power conversion, for example, DC-AC conversion, it is possible to efficiently extract the battery-generated power. It is a thing.

【0012】[0012]

【作用および効果】本発明によれば、電池ユニット毎に
第一の電力変換手段を設けることで各電池ユニットから
最も効率良く電力を取り出すことが可能になる。また、
電池ユニットとして太陽電池パネルを、第一の電力変換
手段として直流ー直流変換器を、そして第二の電力変換
手段として直流ー交流インバータ装置を用いる場合、直
流ー交流インバータ装置は入力電圧が一定の簡単な制御
で太陽電池から最大の電力を取り出す事が可能なためイ
ンバータ装置の制御回路が簡略化できるとともに、イン
バータ装置に使用する電力スイッチ素子なども、電圧変
動が少ないため最適化することができ電力変換効率の向
上と装置全体の低コスト化が実現できる。通常、太陽電
池パネルは同一特性の物をできるだけ同一条件で設置し
ないと各太陽電池の特性の違いにより発電できる電力が
大幅に減少してしまうが、この様なパネル毎に直流ー直
流変換装置を設ける構成を用いることで、太陽電池パネ
ルの出力電力が違うもの等を組合せても効率良く電力を
取り出すことが可能になる。
According to the present invention, by providing the first power conversion means for each battery unit, it becomes possible to most efficiently take out the power from each battery unit. Also,
When a solar cell panel is used as the battery unit, a DC-DC converter is used as the first power conversion means, and a DC-AC inverter device is used as the second power conversion means, the DC-AC inverter device has a constant input voltage. Since the maximum power can be taken out from the solar cell with simple control, the control circuit of the inverter device can be simplified, and the power switch element used in the inverter device can be optimized because the voltage fluctuation is small. It is possible to improve the power conversion efficiency and reduce the cost of the entire device. Normally, if you do not install solar panels with the same characteristics under the same conditions as much as possible, the power that can be generated will greatly decrease due to the differences in the characteristics of each solar cell. By using the configuration provided, it becomes possible to efficiently extract electric power even if the solar cell panels having different output powers are combined.

【0013】[0013]

【実施例】以下、本発明の実施例を説明する。図1は本
発明の一実施例に係る電力制御装置の構成を示す。図1
において図4と同一符号は同一構成部分を示している。
図1において、直流ー直流電力変換モジュールEMは、
太陽電池パネルSBと電圧変換コイルLと電力スイッチ
素子のMOSーFETと電力出力ダイオードDと、太陽
電池電圧検出回路R1,R2と太陽電池出力電流検出回
路CTと前記入出力を制御する制御回路CNTから構成
されている。この電力変換モジュールEMを複数個(図
では4組)並列接続してコンデンサC1に接続する。コ
ンデンサC1は、電源リップル吸収用の電解コンデンサ
である。INV1は直流ー交流電力変換回路であり、コ
ンデンサC1に蓄えられた直流電圧を入力として交流電
力を発生させて交流負荷に電力を出力する。
EXAMPLES Examples of the present invention will be described below. FIG. 1 shows the configuration of a power control device according to an embodiment of the present invention. Figure 1
4, the same reference numerals as those in FIG. 4 indicate the same components.
In FIG. 1, the DC-DC power conversion module EM is
Solar cell panel SB, voltage conversion coil L, power switch element MOS-FET, power output diode D, solar cell voltage detection circuits R1 and R2, solar cell output current detection circuit CT, and control circuit CNT that controls the input / output. It consists of A plurality (4 sets in the figure) of the power conversion modules EM are connected in parallel and connected to the capacitor C1. The capacitor C1 is an electrolytic capacitor for absorbing power supply ripple. INV1 is a DC-AC power conversion circuit, which receives the DC voltage stored in the capacitor C1 as input, generates AC power, and outputs the power to an AC load.

【0014】次に動作について説明する。電力変換モジ
ュールEMの太陽電池パネルSBに太陽光が入射される
と、太陽電池パネルSBの両端には起電圧を発生する。
その時の発生電力は図3に示すようにパネルに入射され
た光量にほぼ比例する。この発生電力が一定以上になる
と制御回路が動作して、太陽電池の出力電圧と出力電力
を測定し太陽電池の動作点をV−Iカーブ上の最大電力
点になるようにスイッチ素子であるMOS−FETのゲ
ートに制御回路CNTからPWMパルスが印加され、M
OS−FETがオン−オフすることで電圧変換コイルに
チョッピング電流が流れる。すなわち、MOSーFET
がオンした時に太陽電池パネルの発電電力はコイルに蓄
積される。またMOSーFETがオフした時は、コイル
に蓄えられた電力と太陽電池の発電電力が加算され、電
圧出力ダイオードを通じて平滑コンデンサC1に電力を
転送する。これらの動作を繰返す事で各電力変換モジュ
ールEMは、各々の太陽電池パネルSBから取り出せる
最大電力を平滑コンデンサC1に転送し続ける。
Next, the operation will be described. When sunlight is incident on the solar cell panel SB of the power conversion module EM, an electromotive voltage is generated at both ends of the solar cell panel SB.
The generated power at that time is almost proportional to the amount of light incident on the panel as shown in FIG. When the generated power exceeds a certain level, the control circuit operates to measure the output voltage and output power of the solar cell, and to set the operating point of the solar cell to the maximum power point on the VI curve. -A PWM pulse is applied from the control circuit CNT to the gate of the FET, and M
A chopping current flows through the voltage conversion coil as the OS-FET is turned on and off. That is, MOS-FET
When is turned on, the power generated by the solar cell panel is stored in the coil. When the MOS-FET is turned off, the power stored in the coil and the power generated by the solar cell are added, and the power is transferred to the smoothing capacitor C1 through the voltage output diode. By repeating these operations, each power conversion module EM continues to transfer the maximum power that can be extracted from each solar cell panel SB to the smoothing capacitor C1.

【0015】直流ー交流電力変換用インバータINV1
は、前記電力変換モジュールの発電電力の合計が一定値
以上になるとC1に蓄えられた電力により、インバータ
回路を起動して負荷側に必要とされている交流電力を発
生する。このインバータINV1は、コンデンサC1に
蓄えられた電力が大きくなると、出力電力量を増加させ
る程度の簡単な制御でよいためインバータ部の動作が安
定し、またインバータ部の電力制御の結果として入力電
圧がほぼ一定電圧になるので電力変換効率が向上する。
Inverter INV1 for DC-AC power conversion
When the total power generated by the power conversion module exceeds a certain value, the power stored in C1 activates the inverter circuit to generate the AC power required on the load side. In this inverter INV1, when the electric power stored in the capacitor C1 becomes large, the operation of the inverter unit is stable because the control is simple enough to increase the output electric energy, and as a result of the power control of the inverter unit, the input voltage is Since the voltage is almost constant, the power conversion efficiency is improved.

【0016】図5は、本発明の他の実施例に係る太陽光
発電装置の構成を示す。この装置は図1の装置を高制御
化するため、全体制御装置CNT1を加えて各々のモジ
ュールや装置間を電磁気的または光学的な信号送受信手
段により結合している。この様な構成を取る事で個別に
制御していた太陽電池パネルSBのVーIカーブによる
最大電力の演算などを全体制御装置CNT1で処理でき
るので、最大電力制御の精度が向上でき、また各モジュ
ール毎の電力変換の開始や停止シーケンスが電力変換装
置全体として制御可能になるため太陽電池発電電力が小
さい時などにも有効に電力を取り出す事が可能になる。
また、この様な構成を取る事で各モジュールやインバー
タ装置などの自己診断機能や、各モジュール間の運転状
態の確認と報告や、機能異状時のモジュール毎の切り離
しが出来るので発電装置としての信頼性も向上し、且つ
異状が発生した時に使用者に対して警報を発生できるの
で装置のメンテナンスが迅速に出来る利点も有る。
FIG. 5 shows the construction of a photovoltaic power generator according to another embodiment of the present invention. In order to enhance the control of the device of FIG. 1, this device has an overall control device CNT1 and is connected to each module or device by an electromagnetic or optical signal transmitting / receiving means. With such a configuration, the control of the maximum power by the VI curve of the solar cell panel SB, which is individually controlled, can be processed by the overall control device CNT1, so that the accuracy of the maximum power control can be improved and Since the start and stop sequence of power conversion for each module can be controlled by the entire power conversion device, it is possible to effectively take out power even when the solar cell generated power is small.
In addition, by adopting such a configuration, it is possible to perform self-diagnosis function of each module and inverter device, check and report the operating status between each module, and disconnect each module when the function is abnormal. Also, there is an advantage that the maintenance of the device can be promptly performed because the user can be alerted when an abnormality occurs.

【0017】また、図5に示されるように電話回線イン
ターフェース装置を接続することにより、上記機能が遠
隔地においても装置の監視や、警報などを受取ることも
実現できる。
Further, by connecting a telephone line interface device as shown in FIG. 5, it is possible to realize the above-mentioned function even in a remote place to monitor the device and receive an alarm.

【0018】以上説明したように、太陽電池パネル毎に
直流ー直流変換装置を設けることで各太陽電池パネルか
ら最も効率良く電力を取り出すことが可能になり、ま
た、直流ー交流インバータ装置は入力電圧が一定の簡単
な制御で太陽電池から最大の電力を取り出す事が可能な
ためインバータ装置の制御回路が簡略化でき、インバー
タ装置に使用する電力スイッチ素子なども、電圧変動が
少ないため最適化することができ電力変換効率の向上
と、装置全体の低コスト化ができる。通常、太陽電池パ
ネルは同一特性のものをできるだけ同一条件で設置しな
いと各太陽電池の特性の違いにより発電できる電力が大
幅に減少してしまうが、この様なパネル毎に直流ー直流
変換装置を設ける構成を用いることで、太陽電池パネル
の出力電力が違うもの等を組合せても効率良く電力を取
り出すことが可能になる。
As described above, by providing a DC / DC converter for each solar cell panel, it becomes possible to most efficiently take out electric power from each solar cell panel, and the DC / AC inverter device has an input voltage. Since the maximum power can be taken out from the solar cell with a simple and constant control, the control circuit of the inverter device can be simplified, and the power switch elements used in the inverter device should also be optimized because there is little voltage fluctuation. It is possible to improve the power conversion efficiency and reduce the cost of the entire device. Normally, if the solar cell panels with the same characteristics are not installed under the same conditions as much as possible, the power that can be generated will greatly decrease due to the difference in the characteristics of each solar cell, but a DC-DC converter is required for each such panel. By using the configuration provided, it becomes possible to efficiently extract electric power even if the solar cell panels having different output powers are combined.

【0019】なお、上述の実施例においては、電池ユニ
ットとして太陽電池パネルを用いているが、本発明は、
電池ユニットとして燃料電池などの一次電池、あるいは
二次電池を用いる発電装置または電力供給装置にも適用
し得るものである。また、直流負荷に電力を供給する場
合、第二の電力変換装置としては、直流ー交流インバー
タ装置ではなく、直流ー直流変換装置を用いることにな
る。
Although the solar cell panel is used as the battery unit in the above embodiment, the present invention is
It can also be applied to a power generator or power supply device that uses a primary battery such as a fuel cell or a secondary battery as a battery unit. Moreover, when supplying electric power to a DC load, a DC-DC converter, not a DC-AC inverter, is used as the second power converter.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る電力制御装置の構成
を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a power control device according to an embodiment of the present invention.

【図2】 太陽電池の1日の発電電力と最適動作電圧の
一例を示すグラフである。
FIG. 2 is a graph showing an example of daily generated power of a solar cell and an optimum operating voltage.

【図3】 太陽電池の受光光量対VーI特性の一例を示
すグラフである。
FIG. 3 is a graph showing an example of received light amount vs. VI characteristics of a solar cell.

【図4】 従来の電力制御装置の構成を示すブロック図
である。
FIG. 4 is a block diagram showing a configuration of a conventional power control device.

【図5】 図1の装置を高制御化するための全体制御装
置を追加した電力制御装置のブロック図である。
5 is a block diagram of a power control device in which an overall control device for highly controlling the device of FIG. 1 is added.

【符号の説明】[Explanation of symbols]

SB:太陽電池、CNT:制御回路、L:コイル、D:
ダイオード、C1:平滑コンデンサ、INV1:直流ー
交流電力変換装置、EM:電力変換モジュール、CNT
1:全体制御装置、MPP1:最大電力演算回路。
SB: solar cell, CNT: control circuit, L: coil, D:
Diode, C1: Smoothing capacitor, INV1: DC-AC power converter, EM: Power converter module, CNT
1: Overall control device, MPP1: Maximum power calculation circuit.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数の電池ユニットから電力を取り出す
電力制御装置であって、各電池ユニットに対応して設け
られた第一の電力変換手段と、各電池ユニットの出力電
圧ー出力電流曲線の変動を検出し、各電池ユニットに対
応する第一の電力変換手段を各電池ユニットから最大出
力を得られるように制御する制御手段と、各第一の電力
変換手段の出力を合成した電力を所定の電力に変換する
第二の電力変換手段とを具備することを特徴とする電力
制御装置。
1. A power control device for extracting power from a plurality of battery units, the first power converting means being provided corresponding to each battery unit, and the fluctuation of the output voltage-output current curve of each battery unit. And a control means for controlling the first power conversion means corresponding to each battery unit so as to obtain the maximum output from each battery unit, and a predetermined combined electric power obtained by combining the outputs of the first power conversion means. A power control device comprising: a second power conversion means for converting into electric power.
【請求項2】 前記第二の電力変換手段が、前記各第一
の電力変換手段の合成出力電圧を一定電圧に変換して出
力することを特徴とする請求項1記載の電力制御装置。
2. The power control device according to claim 1, wherein the second power conversion means converts the combined output voltage of the first power conversion means into a constant voltage and outputs the constant voltage.
【請求項3】 前記第二の電力変換手段が、直流−交流
電力変換装置であることを特徴とする請求項1記載の電
力制御装置。
3. The power control device according to claim 1, wherein the second power conversion means is a DC-AC power conversion device.
【請求項4】 前記第一の電力変換手段が、直流−直流
電圧変換装置であるいることを特徴とする請求項1記載
の電力制御装置。
4. The power control device according to claim 1, wherein the first power conversion means is a DC-DC voltage converter.
【請求項5】 前記第一の電力変換手段がそれぞれ、各
電池ユニットを含む電圧変換モジュールに組込まれてい
ることを特徴とする請求項1〜4のいずれか1つに記載
の電力制御装置。
5. The power control device according to claim 1, wherein each of the first power conversion means is incorporated in a voltage conversion module including each battery unit.
【請求項6】 前記第一の電力変換手段と第二の電力変
換手段の状態を通信手段を用いて検知し、電力変換装置
全体を制御する全体制御装置を用いることを特徴とする
請求項1〜4のいずれか1つに記載の電力制御装置。
6. The overall control device for detecting the states of the first power conversion means and the second power conversion means using a communication means and controlling the entire power conversion device is used. The power control device according to any one of to 4.
【請求項7】 電力変換装置全体を制御する全体制御装
置が、外部との通信手段を備えることを特徴とする請求
項6記載の電力制御装置。
7. The power control device according to claim 6, wherein the overall control device that controls the entire power conversion device includes a communication unit with the outside.
【請求項8】 前記電池ユニットは、複数の太陽電池素
子を直列および/または並列接続してなる太陽電池パネ
ルであることを特徴とする請求項1〜7のいずれか1つ
に記載の電力制御装置。
8. The power control according to claim 1, wherein the battery unit is a solar cell panel in which a plurality of solar cell elements are connected in series and / or in parallel. apparatus.
JP6113416A 1994-05-02 1994-05-02 Power controller Pending JPH07302130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6113416A JPH07302130A (en) 1994-05-02 1994-05-02 Power controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6113416A JPH07302130A (en) 1994-05-02 1994-05-02 Power controller

Publications (1)

Publication Number Publication Date
JPH07302130A true JPH07302130A (en) 1995-11-14

Family

ID=14611708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6113416A Pending JPH07302130A (en) 1994-05-02 1994-05-02 Power controller

Country Status (1)

Country Link
JP (1) JPH07302130A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141832A (en) * 1997-07-17 1999-02-12 Nippon Telegr & Teleph Corp <Ntt> System and method for solar cell generation
JP2011501436A (en) * 2007-10-15 2011-01-06 エーエムピーティー, エルエルシー Highly efficient and remotely controllable solar energy system
JP2012515452A (en) * 2009-01-15 2012-07-05 フィスカー オートモーティブ インク. Vehicle solar power
US9397497B2 (en) 2013-03-15 2016-07-19 Ampt, Llc High efficiency interleaved solar power supply system
US9442504B2 (en) 2009-04-17 2016-09-13 Ampt, Llc Methods and apparatus for adaptive operation of solar power systems
US9466737B2 (en) 2009-10-19 2016-10-11 Ampt, Llc Solar panel string converter topology
EP3644156A1 (en) 2018-10-24 2020-04-29 Yazaki Corporation Power controller
EP3754439A1 (en) 2019-06-19 2020-12-23 Yazaki Corporation Power control system, power control device and controlled device
US12003110B2 (en) 2022-09-02 2024-06-04 Ampt, Llc Optimized conversion system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141832A (en) * 1997-07-17 1999-02-12 Nippon Telegr & Teleph Corp <Ntt> System and method for solar cell generation
US11228182B2 (en) 2007-10-15 2022-01-18 Ampt, Llc Converter disabling photovoltaic electrical energy power system
US10608437B2 (en) 2007-10-15 2020-03-31 Ampt, Llc Feedback based photovoltaic conversion systems
US11289917B1 (en) 2007-10-15 2022-03-29 Ampt, Llc Optimized photovoltaic conversion system
US9438037B2 (en) 2007-10-15 2016-09-06 Ampt, Llc Systems for optimized solar power inversion
US10886746B1 (en) 2007-10-15 2021-01-05 Ampt, Llc Alternating conversion solar power system
US9673630B2 (en) 2007-10-15 2017-06-06 Ampt, Llc Protected conversion solar power system
US11070062B2 (en) 2007-10-15 2021-07-20 Ampt, Llc Photovoltaic conversion systems
US11070063B2 (en) 2007-10-15 2021-07-20 Ampt, Llc Method for alternating conversion solar power
US10326283B2 (en) 2007-10-15 2019-06-18 Ampt, Llc Converter intuitive photovoltaic electrical energy power system
JP2011501436A (en) * 2007-10-15 2011-01-06 エーエムピーティー, エルエルシー Highly efficient and remotely controllable solar energy system
JP2012515452A (en) * 2009-01-15 2012-07-05 フィスカー オートモーティブ インク. Vehicle solar power
US9442504B2 (en) 2009-04-17 2016-09-13 Ampt, Llc Methods and apparatus for adaptive operation of solar power systems
US10938219B2 (en) 2009-04-17 2021-03-02 Ampt, Llc Dynamic methods and apparatus for adaptive operation of solar power systems
US10326282B2 (en) 2009-04-17 2019-06-18 Ampt, Llc Safety methods and apparatus for adaptive operation of solar power systems
US10714637B2 (en) 2009-10-19 2020-07-14 Ampt, Llc DC power conversion circuit
US10032939B2 (en) 2009-10-19 2018-07-24 Ampt, Llc DC power conversion circuit
US9466737B2 (en) 2009-10-19 2016-10-11 Ampt, Llc Solar panel string converter topology
US11411126B2 (en) 2009-10-19 2022-08-09 Ampt, Llc DC power conversion circuit
US10116140B2 (en) 2013-03-15 2018-10-30 Ampt, Llc Magnetically coupled solar power supply system
US11121556B2 (en) 2013-03-15 2021-09-14 Ampt, Llc Magnetically coupled solar power supply system for battery based loads
US9397497B2 (en) 2013-03-15 2016-07-19 Ampt, Llc High efficiency interleaved solar power supply system
US11967653B2 (en) 2013-03-15 2024-04-23 Ampt, Llc Phased solar power supply system
EP3644156A1 (en) 2018-10-24 2020-04-29 Yazaki Corporation Power controller
US10965127B2 (en) 2018-10-24 2021-03-30 Yazaki Corporation Power controller
EP3754439A1 (en) 2019-06-19 2020-12-23 Yazaki Corporation Power control system, power control device and controlled device
US11462913B2 (en) 2019-06-19 2022-10-04 Yazaki Corporation Power control system, power control device and controlled device
US12003110B2 (en) 2022-09-02 2024-06-04 Ampt, Llc Optimized conversion system

Similar Documents

Publication Publication Date Title
JP3568023B2 (en) Power converter for photovoltaic power generation
US7986122B2 (en) Method and apparatus for power conversion with maximum power point tracking and burst mode capability
US6285572B1 (en) Method of operating a power supply system having parallel-connected inverters, and power converting system
US10090701B2 (en) Solar power generation system
US20120248863A1 (en) Safety Mechanisms, Wake Up and Shutdown Methods in Distributed Power Installations
JP2004194500A (en) Power conversion apparatus for solar power generation
KR102281878B1 (en) System for generating solar power including voltage boosting device for each string
JP2005276942A (en) Solar cell power generator and system, and control method therefor
WO2011039599A1 (en) Power distribution system
JP3796460B2 (en) Power conditioner for photovoltaic system
KR20160001249A (en) Home energy management system using photovoltaic generation and energy storage system
KR101794837B1 (en) The charge and discharge of photovoltaic power generation the control unit system
JP4570245B2 (en) Distributed power system
CN106104956B (en) Method and apparatus for taking out electric energy from photovoltaic module
JPH07302130A (en) Power controller
CN108899926B (en) Photovoltaic off-grid and grid-connected energy storage inverter
US20150168980A1 (en) Method and apparatus for maximum power point tracking for multi-input power converter
JPH0951638A (en) Distributed power supply
JP2003092831A (en) Power supply system and its operation method
Parvathy et al. A photovoltaic water pumping system with high efficiency and high lifetime
JP5959969B2 (en) Solar power system
JP2000174317A (en) Solar cell power-generating system
CN114402525A (en) Photovoltaic optimizer power system supplying power from photovoltaic devices
JP2000166124A (en) Auxiliary power unit
KR20140093355A (en) Photovoltaic system that contains the string voltage booster