JPH0729916A - Heterojunction bipolar transistor - Google Patents

Heterojunction bipolar transistor

Info

Publication number
JPH0729916A
JPH0729916A JP17407493A JP17407493A JPH0729916A JP H0729916 A JPH0729916 A JP H0729916A JP 17407493 A JP17407493 A JP 17407493A JP 17407493 A JP17407493 A JP 17407493A JP H0729916 A JPH0729916 A JP H0729916A
Authority
JP
Japan
Prior art keywords
layer
base layer
type impurities
base
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17407493A
Other languages
Japanese (ja)
Inventor
Morio Nakamura
守雄 中村
Manabu Yanagihara
学 柳原
Toshimichi Ota
順道 太田
Akiyoshi Tamura
彰良 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17407493A priority Critical patent/JPH0729916A/en
Publication of JPH0729916A publication Critical patent/JPH0729916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To restrain the decrease of current amplification factor at the time of large current operation. CONSTITUTION:On a GaAs substrate 1 the following are formed in order; a collector contact layer 2 containing n-type impurities, a collector layer 3 containing n-type impurities, a base layer 4 containing p-type impurities, an emitter layer 5 which has a forbidden bandwidth larger than the base layer and contains n-type impurities, and an emitter contact layer 6 containing n-type impurities. A collector electrode 7, a base electrode 8 and an emitter electrode 9 which constitute ohmic contacts are formed on the collector contact layer 2, the base layer 4, and the emitter contact layer 6, respectively. The base layer 4 forms stable P-H bonds by adding phosphorus as p-type impurities together with carbon, so that the variation of activation ratio of the base layer 4 can be reduced and the reliability of a transistor can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置、特にヘテロ
接合バイポーラトランジスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a heterojunction bipolar transistor.

【0002】[0002]

【従来の技術】近年、化合物半導体を用いたヘテロ接合
バイポーラトランジスタ(以下HBTと記す)は高周波
デバイスとして注目されている。HBTでは、ベースの
半導体よりも大きい禁制帯幅を有する半導体をエミッタ
に用い、エミッタ・ベース間でヘテロ接合が形成されて
いる。上記ヘテロ接合によりベースからエミッタへのキ
ャリアの注入が低減されるため、ベース幅を薄くし、か
つベースのキャリア濃度を高くして、ベースの抵抗を下
げても、十分大きな電流増幅率を得ることができ、高周
波化に適しているという特徴を有する。
2. Description of the Related Art In recent years, a heterojunction bipolar transistor (hereinafter referred to as HBT) using a compound semiconductor has been attracting attention as a high frequency device. In the HBT, a semiconductor having a forbidden band width larger than that of the base semiconductor is used for the emitter, and a heterojunction is formed between the emitter and the base. Since the injection of carriers from the base to the emitter is reduced by the above heterojunction, a sufficiently large current amplification factor can be obtained even if the resistance of the base is reduced by making the width of the base thin and increasing the carrier concentration of the base. And is suitable for high frequencies.

【0003】上記ヘテロ接合を形成するために、分子線
エピタキシー(MBE)法や有機金属気相エピタキシー
(MOVPE)法の結晶成長技術が用いられている。G
aAs系のHBTでは、ベースのp型の不純物として、
主にMBE法ではベリリウムが用いられている。しかし
ベリリウムをp型不純物として用いた場合、高電流動作
時にベリリウムがベース層側からエミッタ層側へ拡散す
ることにより、電流増幅率が低下するという問題が生じ
ている。そのためベリリウムに代わる不純物として、ベ
リリウムよりも拡散係数の小さい炭素がMOCVD法で
用いられている。従来の炭素ドープHBTの断面図を図
3に示す。
In order to form the above-mentioned heterojunction, a crystal growth technique such as a molecular beam epitaxy (MBE) method or a metal organic vapor phase epitaxy (MOVPE) method is used. G
In aAs-based HBT, as a p-type impurity of the base,
Beryllium is mainly used in the MBE method. However, when beryllium is used as the p-type impurity, there is a problem that the current amplification factor is lowered due to the diffusion of beryllium from the base layer side to the emitter layer side during high current operation. Therefore, carbon, which has a smaller diffusion coefficient than beryllium, is used in the MOCVD method as an impurity in place of beryllium. A cross-sectional view of a conventional carbon-doped HBT is shown in FIG.

【0004】同図に示す通り従来のHBTはGaAs基
板1上に、n型不純物を高濃度に含有したコレクタコン
タクト層2、n型不純物を含有したコレクタ層3、p型
不純物を高濃度に含有したベース層10、ベース層より
も大きい禁制帯幅を有しn型不純物を含有したエミッタ
層5、n型不純物を高濃度に含有したエミッタコンタク
ト層6が順に形成され、コレクタコンタクト層2、ベー
ス層4、エミッタコンタクト層6の各層上にオーミック
接触するコレクタ電極7、ベース電極8、エミッタ電極
9がそれぞれ形成されている。
As shown in FIG. 1, a conventional HBT has a GaAs substrate 1 on which a collector contact layer 2 containing a high concentration of n-type impurities, a collector layer 3 containing an n-type impurity, and a high concentration of p-type impurities. The base layer 10, the emitter layer 5 having a forbidden band width larger than that of the base layer and containing the n-type impurity, and the emitter contact layer 6 containing the n-type impurity at a high concentration are sequentially formed. A collector electrode 7, a base electrode 8 and an emitter electrode 9 which are in ohmic contact are formed on each of the layer 4 and the emitter contact layer 6.

【0005】従来型ではベース層10のp型GaAsの
MOVPE成長においてTMGa、AsH3 のみが供給
される。TMGaからp型の不純物として炭素が取り込
まれ、この炭素が砒素サイトに入ればp型の不純物とし
て働く。しかし、同時に水素も取り込まれてしまうた
め、砒素と水素の結合及び炭素と水素の結合ができて活
性化が抑制される。
In the conventional type, only TMGa and AsH 3 are supplied in the MOVPE growth of p-type GaAs of the base layer 10. Carbon is taken in from TMGa as a p-type impurity, and if this carbon enters the arsenic site, it acts as a p-type impurity. However, since hydrogen is also taken in at the same time, a bond between arsenic and hydrogen and a bond between carbon and hydrogen are formed, and activation is suppressed.

【0006】[0006]

【発明が解決しようとする課題】しかし最近、炭素を不
純物とした構成においても、成長中に原料の有機金属か
ら炭素と同時に水素が混入し、高電流動作時にこの水素
がベース層から解離することに起因して、電流増幅率が
低下することが指摘され、信頼性の上で大きな問題とな
っている。
However, recently, even in a structure in which carbon is used as an impurity, hydrogen is simultaneously mixed with carbon from the raw material organic metal during growth, and this hydrogen is dissociated from the base layer during high current operation. It has been pointed out that the current amplification factor is reduced due to, and this is a big problem in terms of reliability.

【0007】本発明の目的は、動作時の電流増幅率の低
下を抑え、安定動作が可能なベース層を有するHBTを
提供するものである。
An object of the present invention is to provide an HBT having a base layer which suppresses a decrease in current amplification factor during operation and can be stably operated.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めに本発明のHBTは、p型不純物の炭素に加えて燐を
同時に添加して成長させたベース層を用いることによ
り、水素の解離に起因する活性化率の変化を低減するも
のである。
In order to solve the above problems, the HBT of the present invention uses a base layer grown by simultaneously adding phosphorus in addition to carbon as a p-type impurity to dissociate hydrogen. It reduces the change in activation rate due to.

【0009】[0009]

【作用】本発明は上記した構造により、炭素とともにベ
ース層に取り込まれた水素は、砒素と水素の結合よりも
燐と水素の結合の方が強いため、砒素と水素の結合より
も安定な燐と水素の結合が多くなり、炭素と水素の結合
及び砒素と水素の結合が減少し、高電流動作時において
も活性化率の変化は低減され、電流増幅率の低下が改善
され、信頼性が向上する。
According to the present invention, because of the above-described structure, hydrogen taken into the base layer together with carbon has a stronger bond between phosphorus and hydrogen than a bond between arsenic and hydrogen, so that the phosphorus is more stable than the bond between arsenic and hydrogen. The number of bonds between hydrogen and hydrogen increases, the bonds between carbon and hydrogen and the bonds between arsenic and hydrogen decrease, the change in activation rate is reduced even during high current operation, the decrease in current amplification factor is improved, and reliability is improved. improves.

【0010】[0010]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1に本発明のHBTの断面図を示す。同
図に示す通り本発明のHBTはGaAs基板1上に、n
型不純物を高濃度に含有したコレクタコンタクト層2、
n型不純物を含有したコレクタ層3、p型不純物を高濃
度に含有したベース層4、ベース層よりも大きい禁制帯
幅を有しn型不純物を含有したエミッタ層5、n型不純
物を高濃度に含有したエミッタコンタクト層6が順に形
成され、コレクタコンタクト層2、ベース層4、エミッ
タコンタクト層6の各層上にオーミック接触するコレク
タ電極7、ベース電極8、エミッタ電極9がそれぞれ形
成されている。
FIG. 1 shows a sectional view of the HBT of the present invention. As shown in the figure, the HBT of the present invention is formed on a GaAs substrate 1 with n
Collector contact layer 2 containing a high concentration of type impurities,
A collector layer 3 containing an n-type impurity, a base layer 4 containing a high concentration of a p-type impurity, an emitter layer 5 having a forbidden band width larger than that of the base layer and containing an n-type impurity, and a high concentration of an n-type impurity. The emitter contact layer 6 contained in is sequentially formed, and the collector electrode 7, the base electrode 4, and the emitter electrode 9 which make ohmic contact are formed on each of the collector contact layer 2, the base layer 4, and the emitter contact layer 6.

【0012】ベース層4のp型GaAsのMOVPE成
長においてトリメチルガリウム(TMGa)、アルシン
(AsH3 )、ホスフィン(PH3 )を同時に供給する
ことによりp型エピタキシャル層を得ることができる。
本発明のHBTでは成長温度を400〜600℃とし、
燐の濃度を1017〜1020/cm2 となるようにPH 3
を供給することにより、より安定な燐と水素の結合の方
が増加し、炭素と水素の結合及び砒素と水素の結合が減
少する。このp型エピタキシャル層をベース層に用いた
HBTは、動作時のベース層からの水素の解離が低減す
るので、活性化率の変動はほとんどない。
MOVPE formation of p-type GaAs for the base layer 4
Trimethylgallium (TMGa) in length, arsine
(AsH3 ), Phosphine (PH3 ) Supply at the same time
As a result, a p-type epitaxial layer can be obtained.
In the HBT of the present invention, the growth temperature is 400 to 600 ° C.,
Phosphorus concentration of 1017-1020/ Cm2 PH to be 3 
The more stable bond between phosphorus and hydrogen
Increase, the bond between carbon and hydrogen and the bond between arsenic and hydrogen decrease.
Less. This p-type epitaxial layer was used as the base layer
HBT reduces dissociation of hydrogen from the base layer during operation.
Therefore, the activation rate hardly changes.

【0013】図2に上記p型エピタキシャル層をベース
層に用いたヘテロ接合バイポーラトランジスタの電流増
幅率の経時変化を示す。図2に示すようにp型エピタキ
シャル層の成長でPH3 を導入することにより信頼性が
向上する。また、燐の含有量は不純物レベルであるた
め、格子定数及び禁制帯幅の変化は少なく、半導体の特
性に影響はない。さらに本発明では、結晶成長において
ベース層の成長のみに原料を1種類追加するだけであ
り、従来のプロセスは変更なしに用いることができる。
FIG. 2 shows changes over time in the current amplification factor of a heterojunction bipolar transistor using the p-type epitaxial layer as a base layer. As shown in FIG. 2, the reliability is improved by introducing PH 3 into the growth of the p-type epitaxial layer. Further, since the phosphorus content is at the impurity level, changes in the lattice constant and the forbidden band width are small, and the characteristics of the semiconductor are not affected. Further, in the present invention, only one kind of raw material is added only to the growth of the base layer in the crystal growth, and the conventional process can be used without modification.

【0014】[0014]

【発明の効果】以上のように本発明は、p型エピタキシ
ャル層の成長において燐を添加して成長することにより
水素の解離を低減するものであり、このp型エピタキシ
ャル層をヘテロ接合バイポーラトランジスタのベース層
に用いることにより、高電流動作時の電流増幅率の低下
を抑制することができ、信頼性が向上する。
As described above, according to the present invention, the dissociation of hydrogen is reduced by adding phosphorus in the growth of the p-type epitaxial layer, and this p-type epitaxial layer is used as a heterojunction bipolar transistor. By using the base layer, it is possible to suppress a decrease in current amplification factor during high current operation and improve reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における燐と炭素を含有したベ
ース層を備えたHBTの断面図
FIG. 1 is a cross-sectional view of an HBT having a base layer containing phosphorus and carbon according to an embodiment of the present invention.

【図2】本発明の実施例における燐と炭素を含有したベ
ース層を備えたHBTの電流増幅率の経時変化を示す図
FIG. 2 is a diagram showing a change with time of a current amplification factor of an HBT having a base layer containing phosphorus and carbon in an example of the present invention.

【図3】従来型の炭素のみを含有したベース層を備えた
HBTの断面図
FIG. 3 is a cross-sectional view of a conventional HBT having a base layer containing only carbon.

【符号の説明】[Explanation of symbols]

1 半絶縁性基板 2 コレクタコンタクト領域 3 コレクタ領域 4 ベース領域(炭素及び燐を含有) 5 エミッタ領域 6 エミッタコンタクト領域 7 コレクタ電極 8 ベース電極 9 エミッタ電極 10 ベース領域(炭素を含有) 1 Semi-Insulating Substrate 2 Collector Contact Region 3 Collector Region 4 Base Region (Contains Carbon and Phosphorus) 5 Emitter Region 6 Emitter Contact Region 7 Collector Electrode 8 Base Electrode 9 Emitter Electrode 10 Base Region (Contains Carbon)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 彰良 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akiyoshi Tamura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭素と燐を含有するp型GaAsをベース
層に用いることを特徴とするヘテロ接合バイポーラトラ
ンジスタ。
1. A heterojunction bipolar transistor comprising p-type GaAs containing carbon and phosphorus as a base layer.
【請求項2】GaAs基板と前記GaAs基板上に形成
されたn型GaAsコレクタ層、p型GaAsベース
層、n型AlGaAsエミッタ層とを有し、前記p型G
aAsベース層は炭素と燐を含有することを特徴とする
ヘテロ接合バイポーラトランジスタ。
2. A p-type G substrate comprising a GaAs substrate, an n-type GaAs collector layer, a p-type GaAs base layer and an n-type AlGaAs emitter layer formed on the GaAs substrate.
A heterojunction bipolar transistor, wherein the aAs base layer contains carbon and phosphorus.
【請求項3】炭素の濃度が1017〜1020/cm3 、燐
の濃度が1017〜10 20/cm3 であることを特徴とす
る請求項1または請求項2に記載のヘテロ接合バイポー
ラトランジスタ。
3. A carbon concentration of 1017-1020/ Cm3 ,phosphorus
The concentration of 1017-10 20/ Cm3 Is characterized by
The heterojunction bipoor according to claim 1 or 2.
Rat transistor.
JP17407493A 1993-07-14 1993-07-14 Heterojunction bipolar transistor Pending JPH0729916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17407493A JPH0729916A (en) 1993-07-14 1993-07-14 Heterojunction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17407493A JPH0729916A (en) 1993-07-14 1993-07-14 Heterojunction bipolar transistor

Publications (1)

Publication Number Publication Date
JPH0729916A true JPH0729916A (en) 1995-01-31

Family

ID=15972189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17407493A Pending JPH0729916A (en) 1993-07-14 1993-07-14 Heterojunction bipolar transistor

Country Status (1)

Country Link
JP (1) JPH0729916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764859A1 (en) 2005-09-12 2007-03-21 Fujitsu Ltd. Glass antenna and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764859A1 (en) 2005-09-12 2007-03-21 Fujitsu Ltd. Glass antenna and manufacturing method for the same
US7342547B2 (en) 2005-09-12 2008-03-11 Fujitsu Limited Glass antenna and manufacturing method for the same

Similar Documents

Publication Publication Date Title
JP2817995B2 (en) III-V compound semiconductor heterostructure substrate and III-V compound heterostructure semiconductor device
JP3368452B2 (en) Compound semiconductor device and method of manufacturing the same
US5952672A (en) Semiconductor device and method for fabricating the same
GB2301934A (en) Minority carrier semiconductor devices with improved stability
US5272095A (en) Method of manufacturing heterojunction transistors with self-aligned metal contacts
JP2533541B2 (en) Heterojunction bipolar transistor
KR930007190B1 (en) Compound semiconductor device
EP0715357A1 (en) Carbon-doped GaAsSb semiconductor
JPH0729916A (en) Heterojunction bipolar transistor
JP2002359249A (en) Compound semiconductor device and manufacturing method therefor
US7550786B2 (en) Compound semiconductor epitaxial substrate
JP3156909B2 (en) Vapor growth method of semiconductor laminated structure
JP3227083B2 (en) Method for manufacturing bipolar transistor
US6800879B2 (en) Method of preparing indium phosphide heterojunction bipolar transistors
JPH11121461A (en) Hetero junction bipolar transistor
JPH02199875A (en) Semiconductor element and manufacture thereof
JPH09298160A (en) Compd. semiconductor crystal growing method and heterojunction bipolar transistor
JPH08330240A (en) Preparation of semiconductor epitaxial growth layer
JP3408419B2 (en) Method of growing III-V compound semiconductor and heterojunction bipolar transistor
JP2000133654A (en) Manufacture of bipolar transistor
JPH0590160A (en) Growing method of crystal
JPH11251329A (en) Semiconductor wafer and manufacture thereof
JP2000174033A (en) Heterojunction bipolar transistor and its manufacture
SHIRAKASHI et al. InGaP/GaAs Heterojunction Bipotar Transistors (HBTs) with Ultra-High Carbon-Doped Base (p: L. 5 x 1021 cm-3)
JPH05299340A (en) Doping concentration control method