JPH07297476A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH07297476A
JPH07297476A JP8286994A JP8286994A JPH07297476A JP H07297476 A JPH07297476 A JP H07297476A JP 8286994 A JP8286994 A JP 8286994A JP 8286994 A JP8286994 A JP 8286994A JP H07297476 A JPH07297476 A JP H07297476A
Authority
JP
Japan
Prior art keywords
semiconductor
axis
semiconductor laser
laser device
bragg reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8286994A
Other languages
Japanese (ja)
Inventor
So Otoshi
創 大歳
Toshiaki Tanaka
俊明 田中
Shigekazu Minagawa
重量 皆川
Yoshihiro Ishitani
善博 石谷
Shinji Tsuji
伸二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8286994A priority Critical patent/JPH07297476A/en
Publication of JPH07297476A publication Critical patent/JPH07297476A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a GaN surface emission laser device having the optimum laser resonator structure by providing an active layer composed of a wurtzite semiconductor and Bragg reflection mirrors constituted by cyclically forming at least two kinds of semiconductor layers having different refractive indexes on a substrate. CONSTITUTION:An undoped Bragg reflection mirror 5 is formed by alternately forming undoped InAlN layers 3 having lower refractive indexes and lattice- matched to GaN and undoped GaN layers 4 having higher refractive indexes on a GaN buffer layer 2 by 10.5 cycles after the layer 2 is grown on a sapphire substrate 1, the surface of which is cut perpendicularly to the (10-10) axis of the sapphire. Then a resonator composed of an n-type GaN electron-injected layer 6, undoped InGaN strained quantum well layer (active layer) 7, and p-type GaN hole-injected layer 8 is provided. Successively, a p-type Bragg reflection mirror is formed by piling up p-type InAlN layers 9 having lower refractive indexes and lattice-matched to GaN and p-type GaN layers 10 having higher refractive indexes on the resonator by 10.5 cycles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザ装置に係
り、特に光ディスクシステムなどの光源に好適な、青色
の面発光型半導体レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, and more particularly to a blue surface emitting semiconductor laser device suitable for a light source of an optical disk system or the like.

【0002】[0002]

【従来の技術】N(窒素)を含まない、III−V族の面
発光レーザ、例えばGaAs基板上に形成された波長
0.6〜0.9μm帯面発光レーザ、あるいはInP基
板上に形成された波長1.3〜1.5μm帯面発光レー
ザは広く知られている。
2. Description of the Related Art A III-V group surface emitting laser which does not contain N (nitrogen), for example, a surface emitting laser having a wavelength of 0.6 to 0.9 .mu.m formed on a GaAs substrate, or formed on an InP substrate. Surface emitting lasers having a wavelength of 1.3 to 1.5 μm are widely known.

【0003】また、サファイア(0001)基板上に作
製された、GaN系の青色発光ダイオードも報告されて
いる(文献1:エス・ナカムラ、ジャパニーズ・ジャー
ナル・オブ・アプライド・フィジクス、第32巻パート
2(第1A/B号)、L8頁−L11頁、文献2:日経
エレクトロニクス、No.598、59頁〜60頁、1
994年1月3日号)。
A GaN-based blue light-emitting diode fabricated on a sapphire (0001) substrate has also been reported (Reference 1: S. Nakamura, Japanese Journal of Applied Physics, Volume 32, Part 2). (No. 1A / B), L8-L11, Reference 2: Nikkei Electronics, No. 598, pages 59-60, 1
January 3, 994 issue).

【0004】[0004]

【発明が解決しようとする課題】GaN系の青色半導体
レーザは、まだ実現されていない。その原因の一つが、
レーザ端面の形成方法が確立されていないことにある。
これまで、報告されているGaN系の発光ダイオード
は、ウルツ鉱型の結晶構造を有し、サファイア(000
1)基板上に作製されているため、劈開で鏡面を得るこ
とが困難であった。
A GaN-based blue semiconductor laser has not yet been realized. One of the causes is
This is because the method of forming the laser end face is not established.
The GaN-based light-emitting diodes that have been reported so far have a wurtzite-type crystal structure and include sapphire (000
1) Since it was formed on the substrate, it was difficult to obtain a mirror surface by cleavage.

【0005】したがって、本発明の目的は、ウルツ鉱型
の結晶構造における最適のレーザ共振器構造を示し、G
aN系面発光レーザを実現することにある。
Therefore, it is an object of the present invention to show an optimum laser cavity structure in a wurtzite crystal structure, G
It is to realize an aN-based surface emitting laser.

【0006】[0006]

【課題を解決するための手段】上記の目的は、基板上
に、少なくともウルツ鉱型半導体である活性層、および
屈折率の異なる少なくとも2種類の半導体層を周期的に
形成してなるブラッグ反射鏡を設けることによって達成
される。とくに、結晶成長方向を、[0001]軸ある
いはこれと等価な軸から5°〜10°以上傾斜した軸に
平行にとることにより、偏光方向を制御することができ
る。また、上記ブラッグ反射鏡を構成している2種類の
半導体層を、互いに格子整合した、InXGa1-XN(0
≦x≦1)とInAlN等にすることによって効果的に
達成できる。
The above-mentioned object is to provide a Bragg reflector having a substrate on which an active layer, which is at least a wurtzite semiconductor, and at least two kinds of semiconductor layers having different refractive indexes are periodically formed. It is achieved by providing. In particular, by setting the crystal growth direction parallel to the [0001] axis or an axis inclined by 5 ° to 10 ° or more from the axis equivalent thereto, the polarization direction can be controlled. In addition, the two types of semiconductor layers that form the Bragg reflector are lattice-matched to each other and are made of In X Ga 1 -X N (0
It can be effectively achieved by setting ≦ x ≦ 1) and InAlN.

【0007】[0007]

【作用】半導体レーザの共振器は、端面での反射を利用
するファブリペロー型と、周期的に屈折率が変化したブ
ラッグ反射鏡型に大別できる。上述のように、ウルツ鉱
型半導体では、端面形成が難しいため、ブラッグ反射鏡
によって共振器を形成する方が有利である。
The resonator of the semiconductor laser can be roughly classified into a Fabry-Perot type that utilizes reflection at the end face and a Bragg reflector type in which the refractive index changes periodically. As described above, in the wurtzite type semiconductor, since it is difficult to form the end face, it is more advantageous to form the resonator by the Bragg reflector.

【0008】また、図3は、ウルツ鉱型半導体、すなわ
ち六方格子の方向の指数を表したものである。この図
で、[0001]軸の方向に結晶成長を行った場合、電
子構造の対称性により、面から出射されるレーザ光の偏
光方向は、0〜360°どの方向に向くか予測できな
い、すなわち制御できない。したがって、偏光制御が必
要なシステムに応用するには、[0001]軸から、5
〜10°程度以上離れた軸を結晶成長方向とする必要が
ある。とくに、図3に示した、[10−10]軸、[1
1−20]軸、[10−11]軸方向の結晶成長は容易
であり、結晶軸として有力な候補である。
FIG. 3 shows the wurtzite type semiconductor, that is, the index in the direction of the hexagonal lattice. In this figure, when crystal growth is performed in the [0001] axis direction, it is not possible to predict which direction the polarization direction of the laser light emitted from the plane is 0 to 360 ° due to the symmetry of the electronic structure. Out of control. Therefore, in order to apply it to a system that requires polarization control, it is necessary to use 5 from the [0001] axis.
It is necessary to set the axis distant by about 10 ° or more as the crystal growth direction. In particular, the [10-10] axis, [1
Crystal growth in the [1-20] axis and [10-11] axis directions is easy and is a strong candidate as a crystal axis.

【0009】さらに、ブラッグ反射鏡は、屈折率の異な
る少なくとも2種類の半導体を周期的に形成することに
よって、作製される。また、各層の厚さは、各層内部で
の波長の1/4である。したがって、ブラッグ反射鏡を
構成する半導体は、互いに格子整合していることが必要
である。もし、ブラッグ反射鏡のような厚膜で格子不整
合があると、転位が発生し、素子の信頼性を損なうこと
になる。
Further, the Bragg reflector is manufactured by periodically forming at least two kinds of semiconductors having different refractive indexes. The thickness of each layer is 1/4 of the wavelength inside each layer. Therefore, the semiconductors forming the Bragg reflector must be lattice-matched to each other. If there is a lattice mismatch in a thick film such as a Bragg reflector, dislocations will occur and the reliability of the device will be impaired.

【0010】GaN系の場合、ブラッグ反射鏡を構成す
る高屈折率層としては、InXGa1-XN(0≦x≦
1)、とくに結晶性の点で実績のあるGaNが有力であ
る。一方、このInXGa1-XNに格子整合し、かつIn
XGa1-XNよりも5%以上屈折率が小さい材料として、
四元系では、InGaAlN、GaAlNP、あるいは
GaAlNAsがある。また、三元系では、InAl
N、AlNP、あるいはAlNAsがある。これら、材
料で、ブラッグ反射鏡を構成することにより、GaN系
の青色面発光レーザが実現できる。
In the case of GaN, the high refractive index layer constituting the Bragg reflector is In x Ga 1 -x N (0≤x≤
1), especially GaN, which has a proven record in terms of crystallinity, is effective. On the other hand, it is lattice-matched to this In X Ga 1-X N and
As a material whose refractive index is 5% or more smaller than that of X Ga 1-X N,
In the quaternary system, there are InGaAlN, GaAlNP, or GaAlNAs. In the ternary system, InAl
There are N, AlNP, or AlNAs. By constructing a Bragg reflector with these materials, a GaN-based blue surface emitting laser can be realized.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】<実施例1>図1は、本発明の第1の実施
例である面発光型レーザの断面構成図を示したものであ
る。また、図2は本レーザの上面図である。図1は、図
2のA−B部分の断面図となっている。以下これらの図
にしたがって、素子構造および製造工程を説明する。
<Embodiment 1> FIG. 1 is a sectional view showing the structure of a surface emitting laser according to a first embodiment of the present invention. FIG. 2 is a top view of this laser. FIG. 1 is a sectional view of a portion AB of FIG. The device structure and manufacturing process will be described below with reference to these drawings.

【0013】表面が[10−10]軸に垂直であるサフ
ァイア基板1上に、有機金属気相成長(MOVPE)法
により、GaNのバッファ層(厚さ5μm)2を成長し
た後、GaNに格子整合したInAlNのアンドープ低
屈折率層3とGaNのアンドープ高屈折率層4を10.
5周期積層し、アンドープブラッグ反射鏡5を形成す
る。ただし、各層の厚さは素子内部での波長λの1/4
とする。次に、n型GaN(ND=1×1018[/c
m3])の電子注入層6、アンドープIn0.2Ga0.8Nの
歪み量子井戸層(活性層)(厚さ7nm)7、p型Ga
N(NA=1×1018[/cm3])の正孔注入層8から成
る共振器を設ける。ただし、この共振器の厚さはλとす
る。続けて、GaNに格子整合したInAlNのp型低
屈折率層9とGaNのp型高屈折率層10を10.5周
期積層し、p型ブラッグ反射鏡11を形成する。また、
電極との接触抵抗を下げるため、p−GaNキャップ層
12(厚さλ/4、NA=2×1018[/cm3])を設け
る。次に、蒸着法を用いてp型電極13を設け、さらに
表面から電子注入層6に到達するまでエッチングを行う
ことにより、10μmφの円形のメサを形成する。最後
に、メサの側部をSiO214で被覆した後、n型電極
15を蒸着することで、図1および図2に示す実施例の
面発光レーザを作製する。
On the sapphire substrate 1 whose surface is perpendicular to the [10-10] axis, a GaN buffer layer (thickness 5 μm) 2 is grown by metalorganic vapor phase epitaxy (MOVPE), and then GaN lattice is formed. The matched InAlN undoped low-refractive index layer 3 and GaN undoped high-refractive index layer 4 were matched.
Five cycles are stacked to form an undoped Bragg reflector 5. However, the thickness of each layer is 1/4 of the wavelength λ inside the device.
And Next, n-type GaN (N D = 1 × 10 18 [/ c
m 3 ]) electron injection layer 6, undoped In 0.2 Ga 0.8 N strained quantum well layer (active layer) (thickness 7 nm) 7, p-type Ga
A resonator including the hole injection layer 8 of N (NA = 1 × 10 18 [/ cm 3 ]) is provided. However, the thickness of this resonator is λ. Subsequently, the p-type low-refractive index layer 9 of InAlN and the p-type high-refractive index layer 10 of GaN lattice-matched with GaN are laminated for 10.5 periods to form a p-type Bragg reflector 11. Also,
The p-GaN cap layer 12 (thickness λ / 4, N A = 2 × 10 18 [/ cm 3 ]) is provided to reduce the contact resistance with the electrode. Next, a p-type electrode 13 is provided by vapor deposition, and etching is further performed from the surface to reach the electron injection layer 6, thereby forming a circular mesa of 10 μmφ. Finally, the side surface of the mesa is covered with SiO 2 14 and then the n-type electrode 15 is vapor-deposited to manufacture the surface emitting laser of the embodiment shown in FIGS. 1 and 2.

【0014】上記実施例の素子において、しきい電流2
0mAで発振する青色の面発光レーザが実現できる。ま
た、作製した素子全て、特定の方向に直線偏光したレー
ザ光を放出することになる。
In the device of the above embodiment, the threshold current 2
A blue surface emitting laser that oscillates at 0 mA can be realized. In addition, all the manufactured devices emit laser light linearly polarized in a specific direction.

【0015】本実施例の面発光レーザを、光ディスクシ
ステムの光源に用いることにより、高性能なシステムを
構成することができる。
By using the surface emitting laser of this embodiment as a light source of an optical disk system, a high performance system can be constructed.

【0016】<実施例2>図4は、本発明の第2の実施
例である面発光型レーザの断面構成図を示したものであ
る。以下この図にしたがって、素子構造および製造工程
を説明する。
<Embodiment 2> FIG. 4 is a sectional view showing the configuration of a surface emitting laser according to a second embodiment of the present invention. The device structure and manufacturing process will be described below with reference to this drawing.

【0017】表面が[10−11]軸に垂直であるサフ
ァイア基板21上に、有機金属気相成長(MOVPE)
法により、GaNのバッファ層(厚さ5μm)22を成
長した後、GaNに格子整合したAlNPのアンドープ
低屈折率層23とGaNのアンドープ高屈折率層24を
10.5周期積層し、ブラッグ反射鏡25を形成する。
ただし、各層の厚さは素子内部での波長λの1/4とす
る。次に、n型GaN(ND=1×1018[/cm3])の
電子注入層26、アンドープIn0.2Ga0.8Nの歪み量
子井戸層(活性層)(厚さ7nm)27、p型GaN
(NA=1×1018[/cm3])の正孔注入層28から成
る共振器を設ける。ただし、この共振器の厚さはλとす
る。続けて、GaNに格子整合したAlNPのアンドー
プ低屈折率層29とGaNのアンドープ高屈折率層30
を10.5周期積層し、ブラッグ反射鏡31を形成す
る。次に、表面から正孔注入層28に到達するまでエッ
チングを行うことにより、6μmφの円形のメサを形成
する。蒸着法を用いてp型電極32を設け、さらに正孔
注入層28の表面から電子注入層26に到達するまでエ
ッチングを行う。最後に、歪み量子井戸層27の側部を
SiO233で被覆した後、n型電極34を蒸着するこ
とで、図4に示す実施例の面発光レーザを作製する。
On the sapphire substrate 21 whose surface is perpendicular to the [10-11] axis, metalorganic vapor phase epitaxy (MOVPE) is performed.
Method, a GaN buffer layer (thickness: 5 μm) 22 is grown, and then an AlNP undoped low-refractive index layer 23 and a GaN undoped high-refractive index layer 24 that are lattice-matched to GaN are stacked for 10.5 periods to perform Bragg reflection. The mirror 25 is formed.
However, the thickness of each layer is 1/4 of the wavelength λ inside the element. Next, an electron injection layer 26 of n-type GaN (N D = 1 × 10 18 [/ cm 3 ]), an undoped In 0.2 Ga 0.8 N strained quantum well layer (active layer) (thickness 7 nm) 27, a p-type GaN
A resonator including the hole injection layer 28 of (NA = 1 × 10 18 [/ cm 3 ]) is provided. However, the thickness of this resonator is λ. Subsequently, an AlNP undoped low refractive index layer 29 and a GaN undoped high refractive index layer 30 lattice-matched to GaN.
Are laminated for 10.5 cycles to form the Bragg reflector 31. Next, etching is performed from the surface to reach the hole injection layer 28 to form a circular mesa of 6 μmφ. A p-type electrode 32 is provided by using a vapor deposition method, and etching is further performed from the surface of the hole injection layer 28 to the electron injection layer 26. Finally, the side surface of the strained quantum well layer 27 is covered with SiO 2 33, and then the n-type electrode 34 is vapor-deposited to manufacture the surface emitting laser of the embodiment shown in FIG.

【0018】上記実施例の素子において、しきい電流8
mAで発振する青色の面発光レーザが実現できる。ま
た、作製した素子全て、特定の方向に直線偏光したレー
ザ光を放出することになる。
In the device of the above embodiment, the threshold current 8
A blue surface emitting laser that oscillates at mA can be realized. In addition, all the manufactured devices emit laser light linearly polarized in a specific direction.

【0019】本実施例の面発光レーザを、光ディスクシ
ステムの光源に用いることにより、高性能なシステムを
構成することができる。
By using the surface emitting laser of this embodiment as a light source of an optical disk system, a high performance system can be constructed.

【0020】なお本発明は、実施例に示した以外の構造
にも有効である。例えば、素子の直列抵抗を低減するた
めに、ブラッグ反射鏡を形成している高屈折率層と低屈
折率層の間にグレーデッド層(組成が徐々に変化した
層)を設けた構造にも適用できる。また、基板はサファ
イアに限らず、ウルツ鉱結晶が得られる基板、例えば、
MgO、MnO、ZnO、SiO2等のセラミックス基
板、あるいは半導体基板でも良い。
The present invention is also effective for structures other than those shown in the embodiments. For example, in order to reduce the series resistance of the device, a structure in which a graded layer (a layer whose composition gradually changes) is provided between the high refractive index layer and the low refractive index layer forming the Bragg reflector is also available. Applicable. Further, the substrate is not limited to sapphire, a substrate from which wurtzite crystals can be obtained, for example,
It may be a ceramic substrate such as MgO, MnO, ZnO, or SiO 2 or a semiconductor substrate.

【0021】[0021]

【発明の効果】本発明によれば、互いに格子整合したG
aN/InAlN等で構成されたブラッグ反射鏡で反射
ミラーを形成しているので、高い反射率が得られ、Ga
N系材料でのレーザ発振が可能になる。また、活性層を
[0001]軸から5°〜10°以上傾斜した軸の方向
に形成することにより、偏光方向が制御された青色面発
光レーザが実現できる。さらに、本発明の半導体レーザ
を光ディスクシステムに適用することで、システムの高
性能化が図れる。
According to the present invention, Gs lattice-matched to each other are used.
Since the Bragg reflector made of aN / InAlN or the like forms the reflecting mirror, a high reflectance can be obtained and Ga
Laser oscillation with N-based material becomes possible. Further, by forming the active layer in the direction of the axis inclined by 5 ° to 10 ° or more from the [0001] axis, a blue surface emitting laser with a controlled polarization direction can be realized. Furthermore, by applying the semiconductor laser of the present invention to an optical disc system, the system performance can be improved.

【0022】[0022]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例となる半導体レーザ装置の断
面図。
FIG. 1 is a sectional view of a semiconductor laser device according to an embodiment of the present invention.

【図2】同じく図1の上面図。FIG. 2 is a top view of FIG.

【図3】六方格子(ウルツ鉱型結晶構造)における方向
の指数の説明図。
FIG. 3 is an explanatory diagram of a direction index in a hexagonal lattice (wurtzite crystal structure).

【図4】同じく他の実施例となる半導体レーザ装置の断
面図。
FIG. 4 is a sectional view of a semiconductor laser device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、21…基板、 2、22…バ
ッファ層、3、23…アンドープ低屈折率層、
4、24…アンドープ高屈折率層、5、25…アンドー
プブラッグ反射鏡、 6、26…電子注入層、7、27
…歪み量子井戸層、 8、28…正孔注入
層、9…p型低屈折率層、 10…p
型高屈折率層、29…アンドープ低屈折率層、
30…アンドープ高屈折率層、11…p型ブラッグ反
射鏡、 12…p型キャップ層、31…アン
ドープブラッグ反射鏡、 13、32…p型電極、
14、33…SiO2、 15、34…
n型電極。
1, 21 ... Substrate, 2, 22 ... Buffer layer, 3, 23 ... Undoped low refractive index layer,
4, 24 ... Undoped high refractive index layer, 5, 25 ... Undoped Bragg reflecting mirror, 6, 26 ... Electron injection layer, 7, 27
... Strained quantum well layer, 8, 28 ... Hole injection layer, 9 ... P-type low refractive index layer, 10 ... P
Type high refractive index layer, 29 ... undoped low refractive index layer,
30 ... Undoped high refractive index layer, 11 ... P-type Bragg reflector, 12 ... P-type cap layer, 31 ... Undoped Bragg reflector, 13, 32 ... P-type electrode,
14, 33 ... SiO 2 , 15, 34 ...
n-type electrode.

フロントページの続き (72)発明者 石谷 善博 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 辻 伸二 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Yoshihiro Ishitani 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory (72) Inventor Shinji Tsuji, 1-280 Higashi Koikeku, Tokyo Kokubunji City Inside Hitachi Research Laboratory

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】基板上に、少なくともウルツ鉱型半導体で
ある活性層、および屈折率の異なる少なくとも2種類の
半導体層を周期的に形成してなるブラッグ反射鏡が結晶
成長によって形成され、その成長方向と平行な方向に光
を放出する面発光型であることを特徴とする半導体レー
ザ装置。
1. A Bragg reflector, which is formed by periodically forming on a substrate an active layer which is at least a wurtzite semiconductor and at least two kinds of semiconductor layers having different refractive indexes by crystal growth, and the growth thereof. A surface emitting type semiconductor laser device which emits light in a direction parallel to the direction.
【請求項2】基板上に、少なくともウルツ鉱型半導体で
ある活性層、および屈折率の異なる少なくとも2種類の
半導体層を周期的に形成してなるブラッグ反射鏡が結晶
成長によって形成され、その成長方向と平行な方向に光
を放出する面発光型半導体レーザにおいて、上記成長方
向が[0001]軸あるいはこれと等価な軸から5°以
上傾斜した軸に平行であることを特徴とする半導体レー
ザ装置。
2. A Bragg reflector, which is formed by periodically forming on a substrate an active layer which is at least a wurtzite type semiconductor and at least two kinds of semiconductor layers having different refractive indexes by crystal growth. In a surface emitting semiconductor laser emitting light in a direction parallel to the direction, the growth direction is parallel to the [0001] axis or an axis inclined by 5 ° or more from an axis equivalent to the [0001] axis. .
【請求項3】基板上に、少なくともウルツ鉱型半導体で
ある活性層、および屈折率の異なる少なくとも2種類の
半導体層を周期的に形成してなるブラッグ反射鏡が結晶
成長によって形成され、その成長方向と平行な方向に光
を放出する面発光型半導体レーザにおいて、上記成長方
向が[0001]軸あるいはこれと等価な軸から10°
以上傾斜した軸に平行であることを特徴とする半導体レ
ーザ装置。
3. A Bragg reflector, which is formed by periodically forming on a substrate an active layer which is at least a wurtzite semiconductor and at least two kinds of semiconductor layers having different refractive indexes by crystal growth, and the growth thereof. In a surface-emitting type semiconductor laser that emits light in a direction parallel to the direction, the growth direction is 10 ° from the [0001] axis or an axis equivalent thereto.
A semiconductor laser device characterized in that it is parallel to the inclined axis.
【請求項4】基板上に、少なくともウルツ鉱型半導体で
ある活性層、および屈折率の異なる少なくとも2種類の
半導体層を周期的に形成してなるブラッグ反射鏡が結晶
成長によって形成され、その成長方向と平行な方向に光
を放出する面発光型半導体レーザにおいて、上記成長方
向が[0001]軸あるいはこれと等価な軸から5°以
下のずれを有する軸に平行であることを特徴とする半導
体レーザ装置。
4. A Bragg reflector, which is formed by periodically forming on a substrate an active layer which is at least a wurtzite semiconductor and at least two kinds of semiconductor layers having different refractive indexes by crystal growth, and the growth thereof. In a surface-emitting type semiconductor laser emitting light in a direction parallel to the direction, the growth direction is parallel to an axis having a deviation of 5 ° or less from the [0001] axis or an axis equivalent thereto. Laser device.
【請求項5】基板上に、少なくともウルツ鉱型半導体で
ある活性層、および屈折率の異なる少なくとも2種類の
半導体層を周期的に形成してなるブラッグ反射鏡が結晶
成長によって形成され、その成長方向と平行な方向に光
を放出する面発光型半導体レーザにおいて、上記成長方
向が[10−10]軸あるいはこれと等価な軸から5°
以内のずれを有する軸に平行であることを特徴とする半
導体レーザ装置。
5. A Bragg reflector, which is formed by periodically forming, on a substrate, an active layer which is at least a wurtzite semiconductor and at least two kinds of semiconductor layers having different refractive indexes are formed by crystal growth. In a surface-emitting type semiconductor laser that emits light in a direction parallel to the direction, the growth direction is 5 ° from the [10-10] axis or an axis equivalent thereto.
A semiconductor laser device characterized in that it is parallel to an axis having a deviation within.
【請求項6】基板上に、少なくともウルツ鉱型半導体で
ある活性層、および屈折率の異なる少なくとも2種類の
半導体層を周期的に形成してなるブラッグ反射鏡が結晶
成長によって形成され、その成長方向と平行な方向に光
を放出する面発光型半導体レーザにおいて、上記成長方
向が[11−20]軸あるいはこれと等価な軸から5°
以内のずれを有する軸に平行であることを特徴とする半
導体レーザ装置。
6. A Bragg reflector, which is formed by periodically forming on a substrate an active layer of at least a wurtzite semiconductor and at least two kinds of semiconductor layers having different refractive indexes by crystal growth, and growing the crystal. In a surface-emitting type semiconductor laser that emits light in a direction parallel to the direction, the growth direction is 5 ° from the [11-20] axis or an axis equivalent thereto.
A semiconductor laser device characterized in that it is parallel to an axis having a deviation within.
【請求項7】基板上に、少なくともウルツ鉱型半導体で
ある活性層、および屈折率の異なる少なくとも2種類の
半導体層を周期的に形成してなるブラッグ反射鏡が結晶
成長によって形成され、その成長方向と平行な方向に光
を放出する面発光型半導体レーザにおいて、上記成長方
向が[10−11]軸あるいはこれと等価な軸から5°
以内のずれを有する軸に平行であることを特徴とする半
導体レーザ装置。
7. A Bragg reflector, which is formed by periodically forming on a substrate an active layer which is at least a wurtzite semiconductor and at least two kinds of semiconductor layers having different refractive indexes by crystal growth, and the growth thereof. In a surface emitting semiconductor laser that emits light in a direction parallel to the direction, the growth direction is 5 ° from the [10-11] axis or an axis equivalent thereto.
A semiconductor laser device characterized in that it is parallel to an axis having a deviation within.
【請求項8】上記ブラッグ反射鏡を構成している半導体
が、B、Al、Ga、In、N、P、As、Sbのいず
れかで形成された二元、三元、もしくは四元の化合物半
導体である、請求項1〜7何れか記載の半導体レーザ装
置。
8. A binary, ternary or quaternary compound in which the semiconductor constituting the Bragg reflector is formed of any of B, Al, Ga, In, N, P, As and Sb. The semiconductor laser device according to claim 1, which is a semiconductor.
【請求項9】上記ブラッグ反射鏡を構成している2種類
の半導体層が、InXGa1-XN(0≦x≦1)、および
該InXGa1-XN(0≦x≦1)に格子整合したInG
aAlNである、請求項1〜7何れか記載の半導体レー
ザ装置。
9. two semiconductor layers constituting the Bragg reflector, In X Ga 1-X N (0 ≦ x ≦ 1), and the In X Ga 1-X N ( 0 ≦ x ≦ InG lattice-matched to 1)
The semiconductor laser device according to claim 1, which is aAlN.
【請求項10】上記ブラッグ反射鏡を構成している2種
類の半導体層が、InXGa1-XN(0≦x≦1)、およ
び該InXGa1-XN(0≦x≦1)に格子整合したIn
AlNである、請求項1〜7何れか記載の半導体レーザ
装置。
10. Two semiconductor layer constituting the Bragg reflector, In X Ga 1-X N (0 ≦ x ≦ 1), and the In X Ga 1-X N ( 0 ≦ x ≦ In lattice-matched to 1)
The semiconductor laser device according to claim 1, which is AlN.
【請求項11】上記ブラッグ反射鏡を構成している2種
類の半導体層が、InXGa1-XN(0≦x≦1)、およ
び該InXGa1-XN(0≦x≦1)に格子整合したGa
AlNPである、請求項1〜7何れか記載の半導体レー
ザ装置。
11. Two semiconductor layer constituting the Bragg reflector, In X Ga 1-X N (0 ≦ x ≦ 1), and the In X Ga 1-X N ( 0 ≦ x ≦ Ga lattice-matched to 1)
The semiconductor laser device according to claim 1, which is AlNP.
【請求項12】上記ブラッグ反射鏡を構成している2種
類の半導体層が、InXGa1-XN(0≦x≦1)、およ
び該InXGa1-XN(0≦x≦1)に格子整合したAl
NPである、請求項1〜7何れか記載の半導体レーザ装
置。
12. Two types of semiconductor layers constituting the Bragg reflector, In X Ga 1-X N (0 ≦ x ≦ 1), and the In X Ga 1-X N ( 0 ≦ x ≦ Al lattice-matched to 1)
The semiconductor laser device according to claim 1, which is an NP.
【請求項13】上記ブラッグ反射鏡を構成している2種
類の半導体層が、InXGa1-XN(0≦x≦1)、およ
び該InXGa1-XN(0≦x≦1)に格子整合したGa
AINAsである、請求項1〜7何れか記載の半導体レ
ーザ装置。
13. Two semiconductor layer constituting the Bragg reflector, In X Ga 1-X N (0 ≦ x ≦ 1), and the In X Ga 1-X N ( 0 ≦ x ≦ Ga lattice-matched to 1)
The semiconductor laser device according to claim 1, which is AINAs.
【請求項14】上記ブラッグ反射鏡を構成している2種
類の半導体層が、InXGa1-XN(0≦x≦1)、およ
び該InXGa1-XN(0≦x≦1)に格子整合したAI
NAsである、請求項1〜7何れか記載の半導体レーザ
装置。
14. Two semiconductor layer constituting the Bragg reflector, In X Ga 1-X N (0 ≦ x ≦ 1), and the In X Ga 1-X N ( 0 ≦ x ≦ AI lattice-matched to 1)
The semiconductor laser device according to claim 1, wherein the semiconductor laser device is NAs.
【請求項15】上記ブラッグ反射鏡を上記活性層の上下
に設け、半導体内での発光波長をλとしたとき、ブラッ
グ反射鏡に挟まれた活性層を含む領域の厚さdを0.4
λ≦d≦0.6λとして成る請求項1〜14何れか記載
の半導体レーザ装置。
15. The thickness d of the region including the active layer sandwiched between the Bragg reflectors is 0.4 when the Bragg reflectors are provided above and below the active layer and the emission wavelength in the semiconductor is λ.
The semiconductor laser device according to claim 1, wherein λ ≦ d ≦ 0.6λ.
【請求項16】上記ブラッグ反射鏡を上記活性層の上下
に設け、半導体内での発光波長をλとしたとき、ブラッ
グ反射鏡に挟まれた活性層を含む領域の厚さdを0.9
λ≦d≦1.1λとして成る請求項1〜14何れか記載
の半導体レーザ装置。
16. The Bragg reflector is provided above and below the active layer, and the thickness d of the region including the active layer sandwiched between the Bragg reflectors is 0.9 when the emission wavelength in the semiconductor is λ.
The semiconductor laser device according to claim 1, wherein λ ≦ d ≦ 1.1λ.
【請求項17】上記活性層が歪み量子井戸構造であり、
井戸層の膜厚が8nmより小さくして成る請求項1〜1
6何れか記載の半導体レーザ装置。
17. The active layer has a strained quantum well structure,
The well layer having a thickness smaller than 8 nm.
6. The semiconductor laser device according to any one of 6 above.
JP8286994A 1994-04-21 1994-04-21 Semiconductor laser device Pending JPH07297476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8286994A JPH07297476A (en) 1994-04-21 1994-04-21 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8286994A JPH07297476A (en) 1994-04-21 1994-04-21 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH07297476A true JPH07297476A (en) 1995-11-10

Family

ID=13786320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8286994A Pending JPH07297476A (en) 1994-04-21 1994-04-21 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH07297476A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897500A (en) * 1994-09-28 1996-04-12 Sony Corp Light emitting device and laser crt employing the same
JPH09232631A (en) * 1996-02-27 1997-09-05 Sumitomo Chem Co Ltd 3-5 compound semiconductor light emitting device
JPH09270569A (en) * 1996-01-25 1997-10-14 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPH1075014A (en) * 1996-07-17 1998-03-17 Motorola Inc Passivation vertical cavity surface-emitting laser
WO1998019375A1 (en) * 1996-10-30 1998-05-07 Hitachi, Ltd. Optical information processor and semiconductor light emitting device suitable for the same
JPH10173294A (en) * 1996-10-07 1998-06-26 Canon Inc Multilayered compound semiconductor film mirror containing nitrogen and surface type light emitting device
JPH10223975A (en) * 1997-02-12 1998-08-21 Fuji Xerox Co Ltd Surface emission type semiconductor laser device and its manufacture
JPH10303493A (en) * 1997-04-24 1998-11-13 Nichia Chem Ind Ltd Nitride semiconductor laser
JPH1146038A (en) * 1997-05-29 1999-02-16 Nichia Chem Ind Ltd Nitride semiconductor laser element and manufacture of the same
JPH1154831A (en) * 1997-08-05 1999-02-26 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
JPH1197796A (en) * 1997-07-24 1999-04-09 Samsung Electron Co Ltd Iii-v compound surface emission laser and fabrication thereof
JPH11154774A (en) * 1997-08-05 1999-06-08 Canon Inc Surface light emission type semiconductor device, manufacture thereof, and display device using the same
US5912913A (en) * 1995-12-27 1999-06-15 Hitachi, Ltd. Vertical cavity surface emitting laser, optical transmitter-receiver module using the laser, and parallel processing system using the laser
JPH11261174A (en) * 1998-02-09 1999-09-24 Hewlett Packard Co <Hp> Vcsel and vcsel array
JP2000022277A (en) * 1998-06-29 2000-01-21 Toshiba Corp Light emitting element and its manufacture
JP2001007444A (en) * 1994-12-22 2001-01-12 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2002185043A (en) * 2001-10-19 2002-06-28 Sumitomo Chem Co Ltd Method of manufacturing class iii-v compound semiconductor light-emitting element
JP2003163373A (en) * 2001-11-26 2003-06-06 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
JP2004031657A (en) * 2002-06-26 2004-01-29 Nobuhiko Sawaki Semiconductor light emitting element, method of manufacturing the same, and semiconductor light emitting apparatus
JP2004055854A (en) * 2002-07-19 2004-02-19 Toyoda Gosei Co Ltd Group 3 nitride compound semiconductor laser device
JP2004247465A (en) * 2003-02-13 2004-09-02 Sharp Corp Oxide semiconductor light emitting device
JP2004289183A (en) * 1994-12-22 2004-10-14 Nichia Chem Ind Ltd Nitride semiconductor laser element
US6835963B2 (en) 1999-12-22 2004-12-28 Kabushiki Kaisha Toshiba Light-emitting element and method of fabrication thereof
WO2006051272A1 (en) * 2004-11-11 2006-05-18 University Of Strathclyde Semiconductor materials and devices
DE19954242B4 (en) * 1998-11-12 2007-04-26 Showa Denko K.K. Light emitting device of a group III nitride semiconductor
JP2007142482A (en) * 2007-03-05 2007-06-07 Philips Lumileds Lightng Co Llc Optical semiconductor element and manufacturing method thereof
CN100341214C (en) * 2005-03-24 2007-10-03 中国科学院半导体研究所 Method for preparing InGaAs/InGaAsP quantum well laser with long wavelength and big strain
JP2007294982A (en) * 1994-12-22 2007-11-08 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2008108779A (en) * 2006-10-23 2008-05-08 Rohm Co Ltd Semiconductor light emitting element
JP2009158807A (en) * 2007-12-27 2009-07-16 Rohm Co Ltd Semiconductor laser diode
US7609745B2 (en) 2006-09-01 2009-10-27 Canon Kabushiki Kaisha Semiconductor laser apparatus
JP2009259864A (en) * 2008-04-11 2009-11-05 Sumitomo Electric Ind Ltd Group iii nitride semiconductor laser
JP2015056483A (en) * 2013-09-11 2015-03-23 学校法人 名城大学 Method of manufacturing nitride semiconductor mixed crystal, nitride semiconductor multilayer structure manufactured by the method
JP2017168560A (en) * 2016-03-15 2017-09-21 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method of the same
EP3336908A1 (en) * 2016-12-13 2018-06-20 Meijo University Semiconductor multilayer film mirror, vertical cavity type light-emitting element using the mirror, and methods for manufacturing the mirror and the element
JP2018098347A (en) * 2016-12-13 2018-06-21 学校法人 名城大学 Semiconductor multilayer film-reflecting mirror, vertical resonator type light-emitting element using the same, and manufacturing methods thereof
WO2023176674A1 (en) * 2022-03-16 2023-09-21 学校法人名城大学 Method for manufacturing nitride semiconductor light-emitting element, and nitride semiconductor light-emitting element

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897500A (en) * 1994-09-28 1996-04-12 Sony Corp Light emitting device and laser crt employing the same
JP2001007444A (en) * 1994-12-22 2001-01-12 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2004289183A (en) * 1994-12-22 2004-10-14 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2007294982A (en) * 1994-12-22 2007-11-08 Nichia Chem Ind Ltd Nitride semiconductor laser element
US5912913A (en) * 1995-12-27 1999-06-15 Hitachi, Ltd. Vertical cavity surface emitting laser, optical transmitter-receiver module using the laser, and parallel processing system using the laser
JPH09270569A (en) * 1996-01-25 1997-10-14 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPH09232631A (en) * 1996-02-27 1997-09-05 Sumitomo Chem Co Ltd 3-5 compound semiconductor light emitting device
JPH1075014A (en) * 1996-07-17 1998-03-17 Motorola Inc Passivation vertical cavity surface-emitting laser
EP0834970A3 (en) * 1996-10-07 1999-04-14 Canon Kabushiki Kaisha Multi-layer mirror of compound semiconductors including nitrogen and surface light-emitting device with the same
JPH10173294A (en) * 1996-10-07 1998-06-26 Canon Inc Multilayered compound semiconductor film mirror containing nitrogen and surface type light emitting device
US6057560A (en) * 1996-10-07 2000-05-02 Canon Kabushiki Kaisha Multi-layer, mirror of compound semiconductors including nitrogen and surface light-emitting device with the same
WO1998019375A1 (en) * 1996-10-30 1998-05-07 Hitachi, Ltd. Optical information processor and semiconductor light emitting device suitable for the same
US6639925B2 (en) 1996-10-30 2003-10-28 Hitachi, Inc. Optical information processing equipment and semiconductor light emitting device suitable therefor
US6542526B1 (en) * 1996-10-30 2003-04-01 Hitachi, Ltd. Optical information processor and semiconductor light emitting device suitable for the same
JPH10223975A (en) * 1997-02-12 1998-08-21 Fuji Xerox Co Ltd Surface emission type semiconductor laser device and its manufacture
JPH10303493A (en) * 1997-04-24 1998-11-13 Nichia Chem Ind Ltd Nitride semiconductor laser
JPH1146038A (en) * 1997-05-29 1999-02-16 Nichia Chem Ind Ltd Nitride semiconductor laser element and manufacture of the same
JPH1197796A (en) * 1997-07-24 1999-04-09 Samsung Electron Co Ltd Iii-v compound surface emission laser and fabrication thereof
JPH11154774A (en) * 1997-08-05 1999-06-08 Canon Inc Surface light emission type semiconductor device, manufacture thereof, and display device using the same
JPH1154831A (en) * 1997-08-05 1999-02-26 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
JPH11261174A (en) * 1998-02-09 1999-09-24 Hewlett Packard Co <Hp> Vcsel and vcsel array
JP4643776B2 (en) * 1998-02-09 2011-03-02 アバゴ・テクノロジーズ・ファイバー・アイピー(シンガポール)プライベート・リミテッド VCSELs and VCSEL arrays
JP2000022277A (en) * 1998-06-29 2000-01-21 Toshiba Corp Light emitting element and its manufacture
DE19954242B4 (en) * 1998-11-12 2007-04-26 Showa Denko K.K. Light emitting device of a group III nitride semiconductor
US6835963B2 (en) 1999-12-22 2004-12-28 Kabushiki Kaisha Toshiba Light-emitting element and method of fabrication thereof
JP2002185043A (en) * 2001-10-19 2002-06-28 Sumitomo Chem Co Ltd Method of manufacturing class iii-v compound semiconductor light-emitting element
JP2003163373A (en) * 2001-11-26 2003-06-06 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
JP2004031657A (en) * 2002-06-26 2004-01-29 Nobuhiko Sawaki Semiconductor light emitting element, method of manufacturing the same, and semiconductor light emitting apparatus
JP2004055854A (en) * 2002-07-19 2004-02-19 Toyoda Gosei Co Ltd Group 3 nitride compound semiconductor laser device
JP2004247465A (en) * 2003-02-13 2004-09-02 Sharp Corp Oxide semiconductor light emitting device
US7566579B2 (en) 2004-11-11 2009-07-28 University Of Strathclyde Method of fabricating semiconductor devices with a multi-role facilitation layer
WO2006051272A1 (en) * 2004-11-11 2006-05-18 University Of Strathclyde Semiconductor materials and devices
CN100341214C (en) * 2005-03-24 2007-10-03 中国科学院半导体研究所 Method for preparing InGaAs/InGaAsP quantum well laser with long wavelength and big strain
US7609745B2 (en) 2006-09-01 2009-10-27 Canon Kabushiki Kaisha Semiconductor laser apparatus
JP2008108779A (en) * 2006-10-23 2008-05-08 Rohm Co Ltd Semiconductor light emitting element
JP2007142482A (en) * 2007-03-05 2007-06-07 Philips Lumileds Lightng Co Llc Optical semiconductor element and manufacturing method thereof
JP2009158807A (en) * 2007-12-27 2009-07-16 Rohm Co Ltd Semiconductor laser diode
JP2009259864A (en) * 2008-04-11 2009-11-05 Sumitomo Electric Ind Ltd Group iii nitride semiconductor laser
JP2015056483A (en) * 2013-09-11 2015-03-23 学校法人 名城大学 Method of manufacturing nitride semiconductor mixed crystal, nitride semiconductor multilayer structure manufactured by the method
JP2017168560A (en) * 2016-03-15 2017-09-21 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method of the same
US9935428B2 (en) 2016-03-15 2018-04-03 Stanley Electric Co., Ltd. Semiconductor light-emitting element and method for manufacturing the same
EP3336908A1 (en) * 2016-12-13 2018-06-20 Meijo University Semiconductor multilayer film mirror, vertical cavity type light-emitting element using the mirror, and methods for manufacturing the mirror and the element
JP2018098347A (en) * 2016-12-13 2018-06-21 学校法人 名城大学 Semiconductor multilayer film-reflecting mirror, vertical resonator type light-emitting element using the same, and manufacturing methods thereof
JP2018098340A (en) * 2016-12-13 2018-06-21 学校法人 名城大学 Semiconductor multilayer film mirror, vertical resonator type light-emitting element using the same, and manufacturing methods thereof
US10116120B2 (en) 2016-12-13 2018-10-30 Stanley Electric Co., Ltd. Semiconductor multilayer film mirror, vertical cavity type light-emitting element using the mirror, and methods for manufacturing the mirror and the element
WO2023176674A1 (en) * 2022-03-16 2023-09-21 学校法人名城大学 Method for manufacturing nitride semiconductor light-emitting element, and nitride semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
JPH07297476A (en) Semiconductor laser device
US5727008A (en) Semiconductor light emitting device, semiconductor laser device, and method of fabricating semiconductor light emitting device
US6249534B1 (en) Nitride semiconductor laser device
US5828684A (en) Dual polarization quantum well laser in the 200 to 600 nanometers range
US6121634A (en) Nitride semiconductor light emitting device and its manufacturing method
US20010042866A1 (en) Inxalygazn optical emitters fabricated via substrate removal
US20050211971A1 (en) Gallium nitride semiconductor light emitting device having multi-quantum-well structure active layer, and semiconductor laser light source device
JPH08330628A (en) Light-emitting semiconductor element and its manufacture
JPH10242584A (en) Semiconductor light-emitting element
JPH10321910A (en) Light-emitting semiconductor element
US5545903A (en) Radiation-emitting semiconductor diode and method of manufacturing same
JPH04229689A (en) Light emitting semiconductor diode and its manufacture
JPH10261838A (en) Gallium nitride semiconductor light-emitting element and semiconductor laser beam source device
JP2002344089A (en) Nitride semiconductor light-emitting element and manufacturing method therefor
JPH09116225A (en) Semiconductor light emitting device
JP3299056B2 (en) Surface emitting type InGaAlN based semiconductor laser
JP3880683B2 (en) Method for manufacturing gallium nitride based semiconductor light emitting device
JP5277066B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2000091701A (en) Reflection mirror, semiconductor laser, formation of reflection mirror, and manufacture of semiconductor laser
JP3123136B2 (en) Surface emitting semiconductor laser, array thereof, surface emitting light emitting diode, array thereof and surface emitting pnpn device
JPH1146038A (en) Nitride semiconductor laser element and manufacture of the same
JPH11340573A (en) Gallium nitride based semiconductor laser element
JP3933637B2 (en) Gallium nitride semiconductor laser device
JPH0846291A (en) Semiconductor laser and manufacture thereof
JPH10256657A (en) Gallium nitride based semiconductor light emitting element and semiconductor laser light source device