JPH0729452Y2 - Displacement measuring device - Google Patents

Displacement measuring device

Info

Publication number
JPH0729452Y2
JPH0729452Y2 JP1988041111U JP4111188U JPH0729452Y2 JP H0729452 Y2 JPH0729452 Y2 JP H0729452Y2 JP 1988041111 U JP1988041111 U JP 1988041111U JP 4111188 U JP4111188 U JP 4111188U JP H0729452 Y2 JPH0729452 Y2 JP H0729452Y2
Authority
JP
Japan
Prior art keywords
light
measurement
measuring device
photodetector
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988041111U
Other languages
Japanese (ja)
Other versions
JPH01144809U (en
Inventor
憲司 松丸
貴廣 中村
敦郎 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP1988041111U priority Critical patent/JPH0729452Y2/en
Publication of JPH01144809U publication Critical patent/JPH01144809U/ja
Application granted granted Critical
Publication of JPH0729452Y2 publication Critical patent/JPH0729452Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本発明は、測定対象に照射したレーザ光の反射・散乱光
を光検出素子でとらえ、測定対象の変位を該光検出素子
の出力信号で測定する変位測定装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention captures the reflected / scattered light of a laser beam with which a measurement target is irradiated by a photodetector, and the displacement of the measurement target is detected by the output signal of the photodetector. The present invention relates to a displacement measuring device for measuring.

[従来の技術] 第6図は、前記変位測定装置10の動作原理を説明するた
めの模式構造図である。同図に示すように、この変位測
定装置においては、半導体レーザ1が放射したレーザ光
は照明レンズ2を通して細く絞られ、測定対象3の表面
に照射される。測定対象3の表面で反射・散乱した光の
一部は結像レンズ4を通って光検出素子5の受光面上に
投影され反射点の像を作る。前記測定対象3が前後に移
動すると、それに応じて結像レンズ4で作られた反射点
の像も光検出素子5の上を移動する。この光検出素子5
は光が受光面上のどの位置に入射しているかを電気出力
として演算回路へ伝えるものである。従って、測定対象
3の表面の移動量を電気信号として取り出すことができ
る。
[Prior Art] FIG. 6 is a schematic structural diagram for explaining the operation principle of the displacement measuring apparatus 10. As shown in the figure, in this displacement measuring device, the laser light emitted from the semiconductor laser 1 is narrowed down through the illumination lens 2 and is irradiated onto the surface of the measuring object 3. Part of the light reflected / scattered on the surface of the measurement target 3 passes through the imaging lens 4 and is projected on the light receiving surface of the photodetector 5 to form an image of a reflection point. When the measurement target 3 moves back and forth, the image of the reflection point formed by the imaging lens 4 also moves on the light detection element 5 accordingly. This photo detector 5
Is for transmitting to the arithmetic circuit as an electric output the position on the light receiving surface where the light is incident. Therefore, the amount of movement of the surface of the measurement target 3 can be extracted as an electric signal.

[考案が解決しようとする課題] 第7図に示すように、表面の半部がガラス面11のまま
で、残りの半部がAu蒸着面12(以下、Au面12と呼ぶ。)
とされているガラス板の表面を測定対象とする。ここで
前述のような変位測定装置10を用い、Au面12とガラス面
11との境界線13に対して直角となる図中矢印Aで示すよ
うなルートで変位測定を行なった。第8図(a)〜
(c)は、その結果を示したものであり、同図(b)に
示したのは測定範囲の中央における測定値であり、
(c)は装置10と測定対象3の距離が(b)よりも700
μm大きい場合で、(a)は700μm短い場合である。
これらの測定結果からわかるように、Au面12に近いガラ
ス面11の測定値は大きく乱れており、検出されるべきで
ない信号のピークがあらわれている。このように従来の
変位測定装置によれば、例えば金属蒸着面に近いガラス
面を測定する場合等のように、表面状態の大きく異なる
境界領域付近を測定しようとしても正しい結果が得られ
ないことがあるという問題があった。
[Problems to be Solved by the Invention] As shown in FIG. 7, half of the surface remains the glass surface 11, and the other half of the surface is the Au vapor deposition surface 12 (hereinafter referred to as Au surface 12).
The surface of the glass plate which is said to be the object of measurement. Here, using the displacement measuring device 10 as described above, the Au surface 12 and the glass surface
Displacement measurement was performed by a route that is perpendicular to the boundary line 13 with 11 and is shown by an arrow A in the figure. FIG. 8 (a)-
(C) shows the result, and FIG. (B) shows the measured value at the center of the measurement range.
In (c), the distance between the device 10 and the measurement target 3 is 700 than in (b).
In the case of μm larger, (a) is 700 μm shorter.
As can be seen from these measurement results, the measured values on the glass surface 11 near the Au surface 12 are greatly disturbed, and peaks of signals that should not be detected appear. As described above, according to the conventional displacement measuring device, a correct result may not be obtained even when trying to measure the vicinity of the boundary region where the surface states greatly differ, for example, when measuring a glass surface close to the metal deposition surface. There was a problem.

本考案はこのような事情に鑑みてなされたもので、レー
ザ光と光検出素子を用いた変位測定装置において、測定
点周辺の表面状態の影響を受けることなく変位測定を行
ないうるようにすることを目的としている。
The present invention has been made in view of such circumstances, and in a displacement measuring device using a laser beam and a photodetector, it is possible to perform displacement measurement without being affected by the surface condition around the measurement point. It is an object.

[課題を解決するための手段] 本考案の変位測定装置は、反射率の高い領域と反射率の
低い領域が境界をもって隣接する測定面を備えた測定対
象に適用され、レーザ光源と、レーザ光源からの光を集
光し測定対象物の表面に照射する光ビームを作るための
照明レンズと、測定対象物で反射・散乱した光を結像さ
せるため集光する結像レンズと、結像レンズにより集光
された測定対象物からの光ビームが受光面に結像される
光検出素子と、前記測定対象物の表面の変位を前記光検
出素子表面における結像点の移動に対応して出力する演
算回路と、を備えた変位測定装置において、 前記光検出素子の前面に、光検出素子上の結像点の移動
方向に一致する長手方向が前記境界に平行であり、その
幅が前記結像点の径とほぼ同じてあるスリットを設けた
ことを特徴とする。
[Means for Solving the Problem] The displacement measuring device of the present invention is applied to a measuring object having a measuring surface in which a region having a high reflectance and a region having a low reflectance are adjacent to each other with a boundary, and a laser light source and a laser light source are provided. An illumination lens for converging light from the source to create a light beam that irradiates the surface of the object to be measured, an imaging lens for converging light reflected and scattered by the object to be measured, and an imaging lens And outputs the displacement of the surface of the measurement object corresponding to the movement of the imaging point on the surface of the photodetection element In the displacement measuring device including the arithmetic circuit, the longitudinal direction coinciding with the moving direction of the image forming point on the photodetecting element is parallel to the boundary, and the width thereof is on the front surface of the photodetecting element. A slit with the same diameter as the image point is set. Characterized in that was.

[作用] 測定対象の表面に照射されたレーザ光は反射・散乱し、
スリットを通って光検出素子の受光面上に結像する。測
定対象が変位すると、結像点は受光面上でスリットに沿
って移動するが、スリットと交差する方向の周辺不要光
はこのスリットによって遮られるので、測定点周辺の表
面状態の影響を受けることなく、光検出素子は測定点の
変位に従った電気信号を出力することができる。
[Operation] The laser light emitted to the surface of the measurement target is reflected and scattered,
An image is formed on the light receiving surface of the photodetector through the slit. When the object to be measured is displaced, the image formation point moves along the slit on the light receiving surface, but peripheral unnecessary light in the direction intersecting with the slit is blocked by this slit, so it is affected by the surface condition around the measurement point. However, the photodetector element can output an electric signal according to the displacement of the measurement point.

[実施例] まず、測定対象の表面状態が大きく異なる境界領域付近
を従来の変位測定装置で測定する場合に測定不能の領域
が生じてしまう理由について、本考案者の新たに把握し
た問題点を説明し、本考案を案出するに至った背景につ
いて述べる。さて、第7図に示すような測定方法で、金
属蒸着面としてのAu面12に近いガラス面11を測定した場
合を考える。第5図は、このような測定方法において測
定対象を平面視した状態を示す図である。同図中矢印20
はレーザ光の入射光路を示し、矢印21はレーザ光の反射
光路を示す。また同図中30は、ガラス面11上の測定点を
示すと共に、光検出素子5上に結像するビームのスポッ
トを示す。また同図中40は測定面上に投影した光検出素
子5の像である。さて、変位測定装置における受光系の
像倍率が低い場合には、第5図に示すように測定面上に
おける光検出素子5の像40は、スポット30に対してかな
り大きいものとなる。この像40の範囲内には、測定すべ
きガラス面11だけでなく、Au面12も含まれているが、Au
面12の反射率はガラス面11よりも高く、Au面12で反射し
た光の一部は光検出素子5に到達しているものと考えら
れる。測定時には、この像40に対応する光検出素子5の
受光面上において、ガラス面11の変位に応じてスポット
30が境界線13とほぼ平行な方向に移動することになる
が、第4図(c)に示すAu面12で反射したスポット30の
不要な周辺光も強調されて光検出素子5に入射するの
で、そのために変位測定装置の光検出素子5に結像する
スポット30は、その強度分布のパターンが校正時とずれ
てくる。このような理由によって、反射率の高い領域に
近い低反射率の領域が測定不能になるものと考えられ
る。即ち反射率の異なる境界部分を測定する場合には、
不要周辺光が反射率の高い部分にかかったときには、不
要周辺光が強調され校正時の強度分布のパターンとずれ
てくるのである。
[Embodiment] First, regarding the reason why an unmeasurable region is generated when measuring the vicinity of the boundary region where the surface condition of the measurement object is greatly different, The background to the invention and the invention was devised. Now, consider a case where the glass surface 11 close to the Au surface 12 as the metal vapor deposition surface is measured by the measuring method as shown in FIG. FIG. 5 is a diagram showing a state in which a measurement target is viewed in plan in such a measuring method. Arrow 20 in the figure
Indicates the incident light path of the laser light, and the arrow 21 indicates the reflected light path of the laser light. In addition, reference numeral 30 in the figure indicates a measurement point on the glass surface 11, and also indicates a spot of a beam imaged on the photodetector 5. Reference numeral 40 in the figure is an image of the photo-detecting element 5 projected on the measurement surface. Now, when the image magnification of the light receiving system in the displacement measuring device is low, the image 40 of the photodetector 5 on the measurement surface becomes considerably large with respect to the spot 30, as shown in FIG. In the range of this image 40, not only the glass surface 11 to be measured but also the Au surface 12 is included.
The reflectance of the surface 12 is higher than that of the glass surface 11, and it is considered that part of the light reflected by the Au surface 12 reaches the photodetector 5. At the time of measurement, a spot corresponding to the displacement of the glass surface 11 is spotted on the light receiving surface of the photodetector 5 corresponding to the image 40.
Although 30 moves in a direction substantially parallel to the boundary line 13, unnecessary peripheral light of the spot 30 reflected by the Au surface 12 shown in FIG. 4 (c) is also emphasized and enters the photodetector 5. Therefore, the pattern of the intensity distribution of the spot 30 imaged on the photo-detecting element 5 of the displacement measuring device is deviated from that at the time of calibration. For this reason, it is considered that the region of low reflectance close to the region of high reflectance becomes unmeasurable. That is, when measuring the boundary portion with different reflectance,
When unnecessary ambient light reaches a portion having a high reflectance, the unnecessary ambient light is emphasized and deviates from the intensity distribution pattern at the time of calibration.

そこで、本考案者は、従来知られていなかったこのよう
な問題を把握した上で、光検出素子5の前面にスリット
を設けた変位測定装置を考案した。第1図及び第2図
は、この考案の一実施例を示すもので、従来と同様の部
分には第6図と同一の符号を付して説明を省略する。こ
の変位測定装置50は、光検出素子5の前面側(光が入射
してくる側)にスリット51が設けてある。このスリット
51の長手方向は、光検出素子5の受光面におけるスポッ
ト30の移動方向に平行で、その幅はスポット30の径(反
射点におけるビーム径)とほぼ同じとされている。この
ようなスリット51を設ければ、第4図(a)、(b)に
示すように、Au面12で反射してくるスポット30の不要な
周辺光は遮られる。従って第7図と同様の方向でガラス
面11及びAu面12を測定すると、第3図の測定結果に示す
ように、Au面12に近いガラス面11において検出されるべ
きでない信号のピークは、従来よりも大幅に小さくなっ
ている。即ち、本実施例によれば、Au面12に近いガラス
面11の測定可能領域が従来よりも広がり、反射率の高い
金属蒸着面にかなり近い部分まで測定可能となった。な
お、スリットを使用するかわりに、結像点の移動方向に
直交する方向の巾が狭い光検出素子を使用することが考
えられるが、光検出素子は光スポットが受光面をはずれ
ても光に対する感度が多少あるため周辺光の影響を受
け、スリットを利用したときに比べ効果が落ちる。
Therefore, the present inventor has devised a displacement measuring device in which a slit is provided on the front surface of the photodetecting element 5 after grasping such a problem that has not been known in the past. FIG. 1 and FIG. 2 show an embodiment of the present invention. The same parts as in the prior art are designated by the same reference numerals as in FIG. 6 and their explanations are omitted. In this displacement measuring device 50, a slit 51 is provided on the front surface side (the side on which light is incident) of the light detection element 5. This slit
The longitudinal direction of 51 is parallel to the moving direction of the spot 30 on the light receiving surface of the photodetector 5, and its width is almost the same as the diameter of the spot 30 (beam diameter at the reflection point). By providing such a slit 51, unnecessary peripheral light of the spot 30 reflected by the Au surface 12 is blocked as shown in FIGS. 4 (a) and 4 (b). Therefore, when the glass surface 11 and the Au surface 12 are measured in the same direction as in FIG. 7, the peak of the signal that should not be detected on the glass surface 11 near the Au surface 12 is as shown in the measurement result of FIG. It is much smaller than before. That is, according to the present embodiment, the measurable region of the glass surface 11 close to the Au surface 12 is wider than before, and it is possible to measure up to a portion considerably close to the metal vapor deposition surface having high reflectance. Instead of using a slit, it is conceivable to use a photodetector element with a narrow width in the direction orthogonal to the moving direction of the image formation point. However, the photodetector element does not detect light even if the light spot deviates from the light receiving surface. Since it has some sensitivity, it is affected by ambient light, and the effect is lower than when a slit is used.

[考案の効果] 本考案によれば、光検出素子上の結像点の径とほぼ同幅
のスリットを、光検出素子上の結像点の移動方向に一致
すると共に測定面の高反射率領域と低反射率領域の境界
に平行となるように、前記光検出素子の前面に設けた。
このため、光検出素子に到達する光ビームの強度分布パ
ターンにおける裾の部分が除去され、光検出素子上にで
きる光スポットの裾がきれいになる。従って、反射率の
高い領域と反射率の低い領域が境界をもって隣接する測
定面を備えた測定対象を測定した際、前記裾の部分が測
定対象の高反射領域で反射されても、光検出素子上の光
スポットの強度パターンの重心は前記裾の部分による影
響を受けにくくなり、前記境界面近傍の測定において
も、高精度の変位測定ができる。この効果は、幅と長手
方向を前述のように設定したスリットを光検出素子の前
面に設置した本装置を用い、反射率の高い領域と反射率
の低い領域が境界をもって隣接する測定面を備えた測定
対象において前記境界の近傍の低反射率領域を測定する
際に特に得られるものである。反射率の高い領域と反射
率の低い領域が境界をもって隣接する測定面を備えた測
定対象において、前記境界の近傍の低反射率領域を測定
する場合でなければ前述のような光スポットの裾による
問題点は生じず、かかる測定対象に対してスリットの幅
と長手方向を前述のようなものとしなければ、光検出素
子上にできる光スポットの裾を除去することはできな
い。また、スリットを他の位置、例えば受光レンズの前
に設置しても、光検出素子に入る光量が低下するのみ
で、光検出素子上にできる光スポットの裾を除去するこ
とはできない。
[Advantages of the Invention] According to the present invention, a slit having a width substantially equal to the diameter of the image forming point on the photodetector is aligned with the moving direction of the image forming point on the photodetector, and the high reflectance of the measurement surface is achieved. It was provided on the front surface of the photodetection element so as to be parallel to the boundary between the region and the low reflectance region.
Therefore, the skirt portion of the intensity distribution pattern of the light beam that reaches the photodetector is removed, and the skirt of the light spot formed on the photodetector is clean. Therefore, when a measurement target having a measurement surface adjacent to each other with a boundary between a high reflectance region and a low reflectance region is measured, even if the hem portion is reflected by the high reflectance region of the measurement target, the photodetector element The center of gravity of the intensity pattern of the upper light spot is less likely to be affected by the skirt portion, and highly accurate displacement measurement can be performed even in the measurement near the boundary surface. This effect is obtained by using this device in which the slit whose width and longitudinal direction are set as described above is installed on the front surface of the photodetector, and which has a measurement surface in which a high reflectance region and a low reflectance region are adjacent to each other with a boundary. It is particularly obtained when measuring a low reflectance region near the boundary in the measurement target. In a measurement object having a measurement surface in which a high reflectance area and a low reflectance area are adjacent to each other with a boundary, unless the low reflectance area near the boundary is measured, the hem of the light spot as described above is used. No problem arises, and the bottom of the light spot formed on the photodetector cannot be removed unless the slit width and longitudinal direction are set as described above for the measurement target. Further, even if the slit is installed at another position, for example, in front of the light receiving lens, only the amount of light entering the photodetector is reduced, and the bottom of the light spot formed on the photodetector cannot be removed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す構成図、第2図は同実
施例の構成を示す模式的斜視図、第3図は同実施例にお
いてガラス面とAu面とを連続して測定した結果を示すグ
ラフ、第4図(a)は同実施例における測定点付近の測
定面を示す平面図で、光検出素子の像を示した図、同図
(b)は同図(a)におけるスポットのY-Y方向の断面
の強度分布図、同図(c)はスリットがない場合におけ
るスポットのY-Y方向の断面の強度分布図、第5図は従
来技術における測定点付近の測定面を示す平面図で、光
検出素子の像を示した図、第6図は従来の変位測定装置
の構成を示す模式的斜視図、第7図は同従来例の装置に
おけるAu面及びガラス面の変位測定方法を示す斜視図、
第8図は第7図の測定によって得られた変位測定の結果
を示すグラフである。 3……測定対象、5……光検出素子、11……反射率が低
い領域としてのガラス面、12……反射率が高い領域とし
てのAu蒸着面(Au面)、30……結像点としてのスポッ
ト、50……変位測定装置、51……スリット。
FIG. 1 is a structural view showing an embodiment of the present invention, FIG. 2 is a schematic perspective view showing the structure of the same embodiment, and FIG. 3 is a glass surface and an Au surface continuously measured in the same embodiment. FIG. 4 (a) is a plan view showing the measurement surface in the vicinity of the measurement point in the same example, showing the image of the photodetector, and FIG. 4 (b) is the same figure (a). FIG. 5C is an intensity distribution diagram of a cross section of the spot in the YY direction, FIG. 5C is a intensity distribution diagram of the cross section of the spot in the YY direction when there is no slit, and FIG. FIG. 6 is a diagram showing an image of a photodetector, FIG. 6 is a schematic perspective view showing a configuration of a conventional displacement measuring device, and FIG. 7 is a displacement measuring method of Au surface and glass surface in the conventional device. Is a perspective view showing
FIG. 8 is a graph showing the results of displacement measurement obtained by the measurement of FIG. 3 ... Object to be measured, 5 ... Photodetector, 11 ... Glass surface as low reflectance area, 12 ... Au vapor deposition surface (Au surface) as high reflectance area, 30 ... Imaging point As a spot, 50 ... Displacement measuring device, 51 ... Slit.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−191915(JP,A) 特開 昭55−40942(JP,A) 特開 昭60−135714(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-191915 (JP, A) JP-A-55-40942 (JP, A) JP-A-60-135714 (JP, A)

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】反射率の高い領域と反射率の低い領域が境
界をもって隣接する測定面を備えた測定対象に適用さ
れ、レーザ光源と、レーザ光源からの光を集光し測定対
象物の表面に照射する光ビームを作るための照明レンズ
と、測定対象物で反射・散乱した光を結像させるため集
光する結像レンズと、結像レンズにより集光された測定
対象物からの光ビームが受光面に結像される光検出素子
と、前記測定対象物の表面の変位を前記光検出素子表面
における結像点の移動に対応して出力する演算回路と、
を備えた変位測定装置において、 前記光検出素子の前面に、光検出素子上の結像点の移動
方向に一致する長手方向が前記境界に平行であり、その
幅が前記結像点の径とほぼ同じであるスリットを設けた
ことを特徴とする変位測定装置。
1. A high-reflectance region and a low-reflectance region are applied to a measuring object having a measuring surface adjacent to each other with a boundary, and a laser light source and a surface of the measuring object by condensing light from the laser light source. An illumination lens for forming a light beam for irradiating the object, an imaging lens for condensing the light reflected and scattered by the measurement object to form an image, and a light beam from the measurement object condensed by the imaging lens A photodetection element for forming an image on a light receiving surface, and an arithmetic circuit for outputting the displacement of the surface of the measurement object in response to the movement of the image formation point on the surface of the photodetection element,
In the displacement measuring device provided with, on the front surface of the photo-detecting element, the longitudinal direction coinciding with the moving direction of the imaging point on the photo-detecting element is parallel to the boundary, and its width is the diameter of the imaging point. Displacement measuring device having slits which are almost the same.
JP1988041111U 1988-03-30 1988-03-30 Displacement measuring device Expired - Lifetime JPH0729452Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988041111U JPH0729452Y2 (en) 1988-03-30 1988-03-30 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988041111U JPH0729452Y2 (en) 1988-03-30 1988-03-30 Displacement measuring device

Publications (2)

Publication Number Publication Date
JPH01144809U JPH01144809U (en) 1989-10-04
JPH0729452Y2 true JPH0729452Y2 (en) 1995-07-05

Family

ID=31267562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988041111U Expired - Lifetime JPH0729452Y2 (en) 1988-03-30 1988-03-30 Displacement measuring device

Country Status (1)

Country Link
JP (1) JPH0729452Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11245816A (en) * 1998-03-03 1999-09-14 East Japan Railway Co Rail displacement amount measuring device
US7102123B2 (en) * 2003-10-28 2006-09-05 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Reflective imaging encoder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540942A (en) * 1978-09-14 1980-03-22 Nec Corp Range finder
DE2853978A1 (en) * 1978-12-14 1980-07-03 Bosch Gmbh Robert Rangefinder
JPS58191915A (en) * 1982-05-04 1983-11-09 Minolta Camera Co Ltd Optical position sensor
JPS60135714A (en) * 1983-12-23 1985-07-19 Matsushita Electric Works Ltd Distance sensor
JPH07113548B2 (en) * 1986-06-19 1995-12-06 株式会社ニコン Surface displacement detector

Also Published As

Publication number Publication date
JPH01144809U (en) 1989-10-04

Similar Documents

Publication Publication Date Title
JP2004514889A (en) Measurement of surface defects
JP4130236B2 (en) Object surface shape measuring method and apparatus
JPH0729452Y2 (en) Displacement measuring device
JP3609559B2 (en) Position detecting element and distance sensor
JPH0725618Y2 (en) Displacement measuring device
JPS61112905A (en) Optical measuring apparatus
JP2565274B2 (en) Height measuring device
JPS63225116A (en) Optical displacement measuring instrument
JPS5928608A (en) Detector for weld line
JP2588679Y2 (en) Surface roughness inspection device
JP3491988B2 (en) Laser doppler speedometer
JPH0285704A (en) Gap measuring instrument
JPH0357914A (en) Optical probe
JPH0495859A (en) Optically inspecting apparatus for printed board
JPH0678889B2 (en) Height measuring device
JPH06129840A (en) Surface measuring device
JPH05231834A (en) Device for measuring three-dimensional shape
JP2502413B2 (en) Non-contact displacement measuring device
JPH06109435A (en) Surface displacement meter
JPS5826325Y2 (en) position detection device
JPH0726648Y2 (en) Displacement measuring device
JPS6253049B2 (en)
JPS63236909A (en) Shape measuring instrument
JPS62245932A (en) Photodetector
JPH07167623A (en) Measuring device for height of ic lead