JPH07293262A - Sequential supercharger for diesel engine - Google Patents

Sequential supercharger for diesel engine

Info

Publication number
JPH07293262A
JPH07293262A JP6090027A JP9002794A JPH07293262A JP H07293262 A JPH07293262 A JP H07293262A JP 6090027 A JP6090027 A JP 6090027A JP 9002794 A JP9002794 A JP 9002794A JP H07293262 A JPH07293262 A JP H07293262A
Authority
JP
Japan
Prior art keywords
turbo
pipe
small
exhaust
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6090027A
Other languages
Japanese (ja)
Inventor
Taiji Ishihara
大治 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6090027A priority Critical patent/JPH07293262A/en
Publication of JPH07293262A publication Critical patent/JPH07293262A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To obtain a sequential supercharger of a diesel engine which carries out the smooth selection from a small turbo to a large turbo and prevents the generation of smoke in the selection. CONSTITUTION:A sequential supercharger is constituted so that a small turbo 2 and a large turbo 3 are arranged in parallel in the exhaust pipe 4 of a diesel engine 1, and the small turbo 2 is used when the exhaust gas quantity is small, and the switching to the large turbo 3 is performed as the exhaust gas quantity increases, anf an auxiliary turning pipe 28 for introducing a portion of exhaust to the turbine 3t of the large turbo 3 is installed in the turbine inflow pipe 5 of the small turbo 2, and an auxiliary turning valve 29 which is opened in precedence to the switching from the small turbo 2 to the large turbo 3 is installed in the auxiliary turning pipe 28.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、小ターボから大ターボ
への切換えをスムーズになし得るようにしたディーゼル
エンジンのシーケンシャル過給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sequential supercharging device for a diesel engine which can smoothly switch from a small turbo to a large turbo.

【0002】[0002]

【従来の技術】ディーゼルエンジンの排気管に小ターボ
と大ターボとを並設し、排気ガス量が少ないときには小
ターボを用い、排気ガス量が多くなるにしたがって大タ
ーボに切換えるようにしたシーケンシャル過給装置が知
られている。その概略を図4に示す。図示するように、
ディーゼルエンジンaの排気マニホールドbには、小タ
ーボc用の排気管dと大ターボe用の排気管fとが並設
されており、これらの排気管d,fにはそれぞれ小ター
ボcのタービンgと大ターボeのタービンhとが接続さ
れている。各ターボc,eのコンプレッサi,jはそれ
ぞれインタークーラk,lを介してエンジンaのインテ
ークチャンバmに接続されている。
2. Description of the Related Art A small turbo and a large turbo are installed side by side in an exhaust pipe of a diesel engine, the small turbo is used when the exhaust gas amount is small, and the large turbo is switched to the large turbo as the exhaust gas amount increases. Feeders are known. The outline is shown in FIG. As shown,
The exhaust manifold b of the diesel engine a is provided with an exhaust pipe d for the small turbo c and an exhaust pipe f for the large turbo e in parallel, and these exhaust pipes d, f each have a turbine of the small turbo c. g and the turbine h of the large turbo e are connected. The compressors i and j of the turbos c and e are connected to the intake chamber m of the engine a via intercoolers k and l, respectively.

【0003】そして、エンジンaの回転速度が低く排気
ガス量が少ないときには、小ターボ用排気管dに設けら
れた弁oを開くと共に大ターボ用排気管fに設けられた
弁pを閉じ、小ターボcのみを駆動させる。このとき弁
Rは閉じられ、弁Qは開かれている。爾後、エンジン回
転速度が高まって排気ガス量が多くなると、小ターボ用
排気管dに設けられた弁oを閉じると共に大ターボ用排
気管fに設けられた弁pを開き、大ターボeのみを駆動
させる。このとき弁Qは閉じられ、弁Rは開かれてい
る。
When the rotational speed of the engine a is low and the amount of exhaust gas is small, the valve o provided in the small turbo exhaust pipe d is opened and the valve p provided in the large turbo exhaust pipe f is closed to reduce the exhaust gas. Only the turbo c is driven. At this time, the valve R is closed and the valve Q is open. After that, when the engine speed increases and the exhaust gas amount increases, the valve o provided in the small turbo exhaust pipe d is closed and the valve p provided in the large turbo exhaust pipe f is opened, and only the large turbo e is opened. Drive it. At this time, the valve Q is closed and the valve R is open.

【0004】かかるシーケンシャル制御により、エンジ
ンaの回転速度に応じて変化する排気ガス量を各ターボ
c,eのタービンg,hの容量とマッチさせることがで
き、排気ガス量が少ないエンジン低回転域から排気ガス
量が多いエンジン高回転域に亘って効率よくターボ過給
することができる。
By such sequential control, it is possible to match the amount of exhaust gas that changes according to the rotation speed of the engine a with the capacities of the turbines g and h of the turbos c and e, so that the engine exhaust gas amount is low and the engine speed is low. Therefore, turbocharging can be efficiently performed over a high engine speed region where the amount of exhaust gas is large.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記装置にあ
っては、過給機を小ターボcから大ターボeに切換える
際に、切換えられる直前まで大ターボ用排気管fに設け
られた弁pが閉じられていることから、大ターボeは停
止している。このため、大ターボeのタービンhは、零
回転から立ち上げられることになり、過給圧(ブースト
圧)が立ち上がるまでには一定の時間が必要となる。特
に、大ターボeは、その慣性モーメントが大きいため、
回転の立上がりの遅れが大きい。
However, in the above-mentioned device, when the supercharger is switched from the small turbo c to the large turbo e, the valve p provided in the exhaust pipe f for the large turbo until just before switching. Is closed, the large turbo e is stopped. Therefore, the turbine h of the large turbo e is started up from zero rotation, and it takes a certain time until the boost pressure (boost pressure) is started up. Especially, since the large turbo e has a large moment of inertia,
There is a large delay in the rise of rotation.

【0006】すなわち、図5に示すように、小ターボc
から大ターボeに切換えても、停止していた大ターボe
はその直後には全く過給しないため一旦ブースト圧が大
きく落ち込み、その後、大ターボeの加速に伴って徐々
にブースト圧が立ち上がってくる。従って、ターボc,
eを切換えた後、切換えられた大ターボeのブースト圧
が切換える前の小ターボcのブースト圧と一致するまで
エンジン出力が低下し、ドライバビイリティが悪化す
る。また、切換時に吸入空気量が激減するため、相対的
に噴射燃料がリッチとなってスモークが発生してしま
う。
That is, as shown in FIG. 5, a small turbo c
From the big turbo e which was stopped
Immediately after that, since the boost pressure is not supercharged at all, the boost pressure drops once, and thereafter, the boost pressure gradually rises as the large turbo e accelerates. Therefore, turbo c,
After switching e, the engine output decreases until the boost pressure of the switched large turbo e matches the boost pressure of the small turbo c before switching, and the driver viability deteriorates. Further, since the intake air amount is drastically reduced at the time of switching, the injected fuel becomes relatively rich and smoke is generated.

【0007】なお、図6に示すように、上記大ターボe
の代わりに中ターボを用い、エンジン回転数が高まるに
従って (小ターボ) → (中ターボ) → (小ターボ+中タ
ーボ) と切換えていくものも知られているが、本質的な
解決とはならない。
As shown in FIG. 6, the large turbo e
It is also known that a medium turbo is used instead of, and it switches from (small turbo) → (medium turbo) → (small turbo + medium turbo) as the engine speed increases, but this is not an essential solution. .

【0008】以上の事情を考慮して創案された本発明の
目的は、小ターボから大ターボへの切換えをスムーズに
なし得ると共に、切換時のスモークの発生を防止するよ
うにしたディーゼルエンジンのシーケンシャル過給装置
を提供することにある。
The object of the present invention, which was devised in view of the above circumstances, is to enable a smooth switching from a small turbo to a large turbo, and to prevent smoke from being generated during the switching. To provide a supercharger.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明は、ディーゼルエンジンの排気管に小ターボと
大ターボとを並設し、排気ガス量が少ないときには小タ
ーボを用い、排気ガス量が多くなるにしたがって大ター
ボに切換えるようにしたシーケンシャル過給装置におい
て、小ターボのタービン流入管に、排気ガスの一部を大
ターボのタービンへ導く予回転管を設け、該予回転管
に、小ターボから大ターボに切換えるに先立って開弁さ
れる予回転弁を設けて構成されている。‥‥ さらに、上記小ターボのタービン流入管に、排圧の一部
を小ターボのタービン下流管側に開放して過給圧を下げ
る排圧開放管を設け、該排圧開放管に、小ターボから大
ターボに切換える際に小ターボの過給圧を予回転された
大ターボ過給圧に一致させるべく開閉される排圧開放弁
を設けてもよい。‥‥ さらに、上記各ターボの上流側の排気管に、排気ガスの
一部をエンジンの吸気管側に返流してEGRするEGR
管を設け、該EGR管に、上記排圧開放弁による過給圧
制御により排気圧>吸気圧となったときに適宜開弁され
るEGR弁を設けてもよい。‥‥ さらに、上記大ターボによる過給圧が過大となった場
合、上記予回転弁を開いて大ターボへ向かう排気ガスの
一部を小ターボ側にバイパスし、バイパスされた排気ガ
スを上記排圧開放弁を適宜開閉することによって開放
し、これにより大ターボの過給圧制御を行うようにして
もよい。‥‥
In order to achieve the above object, the present invention provides a diesel engine in which an exhaust pipe is provided with a small turbo and a large turbo in parallel, and when the exhaust gas amount is small, the small turbo is used. In a sequential supercharging device that switches to a large turbo as the amount increases, a pre-rotation pipe that guides a part of exhaust gas to the large turbo turbine is provided in the turbine inflow pipe of the small turbo, and the pre-rotation pipe is , A pre-rotation valve that is opened prior to switching from the small turbo to the large turbo. Further, an exhaust pressure release pipe that reduces a boost pressure by opening a part of exhaust pressure to the turbine downstream pipe side of the small turbo is provided in the small turbo turbine inflow pipe, and the small exhaust pressure release pipe is provided with a small exhaust pressure release pipe. An exhaust pressure release valve may be provided that is opened and closed to match the boost pressure of the small turbo with the pre-rotated big turbo boost pressure when switching from the turbo to the large turbo. Further, EGR for returning EGR by returning a part of exhaust gas to the intake pipe side of the engine to the exhaust pipe on the upstream side of each turbo.
A pipe may be provided, and the EGR pipe may be provided with an EGR valve that is appropriately opened when exhaust pressure> intake pressure by supercharging pressure control by the exhaust pressure release valve. Further, when the boost pressure due to the large turbo becomes excessive, the pre-rotation valve is opened to bypass a part of the exhaust gas toward the large turbo to the small turbo side, and the bypassed exhaust gas is exhausted to the exhaust gas. The pressure release valve may be opened and closed as appropriate to thereby perform supercharging pressure control of the large turbo. ‥‥‥

【0010】[0010]

【作用】 の構成によれば、小ターボから大ターボに切換えるに
先立って、予回転管に設けられた予回転弁が開かれ、小
ターボへ向かう排気ガスの一部が予回転管を通って大タ
ーボへ導かれ、大ターボが予回転される。これにより、
小ターボから大ターボに切換えたときのブースト圧の落
込みが防止され、エンジンの出力変動の小さなスムーズ
な切換えをなし得る。また、ターボの切換時にエンジン
の吸入空気量が落ち込むことがないため、切換時のスモ
ークの発生が防止される。
According to the configuration of (1), the pre-rotation valve provided in the pre-rotation pipe is opened before switching from the small turbo to the large turbo, and a part of the exhaust gas going to the small turbo passes through the pre-rotation pipe. Guided to the big turbo, the big turbo is pre-rotated. This allows
It is possible to prevent a drop in boost pressure when switching from a small turbo to a large turbo, and to achieve smooth switching with small engine output fluctuations. Moreover, since the intake air amount of the engine does not drop at the time of switching the turbo, the generation of smoke at the time of switching is prevented.

【0011】の構成によれば、大ターボの予回転中
に、小ターボの排圧開放管に設けられた排圧開放弁が適
宜開閉されて小ターボが過給圧制御され、小ターボの過
給圧と予回転された大ターボ過給圧とが一致させられ
る。よって、その後、小ターボから大ターボに切換えた
とき、切換の前後での過給圧の差がなくなり、一層スム
ーズな切換えをなし得る。
According to the above construction, during the pre-rotation of the large turbo, the exhaust pressure release valve provided in the exhaust pressure release pipe of the small turbo is appropriately opened and closed to control the supercharging pressure of the small turbo. The supply pressure and the pre-rotated large turbocharging pressure are matched. Therefore, when the small turbo is switched to the large turbo after that, there is no difference in supercharging pressure before and after the switching, and smoother switching can be achieved.

【0012】の構成によれば、排圧開放弁を開いて過
給圧を落とせば容易に排気圧>吸気圧の状態を作ること
ができるので、このとき排気管と吸気管とを連通するE
GR管のEGR弁を開けば、かかる圧力差により容易に
EGRがかけられる。これにより、燃焼温度が低下して
NOxが低減される。
According to the construction of (1), it is possible to easily establish the condition of exhaust pressure> intake pressure by opening the exhaust pressure release valve to reduce the supercharging pressure, and at this time, the exhaust pipe communicates with the intake pipe.
If the EGR valve of the GR pipe is opened, EGR can be easily applied due to the pressure difference. As a result, the combustion temperature is lowered and NOx is reduced.

【0013】の構成によれば、大ターボによる過給圧
が過大となった場合、上記予回転弁を開いて大ターボへ
向かう排気ガスの一部を小ターボ側にバイパスし、バイ
パスされた排気ガスを上記排圧開放弁を開くことによっ
てリリーフする。これにより、大ターボの過給圧制御を
行うことができる。つまり、排圧開放弁は、小ターボの
過給圧制御のみならず、大ターボの過給圧制御をも行
う。
According to the above construction, when the supercharging pressure due to the large turbo becomes excessive, the pre-rotation valve is opened to bypass a part of the exhaust gas toward the large turbo to the small turbo side, and the bypassed exhaust gas is exhausted. The gas is relieved by opening the exhaust pressure relief valve. This makes it possible to control the supercharging pressure of the large turbo. That is, the exhaust pressure release valve performs not only the supercharging pressure control for the small turbo but also the supercharging pressure control for the large turbo.

【0014】[0014]

【実施例】本発明の一実施例を添付図面に基づいて説明
する。
An embodiment of the present invention will be described with reference to the accompanying drawings.

【0015】図1に示すように、ディーゼルエンジン1
の排気管に小ターボ2と大ターボ3とが並設されてお
り、排気ガス量が少ないときには小ターボ2を用い、排
気ガス量が多くなるにしたがって大ターボ3に切換えら
れるようになっている。
As shown in FIG. 1, a diesel engine 1
The small turbo 2 and the large turbo 3 are arranged in parallel in the exhaust pipe of the vehicle. When the amount of exhaust gas is small, the small turbo 2 is used, and as the amount of exhaust gas increases, the large turbo 3 can be switched to. .

【0016】詳しくは、ディーゼルエンジン1の排気マ
ニホールド4には、小ターボ2のタービン2tに接続さ
れる流入管5と、大ターボ3のタービン3tに接続され
る流入管6とが並設されている。これら流入管5,6に
は、各管路を開閉する開閉弁7,8がそれぞれ設けられ
ている。また、各タービン2t,3tの流出管9,10
は合流され、図示しないマフラ側排気管と接続されてい
る。また、小ターボ2のタービン流出管9には、管路を
開閉する開閉弁11が設けられている。
More specifically, in the exhaust manifold 4 of the diesel engine 1, an inflow pipe 5 connected to the turbine 2t of the small turbo 2 and an inflow pipe 6 connected to the turbine 3t of the large turbo 3 are installed in parallel. There is. The inflow pipes 5 and 6 are provided with open / close valves 7 and 8 for opening and closing the respective pipelines. In addition, the outflow pipes 9 and 10 of the turbines 2t and 3t, respectively.
Are joined and connected to a muffler side exhaust pipe (not shown). Further, the turbine outflow pipe 9 of the small turbo 2 is provided with an on-off valve 11 that opens and closes the pipeline.

【0017】他方、各ターボ2,3のコンプレッサ2
c,3cの流出管12,13は、それぞれインタークー
ラ14,15を介してエンジン1のインテークチャンバ
16に接続されている。インタークーラ14,15は、
吸入空気温度を冷却し、空気密度を高めて充填効率を向
上させるものである。各インタークーラ14,15とイ
ンテークチャンバ16とを連通する接続管17,18に
は、管路を開閉する開閉弁19,20がそれぞれ設けら
れている。また、各コンプレッサ2c,3cの流入管2
1,22は、図示しないエアクリーナ側の吸気管に接続
されている。
On the other hand, the compressor 2 of each turbo 2 and 3
The outflow pipes 12 and 13 of c and 3c are connected to the intake chamber 16 of the engine 1 via intercoolers 14 and 15, respectively. Intercoolers 14 and 15 are
The intake air temperature is cooled to increase the air density and improve the filling efficiency. On / off valves 19 and 20 for opening and closing the pipelines are provided in the connecting pipes 17 and 18 that connect the intercoolers 14 and 15 to the intake chamber 16, respectively. In addition, the inflow pipe 2 of each compressor 2c, 3c
1, 22 are connected to an intake pipe on the air cleaner side (not shown).

【0018】上記排気マニホールド4とエンジン1の吸
気管(接続管18)とは、EGR管23を介して接続さ
れている。EGR管23は、排気ガスの一部をエンジン
1の吸気側に返流するものである。これにより、燃焼温
度が低下してNOxが低減する。EGR管23には、管
路を開閉するEGR弁24が設けられている。
The exhaust manifold 4 and the intake pipe (connection pipe 18) of the engine 1 are connected via an EGR pipe 23. The EGR pipe 23 returns a part of the exhaust gas to the intake side of the engine 1. As a result, the combustion temperature is lowered and NOx is reduced. The EGR pipe 23 is provided with an EGR valve 24 that opens and closes the pipeline.

【0019】小ターボ2のタービン流入管5と小ターボ
2のタービン流出管9とは、排圧開放管25を介して連
通されている。排圧開放管25は、小ターボ2のタービ
ン2tへ向かう排気ガスを迂回させてタービン下流側に
リリーフし、コンプレッサ2cの回転を下げて過給圧を
下げるものである。排圧開放管25には、管路を開閉す
る排圧開放弁26(所謂ウェイストゲート)が設けられ
ている。排圧開放弁26はアクチュエータ27により開
閉される。
The turbine inflow pipe 5 of the small turbo 2 and the turbine outflow pipe 9 of the small turbo 2 are communicated with each other via an exhaust pressure release pipe 25. The exhaust pressure release pipe 25 bypasses the exhaust gas toward the turbine 2t of the small turbo 2 and relieves it to the downstream side of the turbine, lowers the rotation of the compressor 2c and lowers the supercharging pressure. The exhaust pressure release pipe 25 is provided with an exhaust pressure release valve 26 (so-called waste gate) that opens and closes the pipeline. The exhaust pressure release valve 26 is opened and closed by an actuator 27.

【0020】小ターボ2のタービン流入管5と大ターボ
3のタービン流入管6とは、予回転管28によって連通
されている。予回転管28は、小ターボ2から大ターボ
3に切換えるに先立って、小ターボ2のタービン2tへ
向かう排気ガスの一部を大ターボ3のタービン3tへ導
き、大ターボ3を予回転させるものである。予回転管2
8には、管路を開閉する予回転弁29が設けられてい
る。
The turbine inlet pipe 5 of the small turbo 2 and the turbine inlet pipe 6 of the large turbo 3 are connected by a pre-rotation pipe 28. The pre-rotation pipe 28 guides a part of the exhaust gas toward the turbine 2t of the small turbo 2 to the turbine 3t of the large turbo 3 to pre-rotate the large turbo 3 before switching from the small turbo 2 to the large turbo 3. Is. Pre-rotating tube 2
8 is provided with a pre-rotation valve 29 that opens and closes the pipeline.

【0021】上記予回転弁29、排圧開放弁26を駆動
するアクチュエータ27、EGR弁24および開閉弁
7,8,11,19,20は、図示しないコントローラ
に接続されており、このコントローラによって図2およ
び図3に示すように開閉制御される。
The pre-rotation valve 29, the actuator 27 that drives the exhaust pressure release valve 26, the EGR valve 24, and the on-off valves 7, 8, 11, 19, 20 are connected to a controller (not shown), and are controlled by this controller. The opening / closing control is performed as shown in FIG.

【0022】以上の構成からなる本実施例の作用につい
て述べる。
The operation of this embodiment having the above configuration will be described.

【0023】エンジンの低回転域では、図2および図3
に示すように、小ターボ2側の開閉弁7,19,11が
開かれ、大ターボ3側の開閉弁8,20が閉じられる。
これにより、エンジン1は小ターボ2のみで過給され
る。
2 and 3 in the low engine speed range.
As shown in FIG. 5, the open / close valves 7, 19, 11 on the small turbo 2 side are opened, and the open / close valves 8, 20 on the large turbo 3 side are closed.
As a result, the engine 1 is supercharged only by the small turbo 2.

【0024】小ターボ2は、その慣性モーメントが小さ
いため、エンジン低回転域の少ない排気ガス量であって
も素早く回転が立ち上がり、所謂ターボラグが小さくな
る。また、小ターボ2は、そのタービン2tの容量が小
排気ガス量に合わせてチューニングされているため、エ
ンジン低回転域の少量の排気ガスによっても効率よく回
転させられる。なお、このとき大ターボ3は全く回転し
ていない。…(A) その後、エンジン1が加速して排気ガス量が増えていく
と、小ターボ2の過給圧Pp が高まってくる。過給圧P
p が予め設定された値P1 になったとき、予回転管28
の予回転弁29が開かれる。これにより、小ターボ用流
入管5を通って小ターボ2のタービン2tへ向かう排気
ガスの一部が、予回転管28を通って大ターボ3のター
ビン3tへ導かれ、大ターボ3が予回転される。このと
き、予回転された大ターボ3のコンプレッサ3cは、そ
の流出管18の開閉弁20が閉じられているため、エン
ジン1を過給することはない。
Since the small turbo 2 has a small inertia moment, the small turbo 2 quickly starts to rotate even if the exhaust gas amount is small in the low engine speed region, and the so-called turbo lag is reduced. Further, since the capacity of the turbine 2t is tuned according to the small exhaust gas amount, the small turbo 2 can be efficiently rotated even by a small amount of exhaust gas in the low engine speed region. At this time, the large turbo 3 is not rotating at all. (A) After that, as the engine 1 accelerates and the exhaust gas amount increases, the boost pressure Pp of the small turbo 2 increases. Boost pressure P
When p reaches a preset value P1, the pre-rotating tube 28
The pre-rotation valve 29 is opened. As a result, a part of the exhaust gas flowing toward the turbine 2t of the small turbo 2 through the small turbo inflow pipe 5 is guided to the turbine 3t of the large turbo 3 through the pre-rotation pipe 28, and the large turbo 3 pre-rotates. To be done. At this time, the pre-rotated compressor 3c of the large turbo 3 does not supercharge the engine 1 because the open / close valve 20 of the outflow pipe 18 is closed.

【0025】このように、大ターボ3のコンプレッサ3
cは、フン詰まりの状態となっているため、通過流量が
少なくなって仕事量(負荷)が減る。よって、大ターボ
3は、小ターボ2側から分流された少量の排気ガスで
も、速やかに回転が上昇する。なお、大ターボ3のコン
プレッサ3cの回転速度が過大となってサージ状態に至
った場合、開閉弁29を閉じてタービン3tの回転を落
としてサージコントロールをする。…(B) その後、さらにエンジン1が加速して排気ガス量が増
え、小ターボ2の過給圧がPp が予め設定された値P2
になったとき、小ターボ2の排圧開放管25に設けられ
た排圧開放弁26がアクチュエータ27によって適宜開
閉され、小ターボ2の過給圧Pp がP2 に制御される。
そして、予回転されている大ターボ3の過給圧Ps (実
質的にはサージコントロールされている圧力)がP2 に
一致したとき、小ターボ2から大ターボ3へと過給機を
切換えられる。…(C) すなわち、小ターボ2側の開閉弁7,19,11が閉じ
られ、大ターボ3側の開閉弁8,20が開かれ、排圧開
放弁26が閉じられる。これにより、エンジン1は、大
ターボ3のみで過給される。大ターボ3は、そのタービ
ン3tの容量が大排気ガス量に合わせてチューニングさ
れているため、エンジン中高回転域の多量の排気ガスに
よって効率よく回転させられる。…(D) ここで小ターボ2から大ターボ3に切換えるとき、小タ
ーボ2の過給圧も大ターボ3の過給圧も共にP2 となっ
ているため、切換の前後でのエンジン1からみた過給圧
の差がない。よって、小ターボ2から大ターボ3に切換
えたときの過給圧の落込みが防止され、エンジン1の出
力変動が小さなスムーズな切換えをなし得る。また、タ
ーボ2,3の切換時にエンジン1の吸入空気量が落ち込
むことがないため、切換時のスモークの発生が防止され
る。
In this way, the compressor 3 of the large turbo 3
In the case of c, since it is in a clogged state with a dung, the passing flow rate decreases and the work amount (load) decreases. Therefore, the rotation of the large turbo 3 rapidly increases even with a small amount of exhaust gas diverted from the small turbo 2 side. When the rotation speed of the compressor 3c of the large turbo 3 becomes excessive and a surge state is reached, the on-off valve 29 is closed to reduce the rotation of the turbine 3t for surge control. (B) After that, the engine 1 further accelerates and the amount of exhaust gas increases, and the supercharging pressure of the small turbo 2 has a preset value P2 of Pp.
At this time, the exhaust pressure release valve 26 provided in the exhaust pressure release pipe 25 of the small turbo 2 is appropriately opened and closed by the actuator 27, and the supercharging pressure Pp of the small turbo 2 is controlled to P2.
Then, when the supercharging pressure Ps (substantially surge-controlled pressure) of the pre-rotated large turbo 3 matches P2, the supercharger can be switched from the small turbo 2 to the large turbo 3. (C) That is, the open / close valves 7, 19, 11 on the small turbo 2 side are closed, the open / close valves 8, 20 on the large turbo 3 side are opened, and the exhaust pressure release valve 26 is closed. As a result, the engine 1 is supercharged only by the large turbo 3. Since the capacity of the turbine 3t of the large turbo 3 is tuned according to the large amount of exhaust gas, the large turbo 3 can be efficiently rotated by a large amount of exhaust gas in the middle-high rotation range of the engine. (D) Here, when switching from the small turbo 2 to the large turbo 3, both the supercharging pressure of the small turbo 2 and the supercharging pressure of the large turbo 3 are P2. Therefore, it is seen from the engine 1 before and after the switching. There is no difference in boost pressure. Therefore, the drop of the supercharging pressure when switching from the small turbo 2 to the large turbo 3 is prevented, and smooth switching with a small output fluctuation of the engine 1 can be achieved. Further, since the intake air amount of the engine 1 does not drop when the turbos 2 and 3 are switched, the occurrence of smoke at the time of switching is prevented.

【0026】ところで、排圧開放管25に設けられた排
圧開放弁26を適宜開閉して小ターボ2の過給圧を落と
したとき(図2中C領域)、容易に排気圧>吸気圧の状
態を作ることができるので、このとき排気マニホールド
4と吸気管(接続管18)とを連通するEGR管23の
EGR弁24を開けば、かかる圧力差により容易にEG
Rがかけられる。これにより、燃焼温度が低下してNO
xが低減される。
By the way, when the exhaust pressure release valve 26 provided in the exhaust pressure release pipe 25 is appropriately opened / closed to reduce the supercharging pressure of the small turbo 2 (region C in FIG. 2), the exhaust pressure> intake pressure is easily increased. Therefore, if the EGR valve 24 of the EGR pipe 23 that connects the exhaust manifold 4 and the intake pipe (connection pipe 18) is opened at this time, the EG can be easily adjusted due to the pressure difference.
R is applied. As a result, the combustion temperature decreases and NO
x is reduced.

【0027】このようにして大ターボ3に切換えられた
後、エンジン1がさらに加速されて大ターボ3の過給圧
Ps が予め設定されたP3 になると、排圧開放管25に
設けられた排圧開放弁26がアクチュエータによって適
宜開閉され、大ターボ3の過給圧がP3 に制御される。
このとき、予回転弁29が開かれていることは勿論であ
る。また、開閉弁11は閉じられており、これにより、
小ターボ2のコンプレッサ2c(その流出管17の開閉
弁19は閉じられている)がサージ域で空回りすること
を防止している。…(E) また、このように大ターボ3の過給圧を落としたとき
(図2中E領域)、容易に排気圧>吸気圧の状態を作る
ことができるので、このとき排気マニホールド4と吸気
管(接続管18)とを連通するEGR管23のEGR弁
24を開けば、かかる圧力差により容易にEGRがかけ
られる。これにより、燃焼温度が低下してNOxが低減
される。すなわち、排圧開放弁26およびアクチュエー
タ27は、小ターボ2の過給圧制御と大ターボ3の過給
圧制御とを行い、さらにEGR発生手段としても機能す
る。
After switching to the large turbo 3 in this way, when the engine 1 is further accelerated and the supercharging pressure Ps of the large turbo 3 reaches a preset P3, the exhaust pressure release pipe 25 The pressure release valve 26 is appropriately opened and closed by the actuator, and the supercharging pressure of the large turbo 3 is controlled to P3.
Of course, at this time, the pre-rotation valve 29 is opened. Further, the on-off valve 11 is closed, which allows
The compressor 2c of the small turbo 2 (the on-off valve 19 of the outflow pipe 17 thereof is closed) is prevented from idling in the surge region. (E) Further, when the supercharging pressure of the large turbo 3 is reduced in this way (region E in FIG. 2), it is possible to easily establish a state of exhaust pressure> intake pressure. If the EGR valve 24 of the EGR pipe 23 that communicates with the intake pipe (connection pipe 18) is opened, EGR can be easily applied due to the pressure difference. As a result, the combustion temperature is lowered and NOx is reduced. That is, the exhaust pressure release valve 26 and the actuator 27 perform supercharging pressure control of the small turbo 2 and supercharging pressure control of the large turbo 3, and also function as EGR generating means.

【0028】なお、排圧開放弁26を開閉するアクチュ
エータ27をデューティ比制御すれば、過給圧P1 およ
びP2 を任意に設定し得る。これにより、加速時に不要
な過給圧まで高めなくても済む。また、図2中Cおよび
E領域でEGRする際、高速道路などの運転中に最も頻
繁に使用されるエンジンの中回転域(例えば1200〜1600
rpm )は避けたほうがよい。EGRすれば出力が低下す
るため、アクセルを踏み込みがちとなり、走行燃費およ
びスモークが悪化につながるからである。
By controlling the duty ratio of the actuator 27 that opens and closes the exhaust pressure release valve 26, the boost pressures P1 and P2 can be set arbitrarily. As a result, it is not necessary to raise unnecessary supercharging pressure during acceleration. In addition, when the EGR is performed in the C and E regions in FIG. 2, the engine is most frequently used during driving on a highway, for example, in the middle rotation region (for example, 1200 to 1600).
rpm) should be avoided. This is because the output decreases if EGR is performed, and the accelerator is apt to be depressed, resulting in deterioration of running fuel consumption and smoke.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば以下
の如き優れた効果を発揮できる。
As described above, according to the present invention, the following excellent effects can be exhibited.

【0030】(1) 請求項1記載のシーケンシャル過給装
置によれば、小ターボから大ターボに切換えたときのブ
ースト圧の落込みを防止できるので、エンジンの出力変
動の小さなスムーズな切換えをなし得る。また、ターボ
の切換時にエンジンの吸入空気量が落ち込みことがない
ため、切換時のスモークの発生を防止できる。
(1) According to the sequential supercharging device of the first aspect, it is possible to prevent the boost pressure from dropping when the small turbo is switched to the large turbo, so that there is no smooth switching with a small output fluctuation of the engine. obtain. Moreover, since the intake air amount of the engine does not drop when the turbo is switched, it is possible to prevent smoke from being generated when the turbo is switched.

【0031】(2) 請求項2記載のシーケンシャル過給装
置によれば、小ターボの過給圧と予回転された大ターボ
過給圧とを一致させることができるので、小ターボから
大ターボに切換えたとき、切換の前後での過給圧の差が
なくなり、一層スムーズな切換えをなし得る。
(2) According to the sequential supercharging device of claim 2, since the supercharging pressure of the small turbo and the pre-rotated large turbo supercharging pressure can be matched, the small turbo is changed to the large turbo. When switching is performed, there is no difference in supercharging pressure before and after switching, and smoother switching can be achieved.

【0032】(3) 請求項3記載のシーケンシャル過給装
置によれば、容易に排気圧>吸気圧の状態を作ることが
できるので、このとき排気管と吸気管とを連通するEG
R管のEGR弁を開けば、容易にEGRがかけられる。
これにより、NOxを低減できる。
(3) According to the sequential supercharging device of the third aspect, it is possible to easily establish a state of exhaust pressure> intake pressure. Therefore, at this time, the EG connecting the exhaust pipe and the intake pipe
EGR can be easily applied by opening the EGR valve of the R pipe.
As a result, NOx can be reduced.

【0033】(4) 請求項4記載のシーケンシャル過給装
置によれば、小ターボの過給圧制御と大ターボの過給圧
制御とを1つの排圧開放弁で行えるので、低コスト化を
達成できる。
(4) According to the sequential supercharging device of claim 4, the supercharging pressure control of the small turbo and the supercharging pressure control of the large turbo can be performed by one exhaust pressure release valve, so that the cost can be reduced. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すディーゼルエンジンの
シーケンシャル過給装置の概略図である。
FIG. 1 is a schematic view of a sequential supercharging device for a diesel engine showing an embodiment of the present invention.

【図2】上記シーケンシャル過給装置の過給圧とこれを
作り出すための各切換弁のチャートを表す図である。
FIG. 2 is a diagram showing a supercharging pressure of the sequential supercharging device and a chart of each switching valve for producing the supercharging pressure.

【図3】上記各切換弁のエンジン加速時の開閉手順を示
す図である。
FIG. 3 is a diagram showing an opening / closing procedure of each of the switching valves at the time of engine acceleration.

【図4】従来例を示すディーゼルエンジンのシーケンシ
ャル過給装置の概略図である。
FIG. 4 is a schematic view of a sequential supercharging device for a diesel engine showing a conventional example.

【図5】上記シーケンシャル過給装置の過給圧とスモー
クを表す図である。
FIG. 5 is a diagram showing supercharging pressure and smoke of the sequential supercharging device.

【図6】別の従来のシーケンシャル過給装置の過給圧と
スモークを表す図である。
FIG. 6 is a diagram showing supercharging pressure and smoke of another conventional sequential supercharging device.

【符号の説明】[Explanation of symbols]

1 ディーゼルエンジン 2 小ターボ 2t 小タービン 2c 小コンプレッサ 3 大ターボ 3t 大タービン 3c 大コンプレッサ 4 排気管としての排気マニホールド 5 小ターボ用タービン流入管 6 大ターボ用タービン流入管 23 EGR管 24 EGR弁 25 排圧開放管 26 排圧開放弁 28 予回転管 29 予回転弁 1 diesel engine 2 small turbo 2t small turbine 2c small compressor 3 large turbo 3t large turbine 3c large compressor 4 exhaust manifold as exhaust pipe 5 small turbo turbine inflow pipe 6 large turbo turbine inflow pipe 23 EGR pipe 24 EGR valve 25 exhaust Pressure release pipe 26 Exhaust pressure release valve 28 Pre-rotation pipe 29 Pre-rotation valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ディーゼルエンジンの排気管に小ターボ
と大ターボとを並設し、排気ガス量が少ないときには小
ターボを用い、排気ガス量が多くなるにしたがって大タ
ーボに切換えるようにしたシーケンシャル過給装置にお
いて、小ターボのタービン流入管に、排気ガスの一部を
大ターボのタービンへ導く予回転管を設け、該予回転管
に、小ターボから大ターボに切換えるに先立って開弁さ
れる予回転弁を設けことを特徴とするディーゼルエンジ
ンのシーケンシャル過給装置。
1. A sequential engine in which a small turbo and a large turbo are installed in parallel in an exhaust pipe of a diesel engine, the small turbo is used when the exhaust gas amount is small, and the large turbo is switched to as the exhaust gas amount increases. In the feeder, a pre-rotation pipe for guiding a part of exhaust gas to the turbine of the large turbo is provided in the turbine inflow pipe of the small turbo, and the pre-rotation pipe is opened before switching from the small turbo to the large turbo. Sequential supercharger for diesel engine, which is equipped with a pre-rotation valve.
【請求項2】 上記小ターボのタービン流入管に、排圧
の一部を小ターボのタービン下流管側に開放して過給圧
を下げる排圧開放管を設け、該排圧開放管に、小ターボ
から大ターボに切換える際に小ターボの過給圧を予回転
された大ターボ過給圧に一致させるべく開閉される排圧
開放弁を設けたことを特徴とする請求項1記載のディー
ゼルエンジンのシーケンシャル過給装置。
2. An exhaust pressure releasing pipe for reducing a supercharging pressure by opening a part of exhaust pressure to a turbine downstream pipe side of the small turbo, is provided in the turbine inflow pipe of the small turbo, and the exhaust pressure releasing pipe is provided with: The exhaust pressure release valve which is opened and closed so as to match the supercharging pressure of the small turbo with the pre-rotated large turbocharging pressure when switching from the small turbo to the large turbo. Sequential supercharger for engine.
【請求項3】 上記各ターボの上流側の排気管に、排気
ガスの一部をエンジンの吸気管側に返流してEGRする
EGR管を設け、該EGR管に、上記排圧開放弁による
過給圧制御により排気圧>吸気圧となったときに適宜開
弁されるEGR弁を設けたことを特徴とする請求項2記
載のディーゼルエンジンのシーケンシャル過給装置。
3. An EGR pipe for returning a part of exhaust gas to the intake pipe side of an engine to perform EGR is provided in an exhaust pipe on the upstream side of each turbo, and the EGR pipe is provided with the exhaust pressure release valve. 3. The sequential supercharging device for a diesel engine according to claim 2, further comprising an EGR valve that is appropriately opened when exhaust pressure> intake pressure is satisfied by supercharging pressure control.
【請求項4】 上記大ターボによる過給圧が過大となっ
た場合、上記予回転弁を開いて大ターボへ向かう排気ガ
スの一部を小ターボ側にバイパスし、バイパスされた排
気ガスを上記排圧開放弁を適宜開閉することによって開
放し、これにより大ターボの過給圧制御を行うようにし
た請求項2記載のディーゼルエンジンのシーケンシャル
過給装置。
4. When the supercharging pressure due to the large turbo becomes excessive, the pre-rotation valve is opened to bypass a part of the exhaust gas directed to the large turbo to the small turbo side, and the bypassed exhaust gas is used as the above. 3. The sequential supercharging device for a diesel engine according to claim 2, wherein the exhaust pressure release valve is opened and closed appropriately to thereby perform supercharging pressure control of the large turbo.
JP6090027A 1994-04-27 1994-04-27 Sequential supercharger for diesel engine Pending JPH07293262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6090027A JPH07293262A (en) 1994-04-27 1994-04-27 Sequential supercharger for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6090027A JPH07293262A (en) 1994-04-27 1994-04-27 Sequential supercharger for diesel engine

Publications (1)

Publication Number Publication Date
JPH07293262A true JPH07293262A (en) 1995-11-07

Family

ID=13987203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6090027A Pending JPH07293262A (en) 1994-04-27 1994-04-27 Sequential supercharger for diesel engine

Country Status (1)

Country Link
JP (1) JPH07293262A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832759A1 (en) * 2001-11-29 2003-05-30 Renault Turbocharging system for vehicle engine includes two compressors selectively operated, with pollution control on outputs
FR2876155A1 (en) * 2004-10-06 2006-04-07 Peugeot Citroen Automobiles Sa Supercharging system controlling device for diesel engine, has operation mode selecting unit for selecting operating mode for supercharging system and control unit controlling valves of superchargers based on selected operating mode
US7165403B2 (en) * 2004-07-28 2007-01-23 Ford Global Technologies, Llc Series/parallel turbochargers and switchable high/low pressure EGR for internal combustion engines
DE102005039013A1 (en) * 2005-08-18 2007-02-22 Volkswagen Ag Internal combustion engine e.g. petrol engine, for vehicle, has connecting line provided before exhaust gas turbochargers, where exhaust gas is fed to respective turbochargers with low or high engine speeds or exhaust gas mass flows
US7426830B2 (en) * 2004-09-22 2008-09-23 Ford Global Technologies, Llc Supercharged internal combustion engine
US7509805B2 (en) * 2004-10-06 2009-03-31 Saab Automobile Ab Control of exhaust to a turbo of internal combustion engine
US7788923B2 (en) * 2006-02-02 2010-09-07 International Engine Intellectual Property Company, Llc Constant EGR rate engine and method
US7810328B2 (en) * 2007-02-20 2010-10-12 Ford Global Technologies, Llc Parallel-sequential turbocharging for improved exhaust temperature control
EP2267284A1 (en) * 2008-04-25 2010-12-29 Toyota Jidosha Kabushiki Kaisha Supercharger controller for internal-combustion engine
US7941999B2 (en) * 2007-03-09 2011-05-17 Mtu Friedrichshafen Gmbh Internal combustion engine
US8001783B2 (en) * 2008-01-24 2011-08-23 Cummins Ip, Inc. Apparatus, system, and method for turbocharger bypass and exhaust braking with a single valve
US20120260650A1 (en) * 2011-04-14 2012-10-18 Caterpillar Inc. Internal combustion engine with improved efficiency
US20120260653A1 (en) * 2011-04-14 2012-10-18 Caterpillar Inc. Internal combustion engine with improved exhaust manifold
US20130247561A1 (en) * 2012-03-21 2013-09-26 Ford Global Technologies, Llc Turbocharger system having a shared bypass conduit and wastegate
CN103790694A (en) * 2014-02-19 2014-05-14 哈尔滨工程大学 Sequential supercharged diesel engine gas adding system and method
US20150159545A1 (en) * 2013-12-05 2015-06-11 GM Global Technology Operations LLC Turbocharger compressor temperature control systems and methods
US20150159544A1 (en) * 2013-12-05 2015-06-11 GM Global Technology Operations LLC Turbo speed control for mode transitions in a dual turbo system
US20160312687A1 (en) * 2015-04-24 2016-10-27 Ford Global Technologies, Llc Internal combustion engine with two-stage supercharging capability and with exhaust-gas aftertreatment arrangement, and method for operating an internal combustion engine of said type
JP2018096298A (en) * 2016-12-14 2018-06-21 いすゞ自動車株式会社 Internal combustion engine intake and exhaust structure
JP2018096297A (en) * 2016-12-14 2018-06-21 いすゞ自動車株式会社 Internal combustion engine intake and exhaust structure

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1316698A1 (en) * 2001-11-29 2003-06-04 Renault s.a.s. Device and method of supercharging an internal combustion engine
FR2832759A1 (en) * 2001-11-29 2003-05-30 Renault Turbocharging system for vehicle engine includes two compressors selectively operated, with pollution control on outputs
US7165403B2 (en) * 2004-07-28 2007-01-23 Ford Global Technologies, Llc Series/parallel turbochargers and switchable high/low pressure EGR for internal combustion engines
US7426830B2 (en) * 2004-09-22 2008-09-23 Ford Global Technologies, Llc Supercharged internal combustion engine
EP1645736A1 (en) * 2004-10-06 2006-04-12 Peugeot Citroen Automobiles SA Device for controlling a turbocharger system for a Diesel engine
FR2876155A1 (en) * 2004-10-06 2006-04-07 Peugeot Citroen Automobiles Sa Supercharging system controlling device for diesel engine, has operation mode selecting unit for selecting operating mode for supercharging system and control unit controlling valves of superchargers based on selected operating mode
US7509805B2 (en) * 2004-10-06 2009-03-31 Saab Automobile Ab Control of exhaust to a turbo of internal combustion engine
DE102005039013A1 (en) * 2005-08-18 2007-02-22 Volkswagen Ag Internal combustion engine e.g. petrol engine, for vehicle, has connecting line provided before exhaust gas turbochargers, where exhaust gas is fed to respective turbochargers with low or high engine speeds or exhaust gas mass flows
US7788923B2 (en) * 2006-02-02 2010-09-07 International Engine Intellectual Property Company, Llc Constant EGR rate engine and method
US7810328B2 (en) * 2007-02-20 2010-10-12 Ford Global Technologies, Llc Parallel-sequential turbocharging for improved exhaust temperature control
US7941999B2 (en) * 2007-03-09 2011-05-17 Mtu Friedrichshafen Gmbh Internal combustion engine
US8001783B2 (en) * 2008-01-24 2011-08-23 Cummins Ip, Inc. Apparatus, system, and method for turbocharger bypass and exhaust braking with a single valve
EP2267284A1 (en) * 2008-04-25 2010-12-29 Toyota Jidosha Kabushiki Kaisha Supercharger controller for internal-combustion engine
EP2267284A4 (en) * 2008-04-25 2012-01-11 Toyota Motor Co Ltd Supercharger controller for internal-combustion engine
US20120260650A1 (en) * 2011-04-14 2012-10-18 Caterpillar Inc. Internal combustion engine with improved efficiency
US8555638B2 (en) * 2011-04-14 2013-10-15 Caterpillar Inc. Internal combustion engine with improved exhaust manifold
US20120260653A1 (en) * 2011-04-14 2012-10-18 Caterpillar Inc. Internal combustion engine with improved exhaust manifold
US20130247561A1 (en) * 2012-03-21 2013-09-26 Ford Global Technologies, Llc Turbocharger system having a shared bypass conduit and wastegate
US9074521B2 (en) * 2012-03-21 2015-07-07 Ford Global Technologies, Llc Turbocharger system having a shared bypass conduit and wastegate
US9309803B2 (en) * 2013-12-05 2016-04-12 GM Global Technology Operations LLC Turbocharger compressor temperature control systems and methods
US20150159545A1 (en) * 2013-12-05 2015-06-11 GM Global Technology Operations LLC Turbocharger compressor temperature control systems and methods
US20150159544A1 (en) * 2013-12-05 2015-06-11 GM Global Technology Operations LLC Turbo speed control for mode transitions in a dual turbo system
US9303553B2 (en) * 2013-12-05 2016-04-05 GM Global Technology Operations LLC Turbo speed control for mode transitions in a dual turbo system
CN103790694A (en) * 2014-02-19 2014-05-14 哈尔滨工程大学 Sequential supercharged diesel engine gas adding system and method
US20160312687A1 (en) * 2015-04-24 2016-10-27 Ford Global Technologies, Llc Internal combustion engine with two-stage supercharging capability and with exhaust-gas aftertreatment arrangement, and method for operating an internal combustion engine of said type
US10107180B2 (en) * 2015-04-24 2018-10-23 Ford Global Technologies, Llc Two-stage supercharging internal combustion engine having an exhaust-gas aftertreatment arrangement, and method for operating a two-stage supercharged internal combustion engine
JP2018096298A (en) * 2016-12-14 2018-06-21 いすゞ自動車株式会社 Internal combustion engine intake and exhaust structure
JP2018096297A (en) * 2016-12-14 2018-06-21 いすゞ自動車株式会社 Internal combustion engine intake and exhaust structure

Similar Documents

Publication Publication Date Title
JPH07293262A (en) Sequential supercharger for diesel engine
US10107180B2 (en) Two-stage supercharging internal combustion engine having an exhaust-gas aftertreatment arrangement, and method for operating a two-stage supercharged internal combustion engine
US10731577B2 (en) Method and system for a boosted engine
US9109546B2 (en) System and method for operating a high pressure compressor bypass valve in a two stage turbocharger system
JP2007154684A (en) Two-stage supercharging type engine
JPH05195799A (en) Internal combustion engine with suction system, exhaust system, exhaust gas turbo-charger and pressure storage instrument
JPS63223325A (en) Intake control device for engine with turbo-charger
JPS5982526A (en) Supercharger for internal-combustion engine
JP4188403B2 (en) Control device
JP2009191668A (en) Supercharging device and supercharging engine system
JP2005155356A (en) Engine supercharging device by parallel double turbocharger
JP3510438B2 (en) Turbocharged engine
JP2011001877A (en) Internal combustion engine equipped with mechanical supercharger and supercharging method therefor
JPH08284763A (en) Egr supercharging system
JP2009191667A (en) Supercharging device and supercharging engine system
JPS62113829A (en) Control device for supercharge pressure in engine with two-stage supercharger
JPS6316130A (en) Exhaust turbo supercharger for internal combustion engine
CN110566340A (en) Engine system and method of using same
JPS61291728A (en) 2-step type supercharging device
JPS58195023A (en) Internal-combustion engine with exhaust turbo supercharger
JPS63129120A (en) Multiple supercharging structure
JPH0250299B2 (en)
JPS6329852Y2 (en)
JPS62335B2 (en)
JPS6229627Y2 (en)