JPH07292417A - Production of ferritic stainless steel sheet excellent in formed surface characteristic - Google Patents

Production of ferritic stainless steel sheet excellent in formed surface characteristic

Info

Publication number
JPH07292417A
JPH07292417A JP8480694A JP8480694A JPH07292417A JP H07292417 A JPH07292417 A JP H07292417A JP 8480694 A JP8480694 A JP 8480694A JP 8480694 A JP8480694 A JP 8480694A JP H07292417 A JPH07292417 A JP H07292417A
Authority
JP
Japan
Prior art keywords
rolling
cold
stainless steel
annealing
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8480694A
Other languages
Japanese (ja)
Inventor
Shinji Matsubara
真治 松原
Takafumi Kaneko
啓文 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8480694A priority Critical patent/JPH07292417A/en
Publication of JPH07292417A publication Critical patent/JPH07292417A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve surface roughing at the time of cold working while maintaining inherent formability by combinedly adding Nb and Ti as grain refining elements and controlling hot rolling and cold rolling conditions, respectively. CONSTITUTION:The steel is a ferritic stainless steel having a composition consisting of, by weight ratio, <=0.030% C, 0.50% Si, <=0.40% Mn, 13.0-16.0% Cr, 0.10-0.50% Nb, 0.05-0.30% Ti, and the balance Fe with inevitable impurities. A slab of this steel is heated to 1000-1100 deg.C and hot-rolled under the condition of 730-770 deg.C rolling finishing temp. After annealing, the hot rolled plate is furnace-cooled and then cold-rolled at 80-90% draft and further finish-annealed at 790-860 deg.C. By satisfying these heating and hot rolling conditions, annealing conditions, and cold rolling and subsequent annealing conditions, a fine recrystallized structure can be formed and superior surface characteristic can be obtained at the time of cold forming.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、成形面性状に優れた
フェライト系ステンレス鋼板の製造方法、特に成形後の
肌荒れが少なく表面性状が良好な低Crフェライト系ステ
ンレス鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ferritic stainless steel sheet having excellent forming surface properties, and particularly to a method for producing a low Cr ferritic stainless steel sheet having less surface roughness after forming and good surface properties. .

【0002】[0002]

【従来の技術】従来より、SUS430で代表されるフェライ
ト系ステンレス鋼は、自動車部品、厨房機器、家庭用電
気機器など広範囲の製品に利用されている。これはフェ
ライト系ステンレス鋼が比較的耐食性に優れ、さらにNi
を添加していないためにオーステナイト系ステンレス鋼
よりも価格の点で優れているためである。
2. Description of the Related Art Conventionally, ferritic stainless steel represented by SUS430 has been used in a wide range of products such as automobile parts, kitchen equipment and household electric equipment. This is because ferritic stainless steel has relatively excellent corrosion resistance, and
This is because it is superior to austenitic stainless steel in terms of price because it is not added.

【0003】しかし、フェライト系ステンレス鋼は、張
り出し、深絞り等の加工を行う場合の加工性は良好なる
ものの、加工後の表面品質に問題があり、オレンジピー
ル (粗粒による肌荒れ) と呼ばれる加工肌荒れを生じ
る。
However, although ferritic stainless steel has good workability in the case of working such as overhanging and deep drawing, it has a problem in the surface quality after working and is called orange peel (rough skin due to coarse grains). Causes rough skin.

【0004】このため、成形に際しての肌荒れの軽減あ
るいは消滅がフェライト系ステンレス鋼を製造する上で
大きな課題となっており、その防止方法については従来
より多くの研究がなされてきた。しかしながら、これま
で実用上からも満足のゆく防止策は見出されていないの
が現状であった。
Therefore, reduction or elimination of surface roughness during forming has become a major issue in the production of ferritic stainless steel, and much research has been conducted on the prevention method thereof. However, until now, no practically satisfactory preventive measures have been found.

【0005】[0005]

【発明が解決しようとする課題】この発明の目的は、従
来みられた加工時の表面肌荒れを解決したフェライト系
ステンレス鋼板の製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a ferritic stainless steel sheet, which has solved the surface roughening during processing which has been conventionally observed.

【0006】[0006]

【課題を解決するための手段】ところで、比較的安価
で、しかも成形性、耐食性がともに優れる鋼としては、
高純度フェライト系ステンレス鋼にTi、Zr、Nbを添加し
たものが挙げられる。つまり高純度フェライト系ステン
レス鋼においては、C、Nの抑制とともに、このC、N
の固定元素として、また集合組織を制御する炭窒化物形
成元素としてTi、Zr、Nb等を添加することが耐食性や成
形性の改善に有効であることは一般によく知られてい
る。
[Means for Solving the Problems] By the way, as a steel which is relatively inexpensive and has excellent formability and corrosion resistance,
An example is high-purity ferritic stainless steel to which Ti, Zr, or Nb has been added. That is, in high-purity ferritic stainless steel, C and N are suppressed together with the suppression of C and N.
It is generally well known that the addition of Ti, Zr, Nb, etc. as a fixed element for the above and as a carbonitride forming element for controlling the texture is effective for improving the corrosion resistance and formability.

【0007】そこで、Ti、Zr、Nbなどの添加効果を詳細
に検討したところ、TiおよびNbの同時添加が結晶粒の微
細化に有効に機能し、さらに、結晶微細化によって加工
後の表面性状も改善されることに着目した。
Therefore, the effect of adding Ti, Zr, Nb, etc. was examined in detail. Simultaneous addition of Ti and Nb effectively worked for the refinement of crystal grains, and further, due to the refinement of the crystal, the surface texture after processing was improved. We also focused on the improvement.

【0008】つまり、フェライト系ステンレス鋼の結晶
粒細粒化域を拡大することによって、従来の加工時の表
面肌荒れを解決する結晶粒の細粒化範囲を拡大すること
ができるとの着想を得て、さらなる検討を重ねた。
In other words, by enlarging the crystal grain refining region of ferritic stainless steel, the idea that the crystal grain refining range which solves the surface roughening during the conventional processing can be enlarged is obtained. And repeated further studies.

【0009】まず、TiとNbの複合添加の効果により、細
粒化がより有効に働く条件、すなわち冷間圧延条件と熱
間圧延温度条件に一定の臨界条件があり、主にこの二つ
を管理することにより、冷間圧延後、本来の成形性を保
持しながら、加工時の表面肌荒れの改善を行うことがで
きることを知り、この発明を完成した。
First, there is a certain critical condition between the conditions in which grain refinement works more effectively due to the effect of the combined addition of Ti and Nb, that is, the cold rolling condition and the hot rolling temperature condition. It was found that the surface roughness during processing can be improved while maintaining the original formability after cold rolling by maintaining the control, and completed the present invention.

【0010】すなわち、この発明は、熱間圧延条件およ
び適正冷間圧下率の組み合わせを特徴とする細粒化域を
拡大するフェライト系ステンレス鋼板の製造方法を提供
するものである。
That is, the present invention provides a method for producing a ferritic stainless steel sheet for expanding a grain refinement region, which is characterized by a combination of hot rolling conditions and an appropriate cold reduction.

【0011】よって、この発明の要旨とするところは、
重量割合で、C:0.030%以下、 Si:0.50 %以下、 M
n:0.40 %以下、Cr:13.0 〜16.0%、Nb:0.10 〜0.50
%、Ti:0.05 〜0.30%、残部Feおよび付随不純物から成
る鋼組成を有するフェライト系ステンレス鋼に、スラブ
加熱温度1000〜1100℃、および熱間圧延終了温度730 〜
770 ℃の条件下で、熱間圧延を行い、次いで焼鈍後炉冷
してから圧下率80〜90%の状態で仕上げる冷間圧延を施
し、さらに790 〜860 ℃で仕上焼鈍を行い成形時に良好
な表面性状を有することを特徴とする成形面性状に優れ
た低Crステンレス鋼板の製造方法である。
Therefore, the gist of the present invention is as follows.
By weight, C: 0.030% or less, Si: 0.50% or less, M
n: 0.40% or less, Cr: 13.0 to 16.0%, Nb: 0.10 to 0.50
%, Ti: 0.05 to 0.30%, ferritic stainless steel having a steel composition consisting of balance Fe and associated impurities, slab heating temperature 1000 to 1100 ° C, and hot rolling end temperature 730 to
Hot rolling is performed at 770 ° C, followed by annealing and furnace cooling, and then cold rolling to finish at a reduction rate of 80 to 90%, and further finish annealing at 790 to 860 ° C for good forming. A method for producing a low Cr stainless steel sheet having excellent forming surface properties, which is characterized by having various surface properties.

【0012】なお、特開平4−74852 号公報において、
この発明と同一の成分系が開示されているが、耐熱疲労
特性の良好性が示されているに過ぎず、依然として成形
時の表面性状が良好ではないという問題がある。そこで
この発明では耐熱疲労はそのままで、成形時の表面性状
をも向上させるのである。
Incidentally, in Japanese Patent Laid-Open No. 4-74852,
Although the same component system as that of the present invention is disclosed, only good heat fatigue resistance is shown, and there is a problem that the surface properties at the time of molding are not good. Therefore, in this invention, the heat resistance fatigue is maintained, and the surface quality at the time of molding is also improved.

【0013】[0013]

【作用】次に、この発明において鋼の成分割合を前述の
ごとく規定した理由を以下に述べる。
Next, the reason why the composition ratio of steel is defined as described above in the present invention will be described below.

【0014】C:Cは鋼の強度確保に有効な成分である
が、0.030 %を超えて含有させるとフェライトの耐食
性、耐酸化性、耐熱性、成形性および溶接性を劣化する
傾向をみせることから、C含有量は0.030 %以下と定め
た。好ましくは0.015 %以下である。
C: C is a component effective for securing the strength of steel, but if it is contained in excess of 0.030%, it tends to deteriorate the corrosion resistance, oxidation resistance, heat resistance, formability and weldability of ferrite. Therefore, the C content was determined to be 0.030% or less. It is preferably 0.015% or less.

【0015】Si:Siには鋼の耐酸化性を向上させる作用
があるが、0.50%を超えて含有させると耐熱疲労特性お
よび成形性の劣化が顕著となることから、Si含有量は0.
50%以下、好ましくは0.30%以下と定めた。
Si: Si has an action of improving the oxidation resistance of steel, but if it is contained in an amount exceeding 0.50%, the thermal fatigue resistance and the formability are markedly deteriorated.
It is set to 50% or less, preferably 0.30% or less.

【0016】Mn:Mnは製鋼時の脱酸成分として必要な元
素であるが、その含有量が0.40%を超えると熱疲労特性
に悪影響を及ぼすようになることから、Mn含有量は0.40
%以下と定めた。好ましくは、0.20%以下である。
Mn: Mn is an element necessary as a deoxidizing component at the time of steel making, but if its content exceeds 0.40%, it has an adverse effect on the thermal fatigue properties, so the Mn content is 0.40.
Defined to be less than or equal to%. It is preferably 0.20% or less.

【0017】Cr:Crは耐酸化性、耐熱疲労性を改善する
作用を有しているが、その含有量が13%未満では前記作
用による所望の効果が得られず、一方、16%を超えて含
有させると耐熱疲労性や成形性の劣化を招く上、コスト
的にも不利となることから、Cr含有量は13.0〜16.0%と
定めた。好ましくは、13.0〜14.0%である。
Cr: Cr has an effect of improving oxidation resistance and heat fatigue resistance, but if its content is less than 13%, the desired effect due to the above effect cannot be obtained, while on the other hand, it exceeds 16%. If added as Cr, it causes deterioration of heat fatigue resistance and moldability and is disadvantageous in terms of cost. Therefore, the Cr content is defined as 13.0 to 16.0%. It is preferably 13.0 to 14.0%.

【0018】Ti:Tiが未添加ではインゴット組織は柱状
晶であるが、Ti:0.05 %程度添加すると、微細化に有効
である等軸晶が生成するため、Ti量は0.05%以上、好ま
しくは0.10%以上と定めた。またTiは0.30%を超えて含
有させると耐熱疲労性や成形性が劣化するため、Ti含有
量は0.05〜0.30%、好ましくは0.10〜0 30%、より好ま
しくは0.10〜0.15%と定めた。
When Ti: Ti is not added, the ingot structure is a columnar crystal, but when Ti: about 0.05% is added, equiaxed crystals which are effective for refinement are formed. Therefore, the Ti content is 0.05% or more, preferably It was set at 0.10% or more. Further, if Ti is contained in excess of 0.30%, the thermal fatigue resistance and the formability are deteriorated. Therefore, the Ti content is set to 0.05 to 0.30%, preferably 0.10 to 030%, and more preferably 0.10 to 0.15%.

【0019】Nb:Nbには細粒化を促進させる働きがある
が、0.10%未満では所望の効果が得られず、0.50%を超
えて含有させると耐熱疲労性や成形性はかえって劣化す
る傾向を見せることからNb含有量は0.10〜0.50%と定め
た。好ましくは0.10〜0.30%である。
Nb: Nb has a function of promoting grain refinement, but if it is less than 0.10%, the desired effect cannot be obtained, and if it exceeds 0.50%, heat fatigue resistance and formability tend to deteriorate rather. Therefore, the Nb content was determined to be 0.10 to 0.50%. It is preferably 0.10 to 0.30%.

【0020】S:Sは酸素とともに非金属介在物を形成
する不純物元素であり、通常不純物として含有される限
り特に制限ないが、Sは酸素との合計量が50ppm を超え
ると耐熱疲労性および成形性が劣化する傾向を見せるこ
とがあるから、好ましくはSの含有量は酸素(O) との合
計で50ppm 以下とする。
S: S is an impurity element that forms a non-metallic inclusion together with oxygen, and is not particularly limited as long as it is contained as an ordinary impurity. However, when the total amount of S and oxygen exceeds 50 ppm, heat fatigue resistance and molding Since the property tends to deteriorate, the S content is preferably 50 ppm or less in total with oxygen (O).

【0021】なお、この発明にかかるフェライト系ステ
ンレス鋼においては通常のフェライト系鋼程度の量であ
ればNiの含有が許容される。ここで、この発明の加工条
件についてその作用をさらに詳細に説明すると次の通り
である。
In the ferritic stainless steel according to the present invention, Ni is allowed as long as the amount is about the level of ordinary ferritic steel. Here, the working conditions of the present invention will be described in more detail as follows.

【0022】従来のように1180℃以上というスラブ加熱
温度で熱間圧延 (仕上げ温度850 ℃という高温熱間圧
延) を行い、次いで、2回以上の冷間圧延を行うことに
よって整粒された微細鋼が得られるものの、高温熱間圧
延および中間焼鈍により材料内部の残留歪エネルギーが
十分ではなく、余り低温度では再結晶が生じない。この
ため微細な組織の得られる焼鈍範囲が限定され、安定し
た微細化鋼を得ることが困難であった。
As in the prior art, hot rolling (high-temperature hot rolling with a finishing temperature of 850 ° C.) was performed at a slab heating temperature of 1180 ° C. or higher, and then cold rolling was performed twice or more to obtain finely sized particles. Although steel is obtained, the residual strain energy inside the material is not sufficient due to high temperature hot rolling and intermediate annealing, and recrystallization does not occur at a too low temperature. Therefore, the range of annealing in which a fine structure can be obtained is limited, and it is difficult to obtain a stable refined steel.

【0023】そこで、この発明では、従来のスラブ加熱
温度を低め、低温熱間圧延と冷間圧延回数を減らすこと
の組み合わせにより、微細組織の得られる焼鈍範囲の拡
大を行うものである。
Therefore, in the present invention, the conventional slab heating temperature is lowered, and a combination of the low temperature hot rolling and the number of cold rolling is reduced to expand the annealing range where a fine structure can be obtained.

【0024】次に、この発明において加工条件を前述の
ように限定した理由を説明する。 低温熱間圧延の理由 微細な組織を有する材料を作成使用とする場合、高温で
歪を与えると歪エネルギーは動的再結晶を生じ、材料内
部に歪エネルギーが残留せず、のちの焼鈍時に核生成を
しないために、微細な組織が得られにくい。そこで歪エ
ネルギーが動的再結晶を起こさないような低温において
加工歪を与えることにより、材料内部に残留歪エネルギ
ーを多量に生じさせ、のちの焼鈍により、核生成のコア
ならびに駆動力とするべく工夫したものである。
Next, the reason for limiting the processing conditions in the present invention as described above will be explained. Reason for low-temperature hot rolling When using a material with a fine structure, when strain is applied at high temperature, strain energy causes dynamic recrystallization, so that strain energy does not remain inside the material, and it is nucleated during subsequent annealing. Since it is not generated, it is difficult to obtain a fine structure. Therefore, a large amount of residual strain energy is generated inside the material by giving a working strain at a low temperature where the strain energy does not cause dynamic recrystallization, and the subsequent annealing is devised to serve as a core for nucleation and a driving force. It was done.

【0025】したがって、この発明にあっては、スラブ
加熱温度を1000〜1100℃とするが、1000℃未満では材料
の変形抵抗が大きく圧延機の圧延能力が不足するため熱
間圧延には不向きであり、一方1100℃を越えると、加工
時の歪エネルギーが不足し、次工程の細粒化がしにくく
なるため、最終的に細粒化しない。
Therefore, in the present invention, the slab heating temperature is set to 1000 to 1100 ° C., but if it is less than 1000 ° C., the deformation resistance of the material is large and the rolling capacity of the rolling mill is insufficient, so that it is not suitable for hot rolling. On the other hand, when the temperature exceeds 1100 ° C., the strain energy at the time of processing becomes insufficient, and it becomes difficult to make the particles fine in the next step, so that the particles are not finally made fine.

【0026】熱間圧延の仕上げ温度は730 〜770 ℃であ
るが、これは730 ℃未満では上記の場合と同様に変形抵
抗が大きくなって圧延機の圧延能力が不足するためであ
り、また770 ℃を越えると再結晶してしまうためであ
る。なお、従来にあっても熱間圧延は行われていたが、
そのときのスラブ加熱温度はほぼ1180℃と比較的高く、
また仕上温度も約850 ℃と高温仕上げを行っていた。
The finishing temperature of hot rolling is 730 to 770 ° C. This is because if it is lower than 730 ° C., the deformation resistance becomes large and the rolling ability of the rolling mill becomes insufficient as in the above case. This is because recrystallization occurs if the temperature exceeds ℃. Although hot rolling was performed even in the past,
The slab heating temperature at that time was relatively high at almost 1180 ° C,
Also, the finishing temperature was about 850 ° C, and high temperature finishing was performed.

【0027】このようにして得られた熱延鋼板は焼鈍後
炉冷して後続の冷間圧延に供するが、この場合の焼鈍条
件は特に制限なく、慣用のように、例えば 830〜850 ℃
に12〜14時間保持してから炉冷すればよい。
The hot-rolled steel sheet thus obtained is annealed and cooled in a furnace for subsequent cold rolling. The annealing conditions in this case are not particularly limited, and, for example, 830 to 850 ° C. can be used in a conventional manner.
Hold for 12 to 14 hours before furnace cooling.

【0028】圧下率を増加する理由 残留歪エネルギーを増大させる方法としては、2つあ
り、1つは前述の低温熱間圧延によるものであり、もう
1つは冷間圧延に際しての圧延率、すなわち冷間加工率
を上げることである。加工率を上げることにより、残留
エネルギーは増加する。
Reasons for Increasing the Reduction Rate There are two methods for increasing the residual strain energy, one is by the above-described low temperature hot rolling, and the other is the reduction rate during cold rolling, that is, To increase the cold working rate. By increasing the processing rate, the residual energy increases.

【0029】理由としては、再結晶は高エネルギーの部
分から始まり、高加工度の材料ほど、再結晶を生じる部
分、すなわち核が多く、再結晶粒はあちらこちらで生じ
るため多数で微細になるためである。
The reason is that recrystallization starts from a high-energy portion, and the higher the degree of workability is, the more recrystallized portions, ie, the nuclei are, and the recrystallized grains are scattered everywhere. Is.

【0030】残留歪エネルギーが大きいことは、再結晶
するときのエネルギーがいたるところにあることを示し
ており、その部分が、熱などのエネルギーを受けて、核
生成するときに微細化する原因となるからである。
The large residual strain energy indicates that the energy for recrystallization is ubiquitous, and that part is considered to be the cause of miniaturization when receiving energy such as heat and nucleating. Because it will be.

【0031】この発明によれば、冷間加工率は圧下率で
80〜90%とするが、これは80%未満では歪みエネルギー
が不足するためであり、一方90%を越えると混粒となる
からである。好ましくは85〜90%である。
According to the present invention, the cold working rate is the reduction rate.
It is set to 80 to 90%, because if it is less than 80%, the strain energy is insufficient, while if it exceeds 90%, mixed grains are formed. It is preferably 85 to 90%.

【0032】冷間加工に際しては、中間焼鈍を行う場合
もあるが、その場合にはその後に行う仕上げ焼鈍時の歪
エネルギーが低くなるため、再結晶開始温度が高く、粒
径もNo.8と大きくなるため、不適当である。好ましくは
冷間圧延は1回圧延で行う。
In the cold working, an intermediate annealing may be performed in some cases, but in that case, since the strain energy in the finish annealing performed thereafter becomes low, the recrystallization starting temperature is high and the grain size is No. 8. It is unsuitable because it becomes large. Preferably, cold rolling is performed once.

【0033】このようにして行った冷間加工後には、仕
上げ焼鈍を行うが、そのときの焼鈍温度は、790 〜860
℃であり、790 ℃未満では再結晶が起こらず、一方860
℃を越えると粗粒となるため、この発明にあっては790
〜860 ℃、好ましくは 800〜850 ℃とする。
After the cold working thus performed, finish annealing is carried out, and the annealing temperature at that time is 790 to 860.
C, and recrystallization does not occur below 790 ° C, while 860
If the temperature exceeds ℃, coarse particles will be formed.
The temperature is to 860 ° C, preferably 800 to 850 ° C.

【0034】[0034]

【実施例】以下、この発明を実施例に基づいて具体的に
説明する。 (実施例1)本発明者らは、フェライト系ステンレス鋼に
おいて微細な再結晶組織を得ることにより成形時の肌荒
れを改善することを目的とし、真空高周波小型溶解炉に
て、後述する実施例2の表1のNo.3の成分のフェライト
系ステンレス鋼の小型鋼塊を溶製し、インゴットを切り
出し試供材とした。
EXAMPLES The present invention will be described in detail below based on examples. (Example 1) The inventors of the present invention described below in Example 2 in a vacuum high-frequency small-scale melting furnace for the purpose of improving the rough surface during molding by obtaining a fine recrystallized structure in ferritic stainless steel. A small ingot of ferritic stainless steel having the No. 3 component of Table 1 in Table 1 was melted, and an ingot was cut out and used as a test material.

【0035】この試験片を1000〜1200℃に加熱後、50.0
mm→ 4.0mmまで圧延した。このときの熱間圧延終了温度
は、740 〜870 ℃であった。このようにして得た4.0 mm
厚の熱延板を830 ℃×12時間焼鈍した後、炉冷してから
冷間圧延を行い0.4 mm厚の冷延板とした。
After heating this test piece to 1000 to 1200 ° C., 50.0
Rolled from mm to 4.0 mm. The hot rolling finish temperature at this time was 740 to 870 ° C. 4.0 mm thus obtained
The thick hot-rolled sheet was annealed at 830 ° C for 12 hours, cooled in the furnace, and then cold-rolled to give a 0.4-mm-thick cold-rolled sheet.

【0036】このときの圧延率は80〜95%とし、1回の
冷間圧延で0.4 mmまで冷間圧延したものと、980 ℃で中
間焼鈍を行い、2回の冷間圧延で0.4 mmまで圧延したも
のの2種類を用意した。
The rolling ratio at this time was 80 to 95%, and cold rolling was performed to 0.4 mm by one cold rolling, and intermediate annealing was performed at 980 ° C., and 0.4 mm was obtained by two cold rolling. Two types of rolled products were prepared.

【0037】このようにして得た冷延焼鈍板についてそ
れぞれ 760〜940 ℃の仕上焼鈍処理した後、粒径の測定
およびエリクセン試験を行った。これらの一連の結果よ
りG.S.=9以上ならば、肌荒れを生じないことが分かっ
た。
The cold-rolled annealed sheets thus obtained were subjected to finish annealing treatment at 760 to 940 ° C., respectively, and then the particle size was measured and the Erichsen test was conducted. From these series of results, it was found that if GS = 9 or more, rough skin does not occur.

【0038】次いで、同様にして加熱温度1044℃、熱間
圧延終了温度 742℃とし、さらに圧下率89%、冷間圧延
を1回行って0.4 mm厚として冷延鋼板について仕上げ焼
鈍温度を種々変更して粒径を求め、結果を図1にグラフ
で示す。
Then, in the same manner, the heating temperature was 1044 ° C., the hot rolling end temperature was 742 ° C., the rolling reduction was 89%, and cold rolling was performed once to 0.4 mm thickness, and various finishing annealing temperatures were changed for the cold rolled steel sheet. Then, the particle size was determined, and the results are shown in the graph in FIG.

【0039】焼鈍温度範囲については図1から分かる通
り、790 〜860 ℃の範囲においてG.S.=9程度の細粒を
示しており、その温度未満では再結晶が不十分で未再結
晶部分が残ったり、あるいはその温度超では粗粒化した
りするため不適当である。なお、図中、従来条件とある
のは中間焼鈍を行う条件で仕上げ焼鈍を行った場合を示
す。
As for the annealing temperature range, as can be seen from FIG. 1, fine grains of GS = 9 are shown in the range of 790 to 860 ° C. Below that temperature, recrystallization is insufficient and unrecrystallized parts remain. , Or above that temperature, it is unsuitable because of coarsening. In the figure, the conventional condition indicates the case where the finish annealing is performed under the condition that the intermediate annealing is performed.

【0040】(実施例2)表1に示す鋼組成を有する供試
鋼を表2に示す条件で熱間圧延および冷間圧延を行い、
厚さ0.4 mmの冷延鋼板を得た。表2に示すように、この
発明の加熱温度条件、圧延条件、焼鈍条件、仕上圧延条
件、仕上焼鈍条件をすべて満たした供試材において最大
の細粒化焼鈍範囲を得ることがわかる。
Example 2 A sample steel having a steel composition shown in Table 1 was hot-rolled and cold-rolled under the conditions shown in Table 2,
A cold rolled steel sheet having a thickness of 0.4 mm was obtained. As shown in Table 2, it is understood that the maximum grain-annealing range is obtained in the test material that satisfies all the heating temperature conditions, rolling conditions, annealing conditions, finish rolling conditions, and finish annealing conditions of the present invention.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】以上の説明から明らかな通り、この発明
による結晶粒細粒化域拡大化にしたがって、鋼成分を前
述のように限定し、上述のような低温の加工熱処理を行
い、仕上焼鈍範囲を適正とすることによって、結晶粒の
細粒化を生じ、成形面に肌荒れのないフェライト系ステ
ンレス鋼を得ることができる。
As is apparent from the above description, according to the expansion of the grain refinement region according to the present invention, the steel components are limited as described above, the above-mentioned low-temperature work heat treatment is performed, and the finish annealing is performed. By making the range appropriate, it is possible to obtain a ferritic stainless steel in which crystal grains are made finer and the molding surface is not roughened.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明における仕上げ焼鈍温度と粒径の関係
を示した図である。
FIG. 1 is a diagram showing a relationship between a finish annealing temperature and a grain size in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量割合で、 C:0.030%以下、 Si:0.50 %以下、 Mn:0.40 %以
下、 Cr:13.0 〜16.0%、Nb:0.10 〜0.50%、Ti:0.05 〜0.30
%、 残部Feおよび付随不純物から成る鋼組成を有するフェラ
イト系ステンレス鋼に、スラブ加熱温度1000〜1100℃、
および熱間圧延終了温度730 〜770 ℃の条件下で、熱間
圧延を行い、次いで焼鈍後炉冷してから圧下率80〜90%
で仕上げる冷間圧延を施し、さらに790 〜860 ℃で仕上
焼鈍を行い成形時に良好な表面性状を有することを特徴
とする成形面性状に優れた低Crステンレス鋼板の製造方
法。
1. By weight, C: 0.030% or less, Si: 0.50% or less, Mn: 0.40% or less, Cr: 13.0 to 16.0%, Nb: 0.10 to 0.50%, Ti: 0.05 to 0.30.
%, Ferritic stainless steel having a steel composition consisting of balance Fe and incidental impurities, slab heating temperature 1000 to 1100 ° C,
And the hot rolling finish temperature is 730 ~ 770 ℃, hot rolling is performed, then after annealing and furnace cooling, the rolling reduction is 80 ~ 90%.
A method for producing a low Cr stainless steel sheet having excellent forming surface properties, which is characterized by having a good surface property at the time of forming by performing cold rolling for finishing and further performing finish annealing at 790 to 860 ° C.
JP8480694A 1994-04-22 1994-04-22 Production of ferritic stainless steel sheet excellent in formed surface characteristic Withdrawn JPH07292417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8480694A JPH07292417A (en) 1994-04-22 1994-04-22 Production of ferritic stainless steel sheet excellent in formed surface characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8480694A JPH07292417A (en) 1994-04-22 1994-04-22 Production of ferritic stainless steel sheet excellent in formed surface characteristic

Publications (1)

Publication Number Publication Date
JPH07292417A true JPH07292417A (en) 1995-11-07

Family

ID=13840967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8480694A Withdrawn JPH07292417A (en) 1994-04-22 1994-04-22 Production of ferritic stainless steel sheet excellent in formed surface characteristic

Country Status (1)

Country Link
JP (1) JPH07292417A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434200C (en) * 2006-12-31 2008-11-19 山西太钢不锈钢股份有限公司 Method for preventing surface oxide film of nichrome roller from being peeling-off
CN102191366A (en) * 2010-03-18 2011-09-21 宝山钢铁股份有限公司 Manufacture method capable of improving patterns of common-type ferrite stainless steel plate
WO2019188094A1 (en) 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method for producing same
WO2020095437A1 (en) 2018-11-09 2020-05-14 にってステンレス株式会社 Ferritic stainless steel sheet
JP2020164956A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434200C (en) * 2006-12-31 2008-11-19 山西太钢不锈钢股份有限公司 Method for preventing surface oxide film of nichrome roller from being peeling-off
CN102191366A (en) * 2010-03-18 2011-09-21 宝山钢铁股份有限公司 Manufacture method capable of improving patterns of common-type ferrite stainless steel plate
WO2019188094A1 (en) 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method for producing same
KR20200100159A (en) 2018-03-30 2020-08-25 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet and its manufacturing method
CN111655890A (en) * 2018-03-30 2020-09-11 日铁不锈钢株式会社 Ferritic stainless steel sheet and method for producing same
WO2020095437A1 (en) 2018-11-09 2020-05-14 にってステンレス株式会社 Ferritic stainless steel sheet
KR20210034054A (en) 2018-11-09 2021-03-29 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet
EP3878993A4 (en) * 2018-11-09 2022-06-22 NIPPON STEEL Stainless Steel Corporation Ferritic stainless steel sheet
JP2020164956A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4235247B1 (en) High-strength steel sheet for can manufacturing and its manufacturing method
JP5924459B1 (en) Stainless steel for cold rolled steel
JP2005120399A (en) High-strength and low-specific-gravity steel sheet having excellent ductility, and its manufacturing method
JP3152576B2 (en) Method for producing Nb-containing ferrite steel sheet
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
JP2010133028A (en) Method for manufacturing high-strength low-specific gravity steel sheet excellent in ductility
KR102179460B1 (en) High entropy alloy and manufacturing method of the same
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP4525299B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JPH07292417A (en) Production of ferritic stainless steel sheet excellent in formed surface characteristic
JP2001262234A (en) Method for producing ferritic stainless steel sheet for automotive exhaust system excellent in deep drawability
JP4166657B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JPH0756055B2 (en) Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability
JP2682335B2 (en) Manufacturing method of ferritic stainless steel hot rolled strip
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JPH07150244A (en) Production of ferritic stainless steel for cold working
JP2581887B2 (en) High strength cold rolled steel sheet excellent in cold workability and method for producing the same
JPH0353026A (en) Manufacture of ferritic stainless steel sheet having excellent heat resistance and corrosion resistance
JP4454117B2 (en) Method for producing Cr-containing thin steel sheet
JP5644148B2 (en) Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same
JP2001140035A (en) High strength cold rolled steel sheet excellent in ductility and stretch-flanging property and producing method thereof
JPH07118805A (en) Duplex stainless steel excellent in workability and working method therefor
JP3314847B2 (en) Manufacturing method of ferritic stainless steel sheet with good workability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703