JPH07284482A - Method and apparatus for analyzing heartbeat fluctuation waveform - Google Patents

Method and apparatus for analyzing heartbeat fluctuation waveform

Info

Publication number
JPH07284482A
JPH07284482A JP6080084A JP8008494A JPH07284482A JP H07284482 A JPH07284482 A JP H07284482A JP 6080084 A JP6080084 A JP 6080084A JP 8008494 A JP8008494 A JP 8008494A JP H07284482 A JPH07284482 A JP H07284482A
Authority
JP
Japan
Prior art keywords
waveform
heartbeat
fluctuation
value
original
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6080084A
Other languages
Japanese (ja)
Other versions
JP3319140B2 (en
Inventor
Yoshihiro Noguchi
義博 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP08008494A priority Critical patent/JP3319140B2/en
Publication of JPH07284482A publication Critical patent/JPH07284482A/en
Application granted granted Critical
Publication of JP3319140B2 publication Critical patent/JP3319140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To automatically eliminate or suppress heatbeat fluctuation waveform data containing arrhythmia exerting effect on the spectrum analyzing result of an HF component becoming the investigation object of HRV in the analysis of heartbeat fluctuation waveform due to a hearthbeat interval. CONSTITUTION:The original heartbeat fluctuation waveform is formed from a heartbeat interval and, further, the adjacent interval difference of the original heartbeat fluctuation waveform is calculated to form a relative displacement heartbeat fluctuation waveform or a 1/f fluctuation component waveform is formed from the original heartbeat fluctuation waveform to form a waveform wherein the 1/f fluctuation component waveform is subtracted from the original heartbeat fluctuation wavefonn. Next, the average value and standard deviation of the formed waveform part are calculated and an abnormal judge standard value is determined from the average value and the standard deviation and, when the waveform part is larger than the abnormal judge standard value, arrhythmia is judged and the waveform part is replaced with the value received within the normal distribution range thereof or the original heartbeat fluctuation waveform part is replaced with the average value of the predetermined range thereof and the frequency component thereof is estimated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は心拍変動波形解析方法及
び装置に関し、特に心電図のR波(心室の収縮に対応す
る電位変化、周波数とも高く検出が容易な電圧パルス)
による心拍変動波形解析方法及び装置に関するものであ
る。なお、本発明は当然、心電図のR波の代わりに、脈
波、心音のピーク値等、心拍間隔を抽出し得るデータを
用いる場合にも適用可能なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for analyzing a heartbeat fluctuation waveform, and more particularly to an R wave of an electrocardiogram (voltage pulse corresponding to contraction of a ventricle, a voltage pulse having high frequency and easy detection).
The present invention relates to a method and an apparatus for analyzing a heartbeat fluctuation waveform. It should be noted that the present invention is naturally applicable to the case of using data capable of extracting a heartbeat interval such as a pulse wave and a peak value of heart sound instead of the R wave of the electrocardiogram.

【0002】心拍の間隔より生成した心拍変動波形の解
析を行うことにより、心拍変動性指標(以下、HRVと
略称することがある)と呼ばれる指標を得ることができ
る。
By analyzing a heartbeat variability waveform generated from heartbeat intervals, an index called a heartbeat variability index (hereinafter sometimes abbreviated as HRV) can be obtained.

【0003】このHRVは、交感・副交感神経系の活動
水準を反映しており、その周波数成分中の低周波(L
F)成分(又はMWSA成分と呼ばれる0.05〜0.15サイ
クル/ビートの周波数成分)、高周波(HF)成分(又
はRSA成分と呼ばれる0.15〜0.45サイクル/ビートの
周波数成分)のピークパワー値等を検討することで精神
的作業負荷、心的作業負荷、覚醒度、緊張度の定量化が
行える可能性が示唆されており、医学的に検討価値の高
い指標として知られている。
This HRV reflects the activity level of the sympathetic / parasympathetic nervous system, and has a low frequency (L) in its frequency component.
F) component (or frequency component of 0.05 to 0.15 cycle / beat called MWSA component), high frequency (HF) component (or frequency component of 0.15 to 0.45 cycle / beat called RSA component), etc. should be examined. It has been suggested that quantification of mental work load, mental work load, arousal level, and tension level can be performed, and it is known as a medically highly valuable index.

【0004】即ち、LF成分とは交換神経系を反映する
血圧変動性の成分が低周波であることから重要となって
いる成分であり、そのパワーは精神的緊張の増大、起立
性の刺激(姿勢の変化)などにより増大するものとして
認識されている。また、HF成分とは呼吸変動性の成分
が高周波であることからこのように称されるものであ
り、安静状態や睡眠中に高い値を示し緊張度の増大によ
り消失傾向に向かうことが知られているものである。
That is, the LF component is a component important because the blood pressure variability component reflecting the sympathetic nervous system has a low frequency, and its power is an increase in mental tension and an orthostatic stimulus ( It is recognized as increasing due to changes in posture). The HF component is so called because the respiratory variability component has a high frequency, and it is known that the HF component has a high value in a resting state or during sleep and tends to disappear due to an increase in tension. It is what

【0005】従って、被験者が安静状態に有るか否か、
言い換えれば覚醒度が低下しているか否かを容易に判定
できるHRV指標が望まれている。
Therefore, whether the subject is at rest or not,
In other words, there is a demand for an HRV index that can easily determine whether or not the arousal level has decreased.

【0006】[0006]

【従来の技術】この様なHRVに利用されるパワースペ
クトル(又は周波数成分)値を求めるための従来の方法
及び装置について以下に説明する。
2. Description of the Related Art A conventional method and apparatus for obtaining the power spectrum (or frequency component) value used for such HRV will be described below.

【0007】先ず、図7に示すように人体20に生体用
電極21〜23を張り付け、人体20の心臓活動に対応
する皮膚表面の電位を交流アンプ24により電極21と
23及び電極22と23の差電圧を求めて増幅し、出力
信号A,BとしてそれぞれA/D変換器25に送り、こ
こでディジタル信号に変換した後、それぞれ演算部26
に与えることにより、出力信号A−B間の電位差を図8
(1)に示すような心電図として記録し且つそのパワー
スペクトル密度(PSD)を求めている。
First, as shown in FIG. 7, biological electrodes 21 to 23 are attached to a human body 20, and the potential of the skin surface corresponding to the heart activity of the human body 20 is applied to the electrodes 21 and 23 and the electrodes 22 and 23 by an AC amplifier 24. The differential voltage is obtained, amplified, and sent to the A / D converter 25 as output signals A and B, respectively, where they are converted into digital signals, and then the arithmetic units 26
To the potential difference between the output signals A and B in FIG.
It is recorded as an electrocardiogram as shown in (1) and its power spectral density (PSD) is obtained.

【0008】図8においては、心拍変動波形の生成手順
が示されており、まず同図(1)においてR波ピーク時
点を検出し、同図(2)に示すようにR波ピーク時点か
らR−R間隔(以下、RRIと略称する)を計測する。
例えば、同図(1)に示すようにR波のピーク間隔RR
I1が0.8秒であれば、同図(2)に示すようにその
間隔RRI1を「0.8」とする。
FIG. 8 shows a procedure for generating a heartbeat fluctuation waveform. First, the R wave peak time is detected in (1) of the same figure, and the R wave peak time is detected from the R wave peak time as shown in (2) of the same figure. -R interval (hereinafter abbreviated as RRI) is measured.
For example, as shown in (1) of FIG.
If I1 is 0.8 seconds, the interval RRI1 is set to "0.8" as shown in FIG.

【0009】なお、以下、このRRI波形は後述する種
々の処理を施した心拍変動波形と区別するため、原心拍
変動波形と称する。
In the following, this RRI waveform is referred to as an original heartbeat variability waveform in order to distinguish it from a heartbeat variability waveform which has been subjected to various processes described later.

【0010】この様にして心拍に応じて生成されたR波
間隔RRIは、同図(3)に示すように直線補間するこ
とにより横軸を拍数とし縦軸をR波間隔RRIとした原
心拍振変動波形が生成される。
The R-wave interval RRI thus generated according to the heartbeat is linearly interpolated as shown in FIG. 3 (3), and the horizontal axis is the pulse rate and the vertical axis is the R-wave interval RRI. A heartbeat fluctuation waveform is generated.

【0011】この様に生成したRRI波形により図示の
如く一定の区間だけ切り出してサンプリング周波数5Hz
でFFT演算(高速フーリエ変換演算)またはAR(自
己回帰モデル)などにより求めたパワースペクトル密度
が図9に示されている。
The RRI waveform generated in this manner is used to cut out a certain section as shown in the figure, and the sampling frequency is 5 Hz.
FIG. 9 shows the power spectrum density obtained by FFT calculation (fast Fourier transform calculation) or AR (autoregressive model).

【0012】この図9のパワースペクトル推定図から判
るように、推定されたパワーの殆どは0Hzを中心周波数
とするドリフト成分であり、これは図8(3)に示す原
心拍変動波形が多くの非周期性成分を含んでいるためで
ある。
As can be seen from the power spectrum estimation diagram of FIG. 9, most of the estimated power is a drift component having a center frequency of 0 Hz, and this is due to many of the original heartbeat fluctuation waveforms shown in FIG. 8 (3). This is because it contains an aperiodic component.

【0013】この為、上述したようにHRVとして本来
の検討対象であるLF成分又はHF成分(ピークパワ
ー)の検出が困難となる。
For this reason, as described above, it becomes difficult to detect the LF component or the HF component (peak power) which is the original object of study as the HRV.

【0014】そこで本発明者は、このような問題を解決
するために、HRVの差異を比較し得るような精度の良
い周波数成分結果が得られる方法及び装置を特願平5-19
8861号において既に開示した。
Therefore, in order to solve such a problem, the inventor of the present invention proposes a method and apparatus for obtaining a frequency component result with high accuracy so that differences in HRV can be compared.
It has already been disclosed in 8861.

【0015】これを図10により原理的に説明すると、
まず、心電図からのR波時刻より同図(1)に示すよう
にR波間隔RRI1〜RRInを算出する。
This will be described in principle with reference to FIG.
First, R wave intervals RRI1 to RRIn are calculated from the R wave time from the electrocardiogram as shown in FIG.

【0016】この様にR波間隔を抽出した後、今度は隣
接したRRI同士の差を演算して同図(2)に示す波形
(以下、RRI’波形と称することがある)を生成す
る。
After the R-wave interval is extracted in this way, the difference between adjacent RRIs is calculated this time to generate the waveform shown in FIG. 2B (hereinafter sometimes referred to as RRI 'waveform).

【0017】この様に生成されたRRIn−RRI(n-
1)の波形を図8(3)と同様に長期間にわたって生成す
ることにより図10(3)に示す様な横軸を拍数とする
波形RRI(n-1)を得る。
The thus generated RRIn-RRI (n-
By generating the waveform of 1) for a long period of time in the same manner as in FIG. 8C, a waveform RRI (n-1) with the abscissa representing the number of beats as shown in FIG. 10C is obtained.

【0018】この結果、スペクトル計算によって得られ
た特性は図11に示すようになり、この特性により、心
拍の非定常的でランダムな推移が異なる条件下でのLF
成分及びHF成分のピークパワー位置が比較的容易に推
定することが可能となる。
As a result, the characteristic obtained by the spectrum calculation is as shown in FIG. 11, and due to this characteristic, the LF under the condition that the non-stationary and random transition of the heartbeat is different.
The peak power positions of the component and the HF component can be estimated relatively easily.

【0019】[0019]

【発明が解決しようとする課題】実測される心拍変動波
形は必ずしもきれいな波形だけでなく、被験者が健康で
あっても心拍の変化が非常に激しい不整脈が混入するこ
とがある。
The actually measured heartbeat variability waveform is not always a clean waveform, and an arrhythmia in which the heartbeat changes very rapidly may be mixed even when the subject is healthy.

【0020】図12(1)の左側にはこのような不整脈
が混入した心拍変動波形(RRI波形)が示されてお
り、この波形データを上記のように周波数解析すると、
同図右側に示すように不整脈部分のデータはHF成分の
大きなデータとして扱われてしまう。
On the left side of FIG. 12 (1), a heartbeat fluctuation waveform (RRI waveform) in which such an arrhythmia is mixed is shown. When this waveform data is subjected to frequency analysis as described above,
As shown on the right side of the figure, the data of the arrhythmia portion is treated as data having a large HF component.

【0021】即ち、この不整脈を含む心拍変動波形は、
同図(2)に示すHF成分が無く不整脈も無い心拍変動
波形のようにLF成分のみの周波数成分とはならず、同
図(3)に示すようにHF成分を多く含む波形と同じ周
波数成分になってしまう。
That is, the heartbeat fluctuation waveform including this arrhythmia is
Like the heartbeat fluctuation waveform without HF components and without arrhythmia shown in (2) of the figure, it is not the frequency component of only LF components, and as shown in (3) of the figure, the same frequency component as the waveform containing many HF components. Become.

【0022】また、図1(1)に示すような原心拍変動
波形(RRI波形)及び同図(2)に示すような相対変
位心拍変動波形(RRI’波形)を生成したときにRR
Iに対するヒストグラムをとると図13に示すように正
規分布となるが、RRI波形に不整脈が混入した場合、
周波数解析上問題となる異常波形データA,B,Cの分
布は図13に示すように正規分布の範囲に埋没してしま
い検出が困難となってしまう。
When the original heartbeat fluctuation waveform (RRI waveform) shown in FIG. 1A and the relative displacement heartbeat fluctuation waveform (RRI 'waveform) shown in FIG. 1B are generated, RR is generated.
A histogram for I has a normal distribution as shown in FIG. 13, but when an arrhythmia is mixed in the RRI waveform,
The distribution of the abnormal waveform data A, B, and C, which poses a problem in frequency analysis, is buried in the range of the normal distribution as shown in FIG. 13, which makes detection difficult.

【0023】このように、HRVが検討しようとするH
F成分は安静時に大きく現れる呼吸変動性の成分であ
り、HRVのHF成分やLF成分の検討を目的とする装
置において、このような不整脈データを含んだまま周波
数解析を行うことには大きな問題が生じることとなる。
Thus, the H that the HRV is trying to consider
The F component is a component of respiratory variability that appears greatly at rest, and in a device intended for studying the HF and LF components of HRV, there is a big problem in performing frequency analysis while including such arrhythmia data. Will occur.

【0024】従って本発明は、HRVの検討対象となる
HF成分のスペクトル解析結果に影響を与える不整脈を
含む心拍変動波形データを自動的に削除または抑制可能
にする心拍変動波形解析方法及び装置であってスペクト
ル解析以外の方法でもHRVの成分代用値を与えること
ができるものを提供することを目的とする。
Therefore, the present invention is a heartbeat variability waveform analysis method and apparatus capable of automatically deleting or suppressing heartbeat variability waveform data including an arrhythmia that affects the spectrum analysis result of the HF component subject to HRV examination. It is an object of the present invention to provide a method capable of giving a component substitute value of HRV by a method other than spectrum analysis.

【0025】[0025]

【課題を解決するための手段及び作用】〔1〕本発明方法(その1):図1 上記のようにRRI波形における不整脈部分は図13に
示したように正規分布の範囲に埋没してしまうが、図1
(2)に現れるRRI’波形における不整脈部分の点
B’,C’は同図(3)に示すように正規分布の範囲か
ら外れた値となるので、RRI’波形を用いれば不整脈
の検出・除去が容易となる。
Means and Actions for Solving the Problems [1] Method of the Present Invention (No. 1): FIG. 1 As described above, the arrhythmia portion in the RRI waveform is buried in the range of the normal distribution as shown in FIG. But Figure 1
Since the points B'and C'in the arrhythmia portion in the RRI 'waveform appearing in (2) have values outside the range of the normal distribution as shown in (3) of the same figure, if the RRI' waveform is used, the arrhythmia can be detected. Easy to remove.

【0026】そこで本発明に係る心拍変動波形解析方法
によれば、まず心拍の間隔から原心拍変動波形(RRI
波形)を生成する。そして、該RRI波形の隣接する間
隔差を求めて相対変位心拍変動波形(RRI’波形)を
生成する。
Therefore, according to the heartbeat fluctuation waveform analysis method of the present invention, first, the heartbeat fluctuation waveform (RRI) is calculated from the heartbeat interval.
Waveform). Then, a relative displacement heart rate variability waveform (RRI ′ waveform) is generated by obtaining the difference between adjacent RRI waveforms.

【0027】さらに、該RRI’波形部分の平均値と標
準偏差を算出し、この平均値と標準偏差から異常判定基
準値を決定する。
Further, the average value and standard deviation of the RRI 'waveform portion are calculated, and the abnormality determination reference value is determined from this average value and standard deviation.

【0028】この異常判定基準値を更にRRI’波形部
分と比較し、異常判定基準値<RRI’波形部分である
ことが分かったときには異常に心拍が変化した状態、即
ち不整脈であると判定して該RRI’波形部分をその正
規分布の範囲に収まる値に置き換えた後、その周波数成
分を推定する。
The abnormality determination reference value is further compared with the RRI 'waveform portion, and when it is found that the abnormality determination reference value <RRI' waveform portion, it is determined that the heartbeat has changed abnormally, that is, arrhythmia. After replacing the RRI 'waveform portion with a value that falls within the range of the normal distribution, its frequency component is estimated.

【0029】このようにすることにより、図1(2)に
示すように心拍変動波形中に不整脈が混入していても、
同図(3)に示すように正規分布の範囲から不整脈の点
B’,C’が外れた値となるため、上記のRRI’波形
の平均値と標準偏差から異常判定基準値を求めれば、こ
れと不整脈点B’,C’とを比較することによりその存
在を検出することができ、正規分布の範囲に収まる値に
置換すれば、あたかも不整脈が無かったようなRRI’
波形が得られ、後段での周波数解析が正確となる。
By doing so, even if an arrhythmia is mixed in the heartbeat fluctuation waveform as shown in FIG. 1 (2),
As shown in FIG. 3C, since the arrhythmic points B ′ and C ′ deviate from the range of the normal distribution, if the abnormality determination reference value is calculated from the average value and standard deviation of the RRI ′ waveform, By comparing this with the arrhythmia points B ′ and C ′, its presence can be detected, and by substituting a value within the range of the normal distribution, RRI ′ as if there were no arrhythmia.
The waveform is obtained, and the frequency analysis in the subsequent stage becomes accurate.

【0030】〔2〕本発明装置(その1):上記の本発
明方法(その1)を実現する本発明に係る心拍変動波形
解析装置としては、心拍ピックアップと、該ピックアッ
プの出力信号を所定の周波数帯域について増幅する増幅
器と、該増幅器の出力信号をディジタル信号に変換する
A/D変換器と、該ディジタル信号によるピーク値から
原心拍変動波形を生成し、さらに該原心拍変動波形の隣
接する間隔差を求めて相対変位心拍変動波形を生成し、
該相対変位心拍変動波形の平均値と標準偏差を算出し、
該平均値及び該標準偏差より異常判定基準値を決定して
該異常判定基準値より該相対変位心拍変動波形が大きい
ときには不整脈であるとして該相対変位心拍変動波形部
分の正規分布の範囲に収まる値に置き換えた後、その周
波数成分を推定する演算部と、で構成することが出来
る。
[2] Device of the present invention (No. 1): As a heartbeat fluctuation waveform analysis device according to the present invention for realizing the above-mentioned method (No. 1) of the present invention, a heartbeat pickup and an output signal of the pickup are set to predetermined values. An amplifier for amplifying a frequency band, an A / D converter for converting an output signal of the amplifier into a digital signal, an original heartbeat fluctuation waveform is generated from a peak value of the digital signal, and the original heartbeat fluctuation waveform is adjacent to the waveform. Generate the relative displacement heart rate variability waveform by obtaining the interval difference,
Calculate the average value and standard deviation of the relative displacement heart rate variability waveform,
A value that falls within the normal distribution range of the relative displacement heart rate variability waveform portion as an arrhythmia when an abnormality determination reference value is determined from the average value and the standard deviation and the relative displacement heart rate variability waveform is larger than the abnormality determination reference value. And a calculation unit that estimates the frequency component.

【0031】〔3〕本発明方法(その2):図2及び図
上記の本発明(その1)で用いたRRI’波形では、本
来緩慢な心拍変動変化を急峻な心拍変動波形に変換して
しまうことがある。
[3] Method of the present invention (No. 2): FIG. 2 and FIG.
3 In the RRI 'waveform used in the present invention (No. 1), the originally slow change in heartbeat may be converted into a steep heartbeat change waveform.

【0032】これを図2で説明すると、例えば同図
(1)に示す如くRRI2からRRI3への変化に比べ
てRRI1からRRI2への変化やRRI3からRRI
4への変化が小さい原心拍変動波形(RRI波形)か
ら、RRI波形の隣接する間隔差を求めて相対変位心拍
変動波形を生成すると、RRI1からRRI4に至る緩
慢な上昇傾向の心拍変動であるにも関わらず同図(2)
に示すように急峻に変化する心拍変動に変換されてしま
う。
This will be explained with reference to FIG. 2. For example, as shown in FIG. 1A, the change from RRI1 to RRI2 and the change from RRI3 to RRI are compared with the change from RRI2 to RRI3.
When a relative displacement heartbeat variability waveform is generated by calculating the adjacent interval difference of the RRI waveforms from the original heartbeat variability waveform (RRI waveform) whose change to 4 is small, the heartbeat variability is a slow rising tendency from RRI1 to RRI4. Despite this, the figure (2)
It is converted into a rapidly changing heart rate variability as shown in.

【0033】このような心拍変動波形は多くのデータを
とると、同図(3)に示すようにHF成分を多く含む波
形になってしまう。
If a large amount of data is taken, such a heartbeat fluctuation waveform will become a waveform containing a large amount of HF components as shown in FIG.

【0034】そこで本発明では、心拍の間隔から原心拍
変動波形を生成した後、該原心拍変動波形から1/fゆ
らぎ成分波形を生成して該原心拍変動波形から該1/f
ゆらぎ成分波形を減算した波形を生成するという手法を
採っている。
Therefore, in the present invention, after the original heartbeat fluctuation waveform is generated from the heartbeat interval, the 1 / f fluctuation component waveform is generated from the original heartbeat fluctuation waveform and the 1 / f fluctuation waveform is generated from the original heartbeat fluctuation waveform.
A method of generating a waveform by subtracting the fluctuation component waveform is adopted.

【0035】これを図3により説明すると、まず同図
(1)に示すような長時間算出した場合のRRI波形の
一部を拡大して示すと同図(2)に示すようになり、こ
のRRI波形から相対変位心拍変動波形を生成せずに例
えば同図(3)に示すようなロー・パス・フィルタ処理
又は移動平滑化処理を施すことにより1/fゆらぎ成分
波形(1/f(n)波形)を推定する。
This will be described with reference to FIG. 3. First, a part of the RRI waveform in the case of long-time calculation as shown in FIG. 1A is enlarged and shown in FIG. 2B. By not performing the relative displacement heart rate variability waveform from the RRI waveform but performing the low-pass filtering process or the moving smoothing process as shown in (3) of the figure, the 1 / f fluctuation component waveform (1 / f (n ) Waveform) is estimated.

【0036】そして、同図(1)の原心拍変動波形から
同図(4)の1/fゆらぎ成分波形を減算することによ
り、同図(5)に示すようなHRVの検討対象周波数以
外の成分を著しく抑制した形の心拍変動波形(RRI''
波形) が得られることとなる。
Then, by subtracting the 1 / f fluctuation component waveform of FIG. 4 (4) from the original heartbeat fluctuation waveform of FIG. 1 (1), a frequency other than the HRV studied frequency as shown in FIG. 5 (5) is obtained. Heart rate variability waveform (RRI '')
Waveform) will be obtained.

【0037】このため、本発明では、上記のようにして
減算して生成したRRI''波形部分を上記のRRI’波
形と同様にしてその平均値と標準偏差を算出し、該平均
値及び該標準偏差より異常判定基準値を決定して該異常
判定基準値より該RRI''波形部分が大きいときには不
整脈であるとして該RRI''波形部分の正規分布の範囲
に収まる値に置き換えた後、その周波数成分を推定する
ようにしている。
Therefore, in the present invention, the average value and standard deviation of the RRI '' waveform portion generated by subtraction as described above are calculated in the same manner as the above RRI 'waveform, and the average value and the standard deviation are calculated. After determining the abnormality determination reference value from the standard deviation and replacing it with a value that falls within the normal distribution range of the RRI '' waveform portion as an arrhythmia when the RRI '' waveform portion is larger than the abnormality determination reference value, The frequency component is estimated.

【0038】従って、本発明の場合も図1(3)に示す
ようにRRI''波形部分の不整脈点B’,C’の検出が
容易となり、不整脈を矯正した形で後段での正確な周波
数解析が行える。
Therefore, also in the case of the present invention, as shown in FIG. 1 (3), it becomes easy to detect the arrhythmic points B'and C'in the RRI '' waveform portion, and the arrhythmia is corrected and the correct frequency in the subsequent stage is corrected. Analysis is possible.

【0039】〔4〕本発明装置(その2):上記の本発
明方法(その2)を実現する本発明に係る心拍変動波形
解析装置は、心拍ピックアップと、該ピックアップの出
力信号を所定の周波数帯域について増幅する増幅器と、
該増幅器の出力信号をディジタル信号に変換するA/D
変換器と、該ディジタル信号によるピーク値から原心拍
変動波形を生成し、該原心拍変動波形から1/fゆらぎ
成分波形を生成して該原心拍変動波形から該1/fゆら
ぎ成分波形を減算した波形を生成し、該減算波形の平均
値と標準偏差を算出し、該平均値及び該標準偏差より異
常判定基準値を決定して該異常判定基準値より該減算波
形が大きいときには不整脈であるとして該減算波形部分
の正規分布の範囲に収まる値に置き換えた後、その周波
数成分を推定する演算部と、で構成されている。
[4] Device of the present invention (No. 2): A heartbeat fluctuation waveform analyzing device according to the present invention which realizes the above-mentioned method (No. 2) of the present invention includes a heartbeat pickup and an output signal of the pickup at a predetermined frequency. An amplifier that amplifies the band,
A / D for converting the output signal of the amplifier into a digital signal
An original heartbeat fluctuation waveform is generated from a converter and a peak value of the digital signal, a 1 / f fluctuation component waveform is generated from the original heartbeat fluctuation waveform, and the 1 / f fluctuation component waveform is subtracted from the original heartbeat fluctuation waveform. Waveform is generated, an average value and a standard deviation of the subtraction waveform are calculated, an abnormality determination reference value is determined from the average value and the standard deviation, and an arrhythmia is generated when the subtraction waveform is larger than the abnormality determination reference value. Is replaced with a value that falls within the range of the normal distribution of the subtracted waveform portion, and the frequency component is then estimated.

【0040】〔5〕本発明方法及び装置(その3):図
上記の本発明方法・装置(その1;その2)において
は、不整脈であると判定したとき、RRI’波形又はR
RI''波形部分ではなく該原心拍変動波形(RRI波
形)部分をその所定周囲の平均値で置き換えてもよい。
[5] Method and Device of the Present Invention (Part 3): FIG.
4 In the above-described method and apparatus of the present invention (No. 1; No. 2), when the arrhythmia is determined, the RRI 'waveform or R
The original heart rate variability waveform (RRI waveform) portion, instead of the RI ″ waveform portion, may be replaced with the average value of the predetermined surroundings.

【0041】即ち、例えば図1(1)の不整脈の点A,
B,Cに対して図4(1)及び(2)に示すように、そ
れぞれ平均値及び“0”を与えた場合には、不連続な波
形となり、不整脈を除去することにはならないが、同図
(3)に示すように不整脈と見られる波形部分(点A,
B,Cを含む部分)の所定の範囲の平均値(A”,
B”,C”)を求めることにより連続的な波形となり、
上記の場合と同様にその相対変位が正規分布の範囲に収
まることなり不整脈が除去された形となることが分か
る。
That is, for example, the point A of the arrhythmia in FIG.
As shown in FIGS. 4 (1) and (2) for B and C, when an average value and “0” are given, respectively, the waveform becomes discontinuous and the arrhythmia cannot be removed. As shown in (3) of the same figure, the waveform portion (point A,
The average value (A ", of a portion including B and C) in a predetermined range
By obtaining B ", C"), a continuous waveform is obtained,
As in the above case, it can be seen that the relative displacement falls within the range of the normal distribution, and the arrhythmia is eliminated.

【0042】[0042]

【実施例】図5は本発明に係る心拍変動波形解析装置の
共通の一実施例を示したもので、基本的には図7に示し
た装置構成と同様に、交流アンプ部24とA/D変換部
25と演算部26とで構成されており、交流アンプ部2
4の入力信号は図示していないが図7と同様に人体に張
り付けた生体用電極から得ている。
FIG. 5 shows a common embodiment of the heartbeat variability waveform analyzing apparatus according to the present invention. Basically, the AC amplifier section 24 and the A / A unit are provided in the same manner as the apparatus configuration shown in FIG. It is composed of a D conversion unit 25 and a calculation unit 26, and the AC amplifier unit 2
Although not shown, the input signal of 4 is obtained from the biomedical electrode attached to the human body as in FIG.

【0043】そしてこの実施例では、交流アンプ部24
を作動入力アンプ1とバンドパスフィルタ2との直列回
路で構成しており、バンドパスフィルタ2はR波のみを
抽出するために8〜18Hzの通過帯域に設定されてい
る。
In this embodiment, the AC amplifier section 24
Is constituted by a series circuit of the operation input amplifier 1 and the bandpass filter 2, and the bandpass filter 2 is set to a pass band of 8 to 18 Hz in order to extract only the R wave.

【0044】また、A/D変換部25はバンドパスフィ
ルタ2に接続されたアンプ3とサンプルホールド回路4
とA/D変換器5とバッファメモリ6との直列回路で構
成されている。
The A / D converter 25 includes an amplifier 3 connected to the bandpass filter 2 and a sample hold circuit 4.
And an A / D converter 5 and a buffer memory 6 in series.

【0045】更に、演算部26はバッファメモリ6に接
続されたデータバス7に相互接続されたRAM8と演算
アルゴリズム用ROM9とCPU10とこれらRAM8
及びCPU10と接続されてCPU10を経由せずにR
AM8にデータを格納させる為のDMAコントローラ1
1と、CPU10及びDMAコントローラ11に一定の
クロック信号を与えるための水晶発振回路12とで構成
されている。
Further, the arithmetic unit 26 includes a RAM 8 interconnected to the data bus 7 connected to the buffer memory 6, a ROM 9 for arithmetic algorithm, a CPU 10 and these RAMs 8.
And R without being connected to the CPU 10 and passing through the CPU 10.
DMA controller 1 for storing data in AM8
1 and a crystal oscillating circuit 12 for applying a constant clock signal to the CPU 10 and the DMA controller 11.

【0046】尚、A/D変換部25には水晶発振回路1
2からのクロック信号を分周してA/D変換器5に与え
るための分周器13が設けられており、DMAコントロ
ーラ11はサンプルホールド回路4及びA/D変換器5
をも制御するようになっている。
The A / D converter 25 includes the crystal oscillator circuit 1
A frequency divider 13 for dividing the frequency of the clock signal from 2 and giving it to the A / D converter 5 is provided. The DMA controller 11 includes a sample hold circuit 4 and an A / D converter 5.
Is also controlled.

【0047】図6は図5に示したCPU10の処理手順
であって上記の本発明方法・装置(その1)に対応した
実施例を示したもので、以下、この図6の処理手順及び
図1及び図10の波形図を参照して図5の実施例の動作
を説明する。
FIG. 6 shows a processing procedure of the CPU 10 shown in FIG. 5 and shows an embodiment corresponding to the above-mentioned method / apparatus (No. 1) of the present invention. The operation of the embodiment of FIG. 5 will be described with reference to the waveform diagrams of FIG. 1 and FIG.

【0048】まず、心電図のR波、脈波、心音のピーク
値等の心拍間隔を検出する心拍ピックアップからの出力
信号は交流アンプ部24において差動入力アンプ1で増
幅されると共にバンドパスフィルタ2でR波のみが取り
出される。
First, the output signal from the heartbeat pickup for detecting the heartbeat intervals such as the R wave of the electrocardiogram, the pulse wave, the peak value of the heart sound, etc. is amplified by the differential input amplifier 1 in the AC amplifier section 24 and the bandpass filter 2 is also applied. At, only R wave is extracted.

【0049】このR波はA/D変換部25においてアン
プ3で増幅された後、DMAコントローラ11の制御下
のサンプルホールド回路4によりサンプルホールドされ
てA/D変換器5によりディジタル信号に変換され、バ
ッファメモリ6からデータバス7を介してCPU10に
取り込まれる。
The R wave is amplified by the amplifier 3 in the A / D converter 25, sampled and held by the sample hold circuit 4 under the control of the DMA controller 11, and converted into a digital signal by the A / D converter 5. , From the buffer memory 6 via the data bus 7 into the CPU 10.

【0050】CPU10では処理を開始するとR波形デ
ータを読み込み(ステップS1)、そのR波時刻を検出
する(ステップS2)。
When the processing is started, the CPU 10 reads the R waveform data (step S1) and detects the R wave time (step S2).

【0051】この様にして求めたR波時刻より図8
(2)に示したように原心拍変動波形RRI1〜RRI
nを算出する(ステップS3)。
From the R wave time obtained in this way, FIG.
As shown in (2), the original heart rate variability waveforms RRI1 to RRI
n is calculated (step S3).

【0052】この様にR波間隔RRIを抽出した後、今
度は隣接したRRI同士の差を演算して(ステップS
4)、図10(2)に示す波形を生成する。
After extracting the R-wave interval RRI in this way, this time the difference between adjacent RRIs is calculated (step S
4), the waveform shown in FIG. 10B is generated.

【0053】この様に生成されたRRI(n-1) −RRI
nの波形を図8(3)と同様に長期間に渡って生成する
ことにより図1(2)に示す様な横軸を拍数とする波形
を得る。
RRI (n-1) -RRI generated in this way
By generating the waveform of n over a long period of time as in the case of FIG. 8C, a waveform having the horizontal axis as the number of beats as shown in FIG. 1B is obtained.

【0054】この変換されたデータをRRI’nとする
と、このデータRRI’nをRAM8に格納しておく
(ステップS5)。
When this converted data is RRI'n, this data RRI'n is stored in the RAM 8 (step S5).

【0055】次に、CPU10は、波形データRRI’
nから、次式により平均値*RRI’n(図ではRRI
のオーバーラインで示されているが、ここでは*を使用
する)と標準偏差SRRI’nを求める(ステップS
6)。
Next, the CPU 10 causes the waveform data RRI '.
From n, the average value * RRI'n (RRI in the figure
Is used as an overline, but here, * is used) and the standard deviation SRRI'n is calculated (step S
6).

【0056】[0056]

【数1】 [Equation 1]

【0057】[0057]

【数2】 [Equation 2]

【0058】そして、これらの平均値*RRI’n及び
標準偏差SRRI’nを用いて次式により異常判定基準
値kを求める(ステップS7)。
Then, using the average value * RRI'n and the standard deviation SRRI'n, the abnormality determination reference value k is obtained by the following equation (step S7).

【0059】[0059]

【数3】 [Equation 3]

【0060】ただし、gは波形の性質によって任意に設
定される定数で通常2.5が与えられる。また、kは波
形データ数が少ない場合には、2.5以下、データ数が
多い場合には2.5以上が与えられる。
However, g is a constant arbitrarily set according to the nature of the waveform, and 2.5 is usually given. Further, k is 2.5 or less when the number of waveform data is small, and 2.5 or more when the number of data is large.

【0061】ここで、RRI’波形のサンプル点位置を
示すパラメータiの初期値を“1”に設定した後(ステ
ップS8)、パラメータi>nになるまでは処理を繰り
返すために(ステップS9)、ステップS10において
点iのデータRRIiをRAM8から読み出す。
Here, after the initial value of the parameter i indicating the sample point position of the RRI 'waveform is set to "1" (step S8), the process is repeated until the parameter i> n (step S9). In step S10, the data RRIi at the point i is read from the RAM 8.

【0062】そして、RRI’i≧kであるか否かを判
定する(ステップS11)。
Then, it is determined whether or not RRI'i ≧ k (step S11).

【0063】これはRRI’波形のサンプル点iの値が
心拍変化の異常を示す値kを越えているか否か、即ち不
整脈状態にあるか否かを判定しており、この結果、RR
I’i≧kであれば、不整脈異常であるとしてこの点i
のRRI’波形の値を所定値「x」で置き換えてRAM
8に格納する(ステップS12)。
This determines whether or not the value of the sample point i of the RRI 'waveform exceeds the value k indicating an abnormal heartbeat change, that is, whether or not the arrhythmia is present. As a result, RR
If I′i ≧ k, this point i
RRI 'Waveform value of RAM is replaced by a predetermined value "x"
8 (step S12).

【0064】この場合の所定値xは通常“0”を与える
が、図1(2)に示した異常値A’,B’,C’付近の
平均値を算出して用いてもよい。これにより、図1
(3)に示すようにRRI’ヒストグラムにおいて点
B’,C’は正規分布の範囲に収まることとなる。
The predetermined value x in this case is normally "0", but an average value around the abnormal values A ', B', C'shown in FIG. 1 (2) may be calculated and used. As a result,
As shown in (3), the points B ′ and C ′ in the RRI ′ histogram fall within the range of normal distribution.

【0065】ステップS11においてRRI’i<kで
あれば、ステップS12を実行せずにステップS13に
進み、パラメータiを「1」だけインクリメントしてス
テップS9でi>nとなるまで繰り返し、i>nとなっ
た時点でRRI’nデータをRAM8から読み出して周
波数解析統計処理部(図示せず)等へ処理を移す。
If RRI'i <k in step S11, the process proceeds to step S13 without executing step S12, increments the parameter i by "1" and repeats until i> n in step S9, i>n> When it becomes n, the RRI'n data is read from the RAM 8 and the process is transferred to a frequency analysis statistical processing unit (not shown) or the like.

【0066】上記の実施例では、本発明(その1)に対
応して相対変位心拍変動波形(RRI’波形)により平
均値及び標準偏差並びに異常判定基準値を求めて不整脈
点を正規分布範囲内に収まるように制御しているが、本
発明(その2)に対応して図3(5)のRRI''波形
(RRI波形−1/fゆらぎ成分波形)を用いる場合に
は、図6のステップS4,S5,S6,S10,S1
1,S12でこのRRI''波形に置き換えればよい。
In the above embodiment, the average value, the standard deviation, and the abnormality judgment reference value are obtained from the relative displacement heartbeat fluctuation waveform (RRI 'waveform) according to the present invention (No. 1), and the arrhythmia points are within the normal distribution range. However, when the RRI '' waveform (RRI waveform-1 / f fluctuation component waveform) of FIG. 3 (5) is used in accordance with the present invention (part 2), the control of FIG. Steps S4, S5, S6, S10, S1
This RRI ″ waveform may be replaced in steps 1 and S12.

【0067】なお、1/fゆらぎ成分波形は、図3
(1),(2)に示したRRI波形において、次式の如
く3点サンプルにより平均値(移動平滑化値)を求める
ことにより1/fゆらぎ成分波形を推定することができ
る。
The 1 / f fluctuation component waveform is shown in FIG.
In the RRI waveforms shown in (1) and (2), the 1 / f fluctuation component waveform can be estimated by obtaining an average value (movement smoothing value) from three-point samples as in the following equation.

【0068】[0068]

【数4】 [Equation 4]

【0069】また、この平均値はアナログ回路としての
ロー・パス・フィルタを用いることによっても求めるこ
とができる。
This average value can also be obtained by using a low pass filter as an analog circuit.

【0070】さらに、本発明(その3)のように、原心
拍変動波形(RRI波形)を矯正する場合には、図6の
ステップS12においてRRI’波形の代わりにRRI
波形を用いてデータの置換を図4に示したように行えば
よい。
Further, when correcting the original heartbeat fluctuation waveform (RRI waveform) as in the present invention (part 3), the RRI 'waveform is replaced by the RRI' in step S12 of FIG.
Data replacement may be performed using a waveform as shown in FIG.

【0071】この場合、一例として、図4(3)点A”
は、図1(1)に示した点Aの2つ前のサンプル点の平
均値を用い、点C”は点Cの2つ後のサンプル点の平均
値を用い、そして点B”は点A”とC”の平均値を用い
ればよい。
In this case, as an example, point A ″ in FIG.
Is the average value of the sample points two points before the point A shown in FIG. 1A, the point C ″ is the average value of the sample points two points after the point C, and the point B ″ is the point. The average value of A "and C" may be used.

【0072】[0072]

【発明の効果】以上説明したように、本発明に係る心拍
変動波形解析方法及び装置によれば、心拍の間隔から原
心拍変動波形を生成し、さらに該原心拍変動波形の隣接
する間隔差を求めて相対変位心拍変動波形を生成する
か、或いは該原心拍変動波形から1/fゆらぎ成分波形
を生成して該原心拍変動波形から該1/fゆらぎ成分波
形を減算した波形を生成し、該生成した波形部分の平均
値と標準偏差を算出し、該平均値及び該標準偏差より異
常判定基準値を決定して該異常判定基準値より該波形部
分が大きいときには不整脈であるとして該波形部分をそ
の正規分布の範囲に収まる値に置き換えるか、或いは原
心拍変動波形部分をその所定周囲の平均値で置き換えた
後、その周波数成分を推定するように構成したので、例
えば実路運転時における運転者の心拍データから医学的
に検討可能なHRVのLF/HFパワーを高精度に推定
することが出来、正確な居眠り運転等の警報を発するこ
とができる。
As described above, according to the heartbeat variability waveform analysis method and apparatus of the present invention, the original heartbeat variability waveform is generated from the heartbeat interval, and the adjacent interval difference between the original heartbeat variability waveforms is calculated. Or a relative displacement heartbeat variability waveform is obtained, or a 1 / f fluctuation component waveform is generated from the original heartbeat variability waveform and a waveform obtained by subtracting the 1 / f fluctuation component waveform from the original heartbeat variability waveform is generated, An average value and a standard deviation of the generated waveform portion are calculated, an abnormality determination reference value is determined from the average value and the standard deviation, and when the waveform portion is larger than the abnormality determination reference value, the waveform portion is regarded as an arrhythmia. Is replaced with a value that falls within the range of the normal distribution, or the original heart rate variability waveform part is replaced with an average value of the predetermined surroundings, and then the frequency component is estimated. That the LF / HF power medically examined possible HRV from the driver's heartbeat data can be estimated with high accuracy, it is possible to issue a warning, such as accurate drowsy driving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る心拍変動波形解析方法及び装置
(その1)の動作原理を説明するための波形図である。
FIG. 1 is a waveform diagram for explaining the operation principle of a heartbeat fluctuation waveform analysis method and device (No. 1) according to the present invention.

【図2】本発明に係る心拍変動波形解析方法及び装置
(その1)の問題点を説明するための波形図である。
FIG. 2 is a waveform chart for explaining problems of the heartbeat fluctuation waveform analysis method and device (No. 1) according to the present invention.

【図3】本発明に係る心拍変動波形解析方法及び装置
(その2)の動作原理を説明するための波形図である。
FIG. 3 is a waveform diagram for explaining the operation principle of the heartbeat fluctuation waveform analysis method and device (No. 2) according to the present invention.

【図4】本発明に係る心拍変動波形解析方法及び装置
(その3)の動作原理を説明するための波形図である。
FIG. 4 is a waveform diagram for explaining the operation principle of the heartbeat fluctuation waveform analysis method and device (No. 3) according to the present invention.

【図5】本発明に係る心拍変動波形解析装置の共通の一
実施例を示したブロック図である。
FIG. 5 is a block diagram showing a common embodiment of the heartbeat fluctuation waveform analyzing apparatus according to the present invention.

【図6】本発明に係る心拍変動波形解析装置(その1)
の演算部における演算処理例を示したフローチャート図
である。
FIG. 6 is a heartbeat fluctuation waveform analyzer according to the present invention (No. 1).
It is a flowchart figure which showed the example of a calculation process in the calculating part.

【図7】一般的な心拍変動波形解析装置としてのパワー
スペクトルの測定系を示したブロック図である。
FIG. 7 is a block diagram showing a power spectrum measurement system as a general heart rate variability waveform analyzer.

【図8】従来の心拍変動波形生成手順を示した波形図で
ある。
FIG. 8 is a waveform diagram showing a conventional heart rate variability waveform generation procedure.

【図9】従来例によってパワースペクトル推定されたグ
ラフ図である。
FIG. 9 is a graph diagram in which a power spectrum is estimated by a conventional example.

【図10】特願平5-189961号による心拍変動波形解析方
法及び装置における動作原理を説明するための波形図で
ある。
FIG. 10 is a waveform diagram for explaining the operation principle of the heartbeat fluctuation waveform analysis method and apparatus according to Japanese Patent Application No. 5-189961.

【図11】特願平5-189961号による心拍変動波形解析方
法及び装置においてパワースペクトル推定した波形図で
ある。
FIG. 11 is a waveform diagram in which a power spectrum is estimated in a heartbeat fluctuation waveform analysis method and device according to Japanese Patent Application No. 5-189961.

【図12】従来例の問題点を説明するための波形図であ
る。
FIG. 12 is a waveform diagram for explaining problems in the conventional example.

【図13】従来例におけるRRIヒストグラムを示した
特性グラフ図である。
FIG. 13 is a characteristic graph showing an RRI histogram in a conventional example.

【符号の説明】 20 人体 21〜23 生体用電極 24 交流アンプ 25 AD変換部 26 演算部 8 RAM 9 ROM 10 CPU 図中、同一符号は同一または相当部分を示す。[Description of Reference Signs] 20 human body 21 to 23 biomedical electrode 24 AC amplifier 25 AD conversion unit 26 arithmetic unit 8 RAM 9 ROM 10 CPU In the drawings, the same reference numerals indicate the same or corresponding portions.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 心拍の間隔から原心拍変動波形を生成
し、さらに該原心拍変動波形の隣接する間隔差を求めて
相対変位心拍変動波形を生成し、該相対変位心拍変動波
形部分の平均値と標準偏差を算出し、該平均値及び該標
準偏差より異常判定基準値を決定して該異常判定基準値
より該相対変位心拍変動波形部分が大きいときには不整
脈であるとして該相対変位心拍変動波形部分をその正規
分布の範囲に収まる値に置き換えた後、その周波数成分
を推定することを特徴とした心拍変動波形解析方法。
1. A heartbeat variability waveform is generated from heartbeat intervals, a difference between adjacent heartbeat variability waveforms is determined to generate a relative displacement heartbeat variability waveform, and an average value of the relative displacement heartbeat variability waveform portion. And a standard deviation are calculated, an abnormality determination reference value is determined from the average value and the standard deviation, and when the relative displacement heartbeat fluctuation waveform portion is larger than the abnormality determination reference value, the relative displacement heartbeat fluctuation waveform portion is regarded as an arrhythmia. Is replaced with a value that falls within the range of the normal distribution, and then the frequency component is estimated.
【請求項2】 心拍の間隔から原心拍変動波形を生成
し、該原心拍変動波形から1/fゆらぎ成分波形を生成
して該原心拍変動波形から該1/fゆらぎ成分波形を減
算した波形を生成し、該減算波形部分の平均値と標準偏
差を算出し、該平均値及び該標準偏差より異常判定基準
値を決定して該異常判定基準値より該減算波形部分が大
きいときには不整脈であるとして該減算波形部分の正規
分布の範囲に収まる値に置き換えた後、その周波数成分
を推定することを特徴とした心拍変動波形解析方法。
2. A waveform obtained by generating an original heartbeat fluctuation waveform from a heartbeat interval, generating a 1 / f fluctuation component waveform from the original heartbeat fluctuation waveform, and subtracting the 1 / f fluctuation component waveform from the original heartbeat fluctuation waveform. Is generated, an average value and a standard deviation of the subtraction waveform portion are calculated, an abnormality determination reference value is determined from the average value and the standard deviation, and an arrhythmia is generated when the subtraction waveform portion is larger than the abnormality determination reference value. The method of analyzing a heartbeat fluctuation waveform is characterized by replacing the subtracted waveform portion with a value that falls within the normal distribution range and then estimating the frequency component.
【請求項3】 該1/fゆらぎ成分波形が該原心拍変動
波形をロー・パス・フィルタ処理又は移動平滑化処理す
ることにより生成されることを特徴とした請求項2に記
載の心拍変動波形解析方法。
3. The heartbeat variability waveform according to claim 2, wherein the 1 / f fluctuation component waveform is generated by subjecting the original heartbeat variability waveform to low pass filter processing or moving smoothing processing. analysis method.
【請求項4】 該不整脈であると判定したとき、その波
形部分ではなく該原心拍変動波形部分をその所定周囲の
平均値で置き換えることを特徴とした請求項1又は2に
記載の心拍変動波形解析方法。
4. The heartbeat variability waveform according to claim 1, wherein when the arrhythmia is determined, the original heartbeat variability waveform portion is replaced with an average value of a predetermined surrounding thereof instead of the waveform portion. analysis method.
【請求項5】 心拍ピックアップと、該ピックアップの
出力信号を所定の周波数帯域について増幅する増幅器
と、該増幅器の出力信号をディジタル信号に変換するA
/D変換器と、該ディジタル信号によるピーク値から原
心拍変動波形を生成し、さらに該原心拍変動波形の隣接
する間隔差を求めて相対変位心拍変動波形を生成し、該
相対変位心拍変動波形の平均値と標準偏差を算出し、該
平均値及び該標準偏差より異常判定基準値を決定して該
異常判定基準値より該相対変位心拍変動波形が大きいと
きには不整脈であるとして該相対変位心拍変動波形部分
の正規分布の範囲に収まる値に置き換えた後、その周波
数成分を推定する演算部と、を備えたことを特徴とする
心拍変動波形解析装置。
5. A heartbeat pickup, an amplifier for amplifying an output signal of the pickup in a predetermined frequency band, and an A for converting an output signal of the amplifier into a digital signal.
A D / D converter and an original heartbeat variability waveform are generated from the peak value of the digital signal, and an adjacent interval difference between the original heartbeat variability waveforms is obtained to generate a relative displacement heartbeat variability waveform. Is calculated and the standard deviation is determined, and an abnormality determination reference value is determined from the average value and the standard deviation. A heartbeat variability waveform analysis apparatus, comprising: a calculation unit that estimates a frequency component of the waveform portion after replacing the waveform portion with a value that falls within a normal distribution range.
【請求項6】 心拍ピックアップと、該ピックアップの
出力信号を所定の周波数帯域について増幅する増幅器
と、該増幅器の出力信号をディジタル信号に変換するA
/D変換器と、該ディジタル信号によるピーク値から原
心拍変動波形を生成し、該原心拍変動波形から1/fゆ
らぎ成分波形を生成して該原心拍変動波形から該1/f
ゆらぎ成分波形を減算した波形を生成し、該減算波形の
平均値と標準偏差を算出し、該平均値及び該標準偏差よ
り異常判定基準値を決定して該異常判定基準値より該減
算波形が大きいときには不整脈であるとして該減算波形
部分の正規分布の範囲に収まる値に置き換えた後、その
周波数成分を推定する演算部と、を備えたことを特徴と
する心拍変動波形解析装置。
6. A heartbeat pickup, an amplifier for amplifying the output signal of the pickup in a predetermined frequency band, and an A for converting the output signal of the amplifier into a digital signal.
A D / D converter and an original heartbeat fluctuation waveform are generated from the peak value of the digital signal, a 1 / f fluctuation component waveform is generated from the original heartbeat fluctuation waveform, and a 1 / f fluctuation waveform is generated from the original heartbeat fluctuation waveform.
A waveform obtained by subtracting the fluctuation component waveform is generated, an average value and a standard deviation of the subtracted waveform are calculated, an abnormality determination reference value is determined from the average value and the standard deviation, and the subtracted waveform is calculated from the abnormality determination reference value. A heartbeat variability waveform analysis apparatus comprising: a arrhythmia when it is large and replacing it with a value that falls within the range of the normal distribution of the subtraction waveform portion, and then estimating the frequency component thereof.
【請求項7】 該演算部において1/fゆらぎ成分波形
が該原心拍変動波形をロー・パス・フィルタ処理又は移
動平滑化処理することにより生成されることを特徴とし
た請求項6に記載の心拍変動波形解析装置。
7. The calculation unit according to claim 6, wherein the 1 / f fluctuation component waveform is generated by low-pass filtering or moving smoothing the original heartbeat fluctuation waveform. Heart rate variability waveform analyzer.
【請求項8】 該不整脈であると判定したとき、該波形
部分ではなく該原心拍変動波形部分をその所定周囲の平
均値で置き換えることを特徴とした請求項5又は6に記
載の心拍変動波形解析装置。
8. The heartbeat variability waveform according to claim 5, wherein when the arrhythmia is determined, the original heartbeat variability waveform portion, not the waveform portion, is replaced with an average value of a predetermined surrounding thereof. Analyzer.
JP08008494A 1994-04-19 1994-04-19 Heart rate variability waveform analysis method and apparatus Expired - Fee Related JP3319140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08008494A JP3319140B2 (en) 1994-04-19 1994-04-19 Heart rate variability waveform analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08008494A JP3319140B2 (en) 1994-04-19 1994-04-19 Heart rate variability waveform analysis method and apparatus

Publications (2)

Publication Number Publication Date
JPH07284482A true JPH07284482A (en) 1995-10-31
JP3319140B2 JP3319140B2 (en) 2002-08-26

Family

ID=13708353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08008494A Expired - Fee Related JP3319140B2 (en) 1994-04-19 1994-04-19 Heart rate variability waveform analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP3319140B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT4756B (en) 2000-01-11 2001-01-25 Kauno Medicinos Universiteto Psichofiziologijos Ir Reabilitacijos Institutas METHOD OF EXCLUSION OF SYNTHETIC AND ECTOPIC HEART RIT
JP2003116801A (en) * 2001-06-29 2003-04-22 Ge Medical Systems Information Technologies Inc System and method to select physiological data from a plurality of physiological data sources
JP2003190109A (en) * 2001-12-28 2003-07-08 Leadtek Research Inc Autonomic nervous system function evaluating method and system therefor
US6616608B2 (en) 2000-01-13 2003-09-09 Colin Corporation Periodic-physical-information measuring apparatus
JP2004329735A (en) * 2003-05-12 2004-11-25 Pioneer Electronic Corp Biological information detector
JP2005080970A (en) * 2003-09-10 2005-03-31 Toyota Central Res & Dev Lab Inc Mind and body condition determining device for driver, and driving support apparatus for driver
JP2005305013A (en) * 2004-04-26 2005-11-04 Pola Chem Ind Inc Discrimination apparatus of effect by biological stimulation remedy
JP2005305012A (en) * 2004-04-26 2005-11-04 Pola Chem Ind Inc Discrimination method of effect by biological stimulation remedy
JP2012090913A (en) * 2010-10-29 2012-05-17 Toshiba Corp Sleep measuring device
JP2013055982A (en) * 2011-09-07 2013-03-28 Seiko Epson Corp Atrial fibrillation decision apparatus, and method and program for deciding presence of atrial fibrillation
JP2014039838A (en) * 2013-09-20 2014-03-06 Mitsubishi Electric Corp Biological state acquisition device, biological state acquisition program, and apparatus and air conditioner equipped with biological state acquisition device
JP2014042547A (en) * 2012-08-24 2014-03-13 Seiko Epson Corp Atrial fibrillation determination device, and atrial fibrillation determination method and program
JP2014045814A (en) * 2012-08-29 2014-03-17 Denso Corp Signal processing device and program
JP2014068992A (en) * 2012-10-01 2014-04-21 Fujitsu Ltd Noise detecting device, noise detection method, and noise detection program
JP2014171589A (en) * 2013-03-07 2014-09-22 Seiko Epson Corp Atrial fibrillation analyzation equipment and program
JP2017056042A (en) * 2015-09-17 2017-03-23 富士通株式会社 Drowsiness detection device, drowsiness detection method, and drowsiness detection program
WO2019003549A1 (en) 2017-06-28 2019-01-03 ソニー株式会社 Information processing device, information processing method, and program
JP2019069044A (en) * 2017-10-10 2019-05-09 日本電信電話株式会社 Complementation device for time series data on instantaneous heart rate, complementation method, and program thereof
CN110494916A (en) * 2017-02-12 2019-11-22 卡帝欧寇有限公司 Oral regular screening for heart disease
US11096589B2 (en) 2015-09-04 2021-08-24 Paramount Bed Co., Ltd. Bio-information output device, bio-information output method and program
JP2022172458A (en) * 2021-05-04 2022-11-16 株式会社エイティセンス Electrocardiogram signal processing method and apparatus thereof
CN117158991A (en) * 2023-09-18 2023-12-05 宜兴市人民医院 Two-electrode electrocardiogram intelligent positioning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662104B2 (en) * 2005-01-18 2010-02-16 Cardiac Pacemakers, Inc. Method for correction of posture dependence on heart sounds

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT4756B (en) 2000-01-11 2001-01-25 Kauno Medicinos Universiteto Psichofiziologijos Ir Reabilitacijos Institutas METHOD OF EXCLUSION OF SYNTHETIC AND ECTOPIC HEART RIT
US6616608B2 (en) 2000-01-13 2003-09-09 Colin Corporation Periodic-physical-information measuring apparatus
JP2003116801A (en) * 2001-06-29 2003-04-22 Ge Medical Systems Information Technologies Inc System and method to select physiological data from a plurality of physiological data sources
JP2003190109A (en) * 2001-12-28 2003-07-08 Leadtek Research Inc Autonomic nervous system function evaluating method and system therefor
JP2004329735A (en) * 2003-05-12 2004-11-25 Pioneer Electronic Corp Biological information detector
JP4581356B2 (en) * 2003-09-10 2010-11-17 株式会社豊田中央研究所 Driver's mind and body state determination device and driver's driving support device
JP2005080970A (en) * 2003-09-10 2005-03-31 Toyota Central Res & Dev Lab Inc Mind and body condition determining device for driver, and driving support apparatus for driver
JP2005305013A (en) * 2004-04-26 2005-11-04 Pola Chem Ind Inc Discrimination apparatus of effect by biological stimulation remedy
JP2005305012A (en) * 2004-04-26 2005-11-04 Pola Chem Ind Inc Discrimination method of effect by biological stimulation remedy
JP2012090913A (en) * 2010-10-29 2012-05-17 Toshiba Corp Sleep measuring device
JP2013055982A (en) * 2011-09-07 2013-03-28 Seiko Epson Corp Atrial fibrillation decision apparatus, and method and program for deciding presence of atrial fibrillation
JP2014042547A (en) * 2012-08-24 2014-03-13 Seiko Epson Corp Atrial fibrillation determination device, and atrial fibrillation determination method and program
JP2014045814A (en) * 2012-08-29 2014-03-17 Denso Corp Signal processing device and program
JP2014068992A (en) * 2012-10-01 2014-04-21 Fujitsu Ltd Noise detecting device, noise detection method, and noise detection program
JP2014171589A (en) * 2013-03-07 2014-09-22 Seiko Epson Corp Atrial fibrillation analyzation equipment and program
JP2014039838A (en) * 2013-09-20 2014-03-06 Mitsubishi Electric Corp Biological state acquisition device, biological state acquisition program, and apparatus and air conditioner equipped with biological state acquisition device
US11096589B2 (en) 2015-09-04 2021-08-24 Paramount Bed Co., Ltd. Bio-information output device, bio-information output method and program
US11963744B2 (en) 2015-09-04 2024-04-23 Paramount Bed Co., Ltd. Bio-information output device, bio-information output method and program
JP2017056042A (en) * 2015-09-17 2017-03-23 富士通株式会社 Drowsiness detection device, drowsiness detection method, and drowsiness detection program
CN110494916A (en) * 2017-02-12 2019-11-22 卡帝欧寇有限公司 Oral regular screening for heart disease
JP2020507437A (en) * 2017-02-12 2020-03-12 カーディオコル リミテッドCardioKol Ltd. Regular verbal screening for heart disease
WO2019003549A1 (en) 2017-06-28 2019-01-03 ソニー株式会社 Information processing device, information processing method, and program
JPWO2019003549A1 (en) * 2017-06-28 2020-05-21 ソニー株式会社 Information processing apparatus, information processing method, and program
US11786136B2 (en) 2017-06-28 2023-10-17 Sony Corporation Information processing apparatus, and information processing method
JP2019069044A (en) * 2017-10-10 2019-05-09 日本電信電話株式会社 Complementation device for time series data on instantaneous heart rate, complementation method, and program thereof
JP2022172458A (en) * 2021-05-04 2022-11-16 株式会社エイティセンス Electrocardiogram signal processing method and apparatus thereof
CN117158991A (en) * 2023-09-18 2023-12-05 宜兴市人民医院 Two-electrode electrocardiogram intelligent positioning system
CN117158991B (en) * 2023-09-18 2024-03-15 宜兴市人民医院 Two-electrode electrocardiogram intelligent positioning system

Also Published As

Publication number Publication date
JP3319140B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
JP3319140B2 (en) Heart rate variability waveform analysis method and apparatus
Pueyo et al. QRS slopes for detection and characterization of myocardial ischemia
KR100450758B1 (en) Apparatus and method for measuring electroencephalogram
JP3224552B2 (en) Method of deriving respiratory signal and / or artifact signal
Peters et al. Beat-to-beat detection of fetal heart rate: Doppler ultrasound cardiotocography compared to direct ECG cardiotocography in time and frequency domain
JP6645926B2 (en) Biological signal processing method and apparatus
EP2301431A1 (en) Pain judging device
CN104027109A (en) Atrial fibrillation analyzer and program
EP3061396B1 (en) Alertness device, seat, and method for determining alertness
CN108601546B (en) Biological signal processing method and biological signal processing apparatus
Rapalis et al. Estimation of blood pressure variability during orthostatic test using instantaneous photoplethysmogram frequency and pulse arrival time
JP4528583B2 (en) Biological load inspection device
JP3314521B2 (en) Heart rate variability waveform analysis method and apparatus
JP3033512B2 (en) EEG processing device
JPH10137228A (en) Mental stress judging device
KR102547325B1 (en) CGMS and ECG-based hypoglycemic prediction system and control method
JP3319139B2 (en) Physiological condition determination method and device
JP2010131061A (en) Drowsiness detector
Tun et al. Analysis of computer aided identification system for ECG characteristic points
JP3451793B2 (en) Heart rate variability waveform frequency analysis method and apparatus
JP3307071B2 (en) Heart rate variability waveform analysis method and apparatus
EP2938247B1 (en) Method and apparatus for reducing motion artifacts in ecg signals
JP6603584B2 (en) Periodic wave detection device, periodic wave detection method and program
Shafqat et al. Empirical mode decomposition (EMD) analysis of HRV data from locally anesthetized patients
JPH05212006A (en) Heartbeat interval measuring instrument

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020521

LAPS Cancellation because of no payment of annual fees