JPH07283119A - Aligner and exposure method - Google Patents

Aligner and exposure method

Info

Publication number
JPH07283119A
JPH07283119A JP6075624A JP7562494A JPH07283119A JP H07283119 A JPH07283119 A JP H07283119A JP 6075624 A JP6075624 A JP 6075624A JP 7562494 A JP7562494 A JP 7562494A JP H07283119 A JPH07283119 A JP H07283119A
Authority
JP
Japan
Prior art keywords
pattern
mask
projection mask
polarization
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6075624A
Other languages
Japanese (ja)
Inventor
Yoshinori Nakayama
義則 中山
Yoshio Kawamura
喜雄 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6075624A priority Critical patent/JPH07283119A/en
Publication of JPH07283119A publication Critical patent/JPH07283119A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To form a plurality of kinds of patterns by one mask on the same wafer with good position accuracy by controlling polarization of light directed from a light source by rotation of a polarization filter or magnetic rotary effect (Faraday effect) and by constituting a projection mask of a rotary polarization material. CONSTITUTION:A region (A pattern) 14 wherein polarization angle rotates by 0 degree to incident light and a region (B pattern) 15 which rotates left by 5 degrees are included in a mask. It is set at the same angle as a polarization filter provided to an upper part by a polarization filter rotary mechanism 8. Then, transmitted light is light of the A pattern alone and the A pattern 14 is projected. Thereafter, an angle of a polarization filter 7 is rotated left by 5 degrees by the rotary mechanism 8. Then, the B pattern 15 alone transmits light and the B pattern 15 is projected on a wafer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学式の露光装置なら
びにその方法に関する。特に、半導体素子の製造等に用
いる光学式の露光装置ならびにその方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical exposure apparatus and method thereof. In particular, the present invention relates to an optical exposure apparatus used for manufacturing semiconductor elements and the like, and a method thereof.

【0002】[0002]

【従来の技術】従来の露光装置は光源と遮光パタ−ンあ
るいは半透明膜パタ−ンを内在した投影マスクおよび光
学レンズから構成される。また従来の露光方法は文献(T
erasawa et al,Proc. of 1991 Intern. MicroProcess C
onference pp.3-9)のように投影マスク上に形成された
遮光パタ−ンあるいは半透明膜パタ−ンを上記光源およ
びレンズを用いてウェ−ハ上に投影する方法であった。
2. Description of the Related Art A conventional exposure apparatus comprises a light source, a projection mask having a light-shielding pattern or a semitransparent film pattern therein, and an optical lens. The conventional exposure method is described in the literature (T
erasawa et al, Proc. of 1991 Intern. MicroProcess C
onference pp.3-9), a light-shielding pattern or a semi-transparent film pattern formed on a projection mask is projected onto a wafer by using the above light source and lens.

【0003】[0003]

【発明が解決しようとする課題】従来の技術における露
光装置は、投影マスクの遮光パタ−ンをウェ−ハ上に投
影することで露光を行っていた。この投影マスクの遮光
パタ−ンは、透過ガラスの上に形成したクロム等の金属
膜あるいは酸化膜等の薄膜による半透明膜を加工して得
られたものである。この様な形態の露光装置あるいは露
光方法では、一枚のマスクに含まれた遮光パタ−ンある
いは位相シフトパタ−ン情報の全てが一回の露光でウェ
−ハに投影される。従って、一枚のマスクには一つのパ
タ−ン層情報しか含まれない。このため、投影マスクと
各パタ−ン層ごとにマスクを一対一で用意しなければな
らない。この際、一つのデバイスを作製するにあたり各
パタ−ン層に対応した複数のマスクを用いる場合には、
それぞれマスクのパタ−ンの重ねあわせを正確に行うた
めにマスクの位置合わせが必要となる。半導体集積回路
素子等の微細なパタ−ンの露光では、高精度の位置合わ
せが必要となる。従来はこの位置合わせのためにマスク
とウェ−ハ上にそれぞれ合わせマ−クを設けてこれらの
マ−ク間の位置合わせを露光前に調整していたが、その
調整は困難で現状の最高精度は0.1μm程度ある。ま
た、従来技術では一度作製した投影マスク内のパタ−ン
変更はできないので、上記金属膜等の加工をしなおさな
ければならない等の問題が有った。
In the conventional exposure apparatus, the exposure is performed by projecting the light-shielding pattern of the projection mask onto the wafer. The light-shielding pattern of this projection mask is obtained by processing a semi-transparent film made of a metal film such as chromium or a thin film such as an oxide film formed on transparent glass. In the exposure apparatus or exposure method having such a configuration, all of the light-shielding pattern or phase shift pattern information contained in one mask is projected onto the wafer by one exposure. Therefore, one mask contains only one pattern layer information. For this reason, the projection mask and the mask must be prepared one by one for each pattern layer. At this time, when using a plurality of masks corresponding to each pattern layer in manufacturing one device,
It is necessary to align the masks in order to accurately overlay the mask patterns. Exposure of a fine pattern such as a semiconductor integrated circuit device requires highly accurate alignment. In the past, alignment marks were provided on the mask and wafer for this alignment, and the alignment between these marks was adjusted before exposure. The accuracy is about 0.1 μm. Further, in the conventional technique, it is impossible to change the pattern in the projection mask once manufactured, so that there is a problem that the metal film or the like has to be processed again.

【0004】本発明の目的は、一枚のマスクで複数種の
パタ−ン種を同一ウェ−ハ上に位置精度良く形成できる
露光装置及び露光方法を提供することにある。また、マ
スク内に用意されるパタ−ン形状の変更の容易な露光装
置および露光方法を提供することに有る。
An object of the present invention is to provide an exposure apparatus and an exposure method capable of forming a plurality of pattern types on the same wafer with a high positional accuracy by using one mask. Another object of the present invention is to provide an exposure apparatus and an exposure method in which the pattern shape prepared in the mask can be easily changed.

【0005】[0005]

【課題を解決するための手段】上記目的は、光源から照
射される光の偏光を偏光フィルタ(偏光子、検光子)の
回転あるいは磁気旋光効果(ファラデ−効果)により制
御し、また旋光性材料により投影マスクを構成すること
により解決される。パタ−ン変更の容易性はマスク材料
として強誘電体材料を用いることで解決される。
The above object is to control the polarization of light emitted from a light source by rotating a polarizing filter (polarizer, analyzer) or by a magnetic rotatory effect (Farade effect). It is solved by constructing a projection mask by. The ease of pattern change is solved by using a ferroelectric material as a mask material.

【0006】[0006]

【作用】本発明では、2つの偏光フィルタを用意し、あ
る特定の偏光方向を持った光だけを透過するよう制御す
る。光源から発生する光は通常円偏光を有している。最
初の偏光フィルタ(偏光子)を通過すると直線偏光の光
となる。この光を投影マスクに照射する。投影マスクは
少なくとも二つ以上の旋光特性の異なる領域を設けてあ
る。水晶や強誘電体等の旋光性のある材料では、線偏光
の光が透過するとき光はその材料内で偏光が回転して出
てくる。その偏光角は、材料の種類及びその厚さによっ
て異なる。従って、旋光特性の異なる領域を上記線偏光
の光が透過するとこれらの領域間では線偏光の回転方向
や回転角が異なったものとなる。すなわち、投影マスク
を透過した光は、パタ−ン領域ごとに異なる偏光角とな
っている。次に偏光フィルタ(検光子)によりこれらの
透過光の内所望のパタ−ンに対応した領域の偏光に回転
を合わせる。偏光フィルタは、特定の偏光成分のみを透
過させるものである。このため、線偏光がこのフィルタ
を透過するためにはこのフィルタと同じ旋光性の偏光で
なければならない。検光子の回転により、旋光角の一致
した領域のみが透過しそれ以外の領域はこの検光子に吸
収されてしまう。この結果、検光子で選択された偏光成
分を有した領域パタ−ンのみ光が透過しその他のパタ−
ン領域の光は遮られてしまう。同様に、投影パタ−ンの
選択は、偏光フィルタの回転の他に磁場による偏光回転
(ファラデ−効果)を応用しても良い。この場合、偏光
の回転角は、磁場に比例するので、所望のパタ−ンに対
応した領域が透過するように、磁場の強さを調節すれば
良い。また、本発明において、当然従来の遮光型パタ−
ンを同一マスクに併用しても良い。この場合、遮光パタ
−ン領域は偏光に係わらず遮光領域となる。
In the present invention, two polarization filters are prepared and controlled so that only light having a specific polarization direction is transmitted. The light emitted from the light source usually has circular polarization. When it passes through the first polarizing filter (polarizer), it becomes linearly polarized light. The projection mask is irradiated with this light. The projection mask has at least two regions having different optical rotation characteristics. In a material having optical rotatory power such as quartz or a ferroelectric substance, when linearly polarized light is transmitted, the polarized light is rotated out in the material. The polarization angle depends on the type of material and its thickness. Therefore, when the linearly polarized light is transmitted through the regions having different optical rotation characteristics, the rotation direction and the rotation angle of the linearly polarized light are different between these regions. That is, the light transmitted through the projection mask has a different polarization angle for each pattern area. Then, a polarization filter (analyzer) adjusts the rotation of the transmitted light to the polarized light in the region corresponding to the desired pattern. The polarization filter transmits only a specific polarization component. Therefore, in order for the linearly polarized light to pass through this filter, it must have the same optical rotation as that of this filter. Due to the rotation of the analyzer, only the region where the angle of rotation coincides is transmitted and the other regions are absorbed by this analyzer. As a result, only the area pattern having the polarization component selected by the analyzer transmits the light and the other patterns are transmitted.
The light in the light field is blocked. Similarly, for the selection of the projection pattern, polarization rotation (Faraday effect) by a magnetic field may be applied in addition to the rotation of the polarization filter. In this case, since the rotation angle of the polarized light is proportional to the magnetic field, the strength of the magnetic field may be adjusted so that the region corresponding to the desired pattern will be transmitted. Further, in the present invention, of course, the conventional light-shielding pattern
The same mask may be used together. In this case, the light-shielding pattern area is a light-shielding area regardless of polarization.

【0007】本発明の投影マスクとしては従来の透過マ
スク上に旋光性材料をパタ−ニングするものを使うか、
あるいはマスク材として強誘電体結晶を用いると旋光特
性の異なる双晶構造を容易に形成できる。強誘電体は一
般に旋光性を持つ材料である。特に、室温で双晶構造を
とるものは、各双晶領域で旋光角がお互いに反対方向に
なるために上記投影マスク構成材料として優れている。
また、強誘電体結晶を用いる場合のパタ−ン形成すなわ
ち双晶領域形成については直接電子ビ−ムの照射により
実現することができる。これはある双晶構造の片方の結
晶構造になっている領域に電子ビ−ムを照射するともう
片方の双晶構造に変化する現象を利用したものである。
この方法により複雑なエッチング等のプロセスを用いず
にパタ−ン変更時の再加工が容易にできる。
As the projection mask of the present invention, a conventional transparent mask in which an optically active material is patterned is used, or
Alternatively, when a ferroelectric crystal is used as a mask material, twin crystal structures having different optical rotation characteristics can be easily formed. Ferroelectrics are generally materials with optical activity. In particular, those having a twin structure at room temperature are excellent as the above-mentioned projection mask constituent material because the optical rotation angles in the twin regions are opposite to each other.
Further, the pattern formation in the case of using the ferroelectric crystal, that is, the formation of the twinned region can be realized by directly irradiating the electron beam. This utilizes a phenomenon in which, when an electron beam is applied to a region of one twin crystal structure, the twin structure is changed to the other twin structure.
This method facilitates reworking when changing the pattern without using a complicated process such as etching.

【0008】[0008]

【実施例】以下、本発明の露光装置及び露光方法の実施
例について述べる。
Embodiments of the exposure apparatus and the exposure method of the present invention will be described below.

【0009】[実施例1]まず本装置の実施例を図1、
3を用いて説明する。光源である水銀ランプ1より発せ
られた紫外光2はレンズ3により平行光もしくは縮小レ
ンズ9の入射瞳への集光光となる。この光は円偏光光線
である。次に偏光フィルタ4によりフィルタ面に所定方
向の偏光のみを透過させる。この光をマスク6上に照射
する。マスク内には入射光に対して偏光角が0度回転す
る領域(Aパタ−ン)14と左に5度回転する領域(B
パタ−ン)15が含まれている。従って、このマスクを
透過した光は入射光に対してそれぞれ0度回転したAパ
タ−ン14と左に5度回転したBパタ−ン15の2つの
偏光成分から構成される。これらの光を偏光フィルタ7
に照射する。まず偏光フィルタ回転機構8により上部に
設けた偏光フィルタと同じ角度に設定する。すると透過
光としてはAパタ−ンの光のみとなり、ウェ−ハ10上
にはレンズ9により縮小されたAパタ−ン14が投影さ
れる。次に、回転機構8により偏光フィルタ7の角度を
左に5度回転させる。すると今度はBパタ−ン15のみ
が透過してウェ−ハ上にはレンズ9により縮小されたB
パタ−ン15が投影される。なお、パタ−ン選択は、偏
光フィルタ回転機構5によって行っても良い。
[Embodiment 1] First, an embodiment of the present apparatus is shown in FIG.
3 will be used for the explanation. The ultraviolet light 2 emitted from the mercury lamp 1 which is the light source is collimated by the lens 3 or condensed on the entrance pupil of the reduction lens 9. This light is a circularly polarized light beam. Next, only the polarized light in a predetermined direction is transmitted through the filter surface by the polarization filter 4. The mask 6 is irradiated with this light. In the mask, a region (A pattern) 14 where the polarization angle is rotated by 0 ° and a region (B region) where it is rotated 5 ° to the left with respect to the incident light.
Pattern 15 is included. Therefore, the light transmitted through this mask is composed of two polarization components, an A pattern 14 rotated 0 degrees and a B pattern 15 rotated 5 degrees to the left with respect to the incident light. Polarizing filter 7 for these lights
To irradiate. First, the polarization filter rotating mechanism 8 sets the same angle as that of the polarization filter provided above. Then, only the light of the A pattern is transmitted, and the A pattern 14 reduced by the lens 9 is projected on the wafer 10. Next, the rotation mechanism 8 rotates the angle of the polarization filter 7 to the left by 5 degrees. Then, only the B pattern 15 is transmitted and the lens 9 reduces the size of B on the wafer.
The pattern 15 is projected. The pattern selection may be performed by the polarization filter rotating mechanism 5.

【0010】[実施例2]ここでは、本発明をイオン打
ち込み用パタ−ン形成に応用した例について図4を用い
て述べる。上記Aパタ−ンとして図3の高濃度打ち込み
用パタ−ン14、Bパタ−ンとして低濃度打ち込み用パ
タ−ン15を一枚のマスク13上に用意する。まず、シ
リコン基板にポジ型高分子レジスト17を1μm塗布す
る。この基板に対し、偏光フィルタ回転機構8により上
部に設けた偏光フィルタと同じ角度に設定する。すると
透過光としてはAパタ−ン14の光のみとなり、ウェ−
ハ上にはレンズ9により縮小されたAパタ−ン14が図
4(a)の透過光16ように投影される。次に、回転機
構8により偏光フィルタ7の角度を左に5度回転させ
る。すると今度はBパタ−ン15のみが透過してウェ−
ハ上にはレンズ9により縮小されたBパタ−ン15が図
4(b)の透過光16ように投影される。この際2つの
露光時間を調節して2回目の露光時間を1回目の露光時
間の所定量だけに減少させる。この基板を現像すると、
Aパタ−ンに対応する領域のレジスト膜厚が0になった
とき、Bパタ−ンの領域のレジスト膜厚は例えば0.5
μmとなる。次に図4(c)に示すようにイオン打ち込
みする。加速電圧は50kVである。すると、レジスト
膜厚1μmの領域では、ホウ素イオン19がレジスト膜
中17で阻止されてしまうためにウェ−ハ18には到達
できない。Bパタ−ン領域ではレジスト膜厚が0.5μ
mあるのでレジストを通過したホウ素イオン19がウェ
−ハに打ち込まれる。この領域21の打ち込み深さは5
0nmで打ち込み濃度は5×1018個/m3である。こ
れに対し、Aパタ−ン領域ではレジスト膜厚が0である
ためにこの領域20の打ち込み深さ150nmで打ち込
み濃度は5×1024個/m3であった。図4(d)のA
パタ−ン20とBパタ−ン21の位置合わせは上記露光
法により同一マスクを動かさずに用いているので中心位
置の位置合わせ誤差が生じない特徴がある。この工程で
は、さらにBパタ−ン16の露光時間をAパタ−ンの露
光とは独立に調節できるのでレジスト膜厚を任意に制御
して打ち込み濃度を所望の値に制御できる特徴がある。
[Embodiment 2] An example in which the present invention is applied to the formation of a pattern for ion implantation will be described with reference to FIG. A high-concentration implantation pattern 14 shown in FIG. 3 as the A pattern and a low-concentration implantation pattern 15 as the B pattern are prepared on one mask 13. First, a positive type polymer resist 17 is applied to a silicon substrate in a thickness of 1 μm. With respect to this substrate, the same angle as that of the polarizing filter provided above is set by the polarizing filter rotating mechanism 8. Then, only the light of the A pattern 14 is transmitted as light,
The A pattern 14 reduced by the lens 9 is projected as a transmitted light 16 in FIG. Next, the rotation mechanism 8 rotates the angle of the polarization filter 7 to the left by 5 degrees. Then, only B pattern 15 is transmitted and the way
The B pattern 15 reduced by the lens 9 is projected as the transmitted light 16 in FIG. At this time, the two exposure times are adjusted to reduce the second exposure time to a predetermined amount of the first exposure time. When this substrate is developed,
When the resist film thickness in the region corresponding to the A pattern becomes 0, the resist film thickness in the B pattern region becomes, for example, 0.5.
μm. Next, as shown in FIG. 4C, ion implantation is performed. The acceleration voltage is 50 kV. Then, in the region where the resist film thickness is 1 μm, the boron ions 19 are blocked by the resist film 17 and cannot reach the wafer 18. In the B pattern area, the resist film thickness is 0.5 μm.
Therefore, the boron ions 19 that have passed through the resist are implanted into the wafer. The implantation depth of this region 21 is 5
The implantation density at 0 nm is 5 × 10 18 particles / m 3 . On the other hand, since the resist film thickness is 0 in the A pattern region, the implantation concentration was 5 × 10 24 / m 3 at the implantation depth of 150 nm in this region 20. A of FIG. 4 (d)
The pattern 20 and the B pattern 21 are aligned by using the same mask without moving the same mask by the above-mentioned exposure method. In this step, since the exposure time of the B pattern 16 can be adjusted independently of the exposure of the A pattern, the resist film thickness can be arbitrarily controlled to control the implantation density to a desired value.

【0011】[実施例3]ここでは、同様の露光法を用
いて微細ゲ−ト電極の形成法の実施例について図2、5
を用いて述べる。上記Aパタ−ンとして図3のゲ−ト上
面用パタ−ン14、Bパタ−ンとしてゲ−ト底面用パタ
−ン15を一枚のマスク13上に用意する。石英をマス
ク材とする。まず、シリコン基板にポジ型高分子レジス
ト17を1μm塗布する。この基板に対し、図2の磁気
コイル23に電流を0として旋光角を0にする。すると
透過光としてはAパタ−ンの光のみとなり、ウェ−ハ上
にはレンズ9により縮小されたAパタ−ン14が透過光
16のように投影される(図5(a))。次に、磁気コ
イル23に電流を流し光路に垂直な磁場24を発生させ
偏光を左に5度回転させる。石英中の旋光を5度回転さ
せるためには3kOeの磁場を印加する。すると今度は
Bパタ−ン15のみが透過してウェ−ハ上にはレンズ9
により縮小されたBパタ−ン15が透過光16のように
投影される(図5(b))。この際2つの露光時間を調
節して2回目の露光時間を1回目の露光時間より所定の
時間だけ長くする。この基板を現像すると、Bパタ−ン
に対応する領域のレジスト膜厚が0になったとき、Aパ
タ−ンの領域のレジスト膜厚は例えば0.5μmとなる
(図5(c))。解像したBパタ−ンのレジスト幅の寸
法は0.1μmであった。次にこのウェ−ハにタングス
テンを蒸着法により堆積させる。タングステン最大膜厚
が0.8μmとなるように処理すると、ウェ−ハ面に接
触するBパタ−ンでは膜厚0.8μmのタングステンが
堆積し、Aパタ−ン領域での膜厚は0.3μmとなった
(図5(d))。従来は2回の露光で2枚のマスクを用
いて加工を行っていたためにA,Bパタ−ンの位置合わ
せ精度は最高でも0.1μmで場合によっては、A,B
パタ−ンの位置が重ならないなど不良があった。これに
対し本例でもマスク切り替え時の移動がないために位置
合わせ誤差はいつでも0であった。このプロセスによっ
てゲ−ト長の微細なかつ上面電極との接触抵抗の少ない
良好なゲ−ト加工が可能となった。
[Embodiment 3] Here, an embodiment of a method for forming a fine gate electrode by using the same exposure method is shown in FIGS.
Will be described using. A gate upper surface pattern 14 shown in FIG. 3 as the A pattern and a gate bottom surface pattern 15 as the B pattern shown in FIG. 3 are prepared on one mask 13. Quartz is used as the mask material. First, a positive type polymer resist 17 is applied to a silicon substrate in a thickness of 1 μm. With respect to this substrate, the current is set to 0 and the optical rotation angle is set to 0 in the magnetic coil 23 of FIG. Then, only the light of the A pattern is transmitted as the transmitted light, and the A pattern 14 reduced by the lens 9 is projected as the transmitted light 16 on the wafer (FIG. 5A). Next, an electric current is passed through the magnetic coil 23 to generate a magnetic field 24 perpendicular to the optical path to rotate the polarized light 5 degrees to the left. A magnetic field of 3 kOe is applied to rotate the optical rotation in quartz by 5 degrees. Then, only the B pattern 15 is transmitted and the lens 9 is placed on the wafer.
The B pattern 15 reduced by is projected as transmitted light 16 (FIG. 5B). At this time, the two exposure times are adjusted to make the second exposure time longer than the first exposure time by a predetermined time. When this substrate is developed, when the resist film thickness in the region corresponding to the B pattern becomes 0, the resist film thickness in the A pattern region becomes, for example, 0.5 μm (FIG. 5C). The dimension of the resist width of the resolved B pattern was 0.1 μm. Next, tungsten is deposited on this wafer by a vapor deposition method. When processing is performed so that the maximum film thickness of tungsten is 0.8 μm, tungsten having a film thickness of 0.8 μm is deposited in the B pattern in contact with the wafer surface, and the film thickness in the A pattern region is 0. It became 3 μm (FIG. 5 (d)). Conventionally, since two exposures were used to process two masks, the alignment accuracy of the A and B patterns was at most 0.1 μm, and in some cases A and B were used.
There were defects such as the positions of the patterns not overlapping. On the other hand, in this example as well, the alignment error was always 0 because there was no movement during mask switching. This process enables fine gate processing with a fine gate length and low contact resistance with the upper surface electrode.

【0012】[実施例4]ここでは、本発明に用いる投
影マスクの構造と作製方法について述べる。
[Embodiment 4] Here, the structure and manufacturing method of the projection mask used in the present invention will be described.

【0013】本発明の投影マスク用の旋光性材料として
は、水晶や強誘電体や旋光性溶液、液晶等がある。ここ
ではこれらのうち最も実用的な水晶と強誘電体材料につ
いて説明する。マスク材料を透過したときの旋光角は材
料の特性と厚さに依存している。先ず、水晶をマスク材
料にしてみる。波長546nmに対して、1mmの水晶
中を透過すると旋光角は25.54度回転する。そこで
先ず、5mm厚の水晶板を用意する。次に、旋光角が0
度になるように、CF4ガスによるドライエッチングを
用いてAパタ−ンをエッチングする。次に5度の旋光角
となるように、Bパタ−ンを同様にエッチングすること
で図3の投影マスク13が得られる。この様に、マスク
材の厚さを変えれば2種以上のパタ−ンを内在させるこ
とが可能である。
The optical rotatory material for the projection mask of the present invention includes quartz, ferroelectrics, optical rotatory solution, liquid crystal and the like. Here, the most practical crystal and ferroelectric materials among them will be described. The optical rotation angle when transmitted through the mask material depends on the material properties and thickness. First, let's use quartz as a mask material. When transmitted through a 1 mm crystal for a wavelength of 546 nm, the optical rotation angle rotates by 25.54 degrees. Therefore, first, a crystal plate having a thickness of 5 mm is prepared. Next, the rotation angle is 0
The A pattern is etched by dry etching using CF 4 gas so that the frequency becomes equal to that of the A pattern. Next, the B pattern is similarly etched so that the optical rotation angle is 5 degrees, whereby the projection mask 13 of FIG. 3 is obtained. In this way, two or more types of patterns can be incorporated by changing the thickness of the mask material.

【0014】次に、強誘電体マスクについて図6を用い
て説明する。ここでは、マスク材33、34としてはL
iNbO4の単結晶を用いる。LiNbO4単結晶は、1
210℃に構造相転移温度を持つ強誘電体である。室温
では三方晶系の双晶構造をとり、お互いの旋光角は右旋
回と左旋回の逆方向となるので、容易にフィルタによる
パタ−ン選択ができる。従って、マスク厚さには依存せ
ずにパタ−ン形成ができる。パタ−ン形成は先ず、透過
マスク基板32上にLiNbO4単結晶33をのせる。
結晶全体を1210℃に上げて、結晶全体をチタン鉄鉱
形構造にする。この工程はマスクの消去に相当する。そ
の後、室温に下げると全体が双晶の片方の構造になる。
そこでウェ−ハ底面を接地して電子ビ−ムを照射すると
その領域はもう片方の双晶構造に転移する。このプロセ
スにより投影マスクパタ−ン33、34の作製ができ
た。また、マスクパタ−ンの消去法としては、上記の温
度上昇法の他に、マスク板の一定方向に電場を加えるこ
とにより強誘電体の性質を利用して全てを同じ構造体に
できる。
Next, the ferroelectric mask will be described with reference to FIG. Here, L is used as the mask materials 33 and 34.
A single crystal of iNbO 4 is used. 1 LiNbO 4 single crystal
It is a ferroelectric substance having a structural phase transition temperature at 210 ° C. At room temperature, it has a trigonal twin crystal structure, and the optical rotation angles of the two are in the opposite directions of right-handed rotation and left-handed rotation, so that pattern selection by a filter can be easily performed. Therefore, the pattern can be formed without depending on the mask thickness. To form the pattern, first, a LiNbO 4 single crystal 33 is placed on the transparent mask substrate 32.
The entire crystal is raised to 1210 ° C. to make it an ilmenite structure. This step corresponds to erasing the mask. After that, when the temperature is lowered to room temperature, the whole structure becomes a twin structure.
Therefore, when the bottom surface of the wafer is grounded and an electron beam is irradiated, that region is transformed into the twin structure of the other. By this process, the projection mask patterns 33 and 34 could be manufactured. As the mask pattern erasing method, in addition to the above-mentioned temperature increasing method, an electric field may be applied in a certain direction of the mask plate to utilize the properties of the ferroelectric substance to form the same structure.

【0015】この他、マスク材としてはLaNbO4
単結晶を用いても良い。LaNbO4単結晶は、500
℃に構造相転移温度を持つ強誘電体でありかつ強弾性体
である。室温では単斜晶系の双晶構造をとり、互いの旋
光角は10度異なっている。従って、上記と同様にマス
ク厚さには依存せずにパタ−ン形成ができる。パタ−ン
形成は先ず、結晶全体を500℃に上げて、結晶全体を
正方晶系にする。この工程はマスクの消去に相当する。
その後、室温に下げると全体が双晶の片方の構造にな
る。そこで局所的に力を加えるか、電子ビ−ムを照射す
るとその領域はもう片方の双晶構造に転移する。この時
両双晶構造間の遷移領域は1.5nm程度であるので、
電子ビ−ム径(10nm)と同じ線幅のパタ−ンができ
た。従って、ナノメ−タ加工に充分対応できるマスクが
実現できた。このマスクを用いて露光する際に、パタ−
ン選択を行うには、図1の偏光フィルタ7を10度回転
させるかあるいは図2の磁場発生コイル23により旋光
を10度回転させて行う。また、マスクの消去法として
は、上記の温度上昇法の他に、マスク板の一辺方向に力
を加えることにより強弾性体の性質を利用して全てを同
じ構造体にできる。LaNbO4単結晶では、5kg/
cm2の力を加えることでマスクパタ−ン消去ができ
た。
In addition, a single crystal of LaNbO 4 may be used as the mask material. LaNbO 4 single crystal is 500
It is a ferroelectric and a ferroelectric with a structural phase transition temperature at ℃. At room temperature, they have a monoclinic twin structure, and their optical rotation angles differ by 10 degrees. Therefore, similar to the above, the pattern can be formed without depending on the mask thickness. For pattern formation, first, the temperature of the whole crystal is raised to 500 ° C. to make the whole crystal tetragonal. This step corresponds to erasing the mask.
After that, when the temperature is lowered to room temperature, the whole structure becomes a twin structure. Then, when a force is locally applied or an electron beam is irradiated, the region is transformed into the other twin crystal structure. At this time, since the transition region between both twin structures is about 1.5 nm,
A pattern having the same line width as the electron beam diameter (10 nm) was formed. Therefore, a mask that can sufficiently deal with nanometer processing can be realized. When exposing using this mask, the pattern
The polarization selection is performed by rotating the polarization filter 7 in FIG. 1 by 10 degrees or rotating the optical rotation by 10 degrees by the magnetic field generating coil 23 in FIG. Further, as the mask erasing method, in addition to the above-mentioned temperature rising method, by applying a force in one side direction of the mask plate, all of them can be made into the same structure by utilizing the property of the strong elastic body. For LaNbO 4 single crystal, 5 kg /
The mask pattern could be erased by applying a force of cm 2 .

【0016】[実施例5]ここでは、本発明を複合プロ
セス装置に組み込んだ例について図7を用いて述べる。
装置としては、本発明の露光装置がプロセス処理室26
内あるいは直上に配置される。このプロセス処理室26
では、高温処理用ヒ−タ29とガス導入部31、イオン
照射部25、真空排気部30及び高周波発生装置からな
る。光源としてはArFエキシマレ−ザ35を用いて露
光を行う。まず、ウェ−ハ10あるいはチップを処理室
に装着し、ガス導入部31より酸素、水蒸気ガスを導入
後、高温処理用ヒ−タ29を用いて処理室温度を上昇さ
せ、ウェ−ハ表面に熱酸化膜を1μm形成する。次に、
偏光フィルタ4あるいは7を5度回転させ、投影露光マ
スク中の活性層形成用パタ−ンを選択する。そして、処
理室にガス導入部31よりCCl22ガスを導入する。
すると、上記活性層形成用パタ−ン部のみにエキシマレ
−ザ2が照射され、酸化膜がエッチングされる。このエ
ッチングは酸化膜が完全に無くなるまで行う。次に、真
空排気部30より処理室を真空に排気しイオン照射部2
5からホウ素イオンをウェ−ハ全面に照射する。する
と、酸化膜がある領域はホウ素イオンが酸化膜中で阻止
されてしまうために、上記パタ−ン形成部のみがイオン
打ち込みされる。次に、処理室にガス導入部31よりC
4ガスを導入し上部電極28とウェ−ハ10間に高周
波27を発生させ、酸化膜を全部除去する。その後、偏
光フィルタを10度回転させ、投影露光マスク6中の電
極形成用パタ−ンを選択する。そして、処理室にガス導
入部31よりSiH4ガス,NF3ガス,酸素ガス等を導
入する。すると、上記電極形成用パタ−ン部のみにエキ
シマレ−ザ2が照射され、多結晶シリコンが堆積され
る。この様にして、半導体デバイスが同一処理室で作製
される。この場合も、2回の露光時のパタ−ン位置合わ
せ誤差は0でかつレジストを用いない加工が可能であ
る。
[Embodiment 5] Here, an example in which the present invention is incorporated in a composite process apparatus will be described with reference to FIG.
As the apparatus, the exposure apparatus of the present invention is the process processing chamber 26.
It is placed inside or directly above. This process chamber 26
Then, it comprises a high temperature processing heater 29, a gas introduction part 31, an ion irradiation part 25, a vacuum exhaust part 30 and a high frequency generator. Exposure is performed using an ArF excimer laser 35 as a light source. First, the wafer 10 or chip is mounted in the processing chamber, oxygen and water vapor gas are introduced from the gas introduction unit 31, and then the temperature of the processing chamber is raised by using the high temperature processing heater 29 so that the wafer surface is exposed. A thermal oxide film is formed to 1 μm. next,
The polarizing filter 4 or 7 is rotated 5 degrees to select the pattern for forming the active layer in the projection exposure mask. Then, the CCl 2 F 2 gas is introduced into the processing chamber from the gas introduction unit 31.
Then, only the active layer forming pattern portion is irradiated with the excimer laser 2 and the oxide film is etched. This etching is performed until the oxide film is completely removed. Next, the processing chamber is evacuated to a vacuum from the vacuum exhaust unit 30, and the ion irradiation unit 2
The entire surface of the wafer is irradiated with boron ions from step 5. Then, since boron ions are blocked in the region where the oxide film is present, only the pattern forming portion is ion-implanted. Next, C is introduced into the processing chamber from the gas introduction unit 31.
A high frequency 27 is generated between the upper electrode 28 and the wafer 10 by introducing F 4 gas to remove the oxide film entirely. After that, the polarization filter is rotated by 10 degrees to select the electrode forming pattern in the projection exposure mask 6. Then, SiH 4 gas, NF 3 gas, oxygen gas, etc. are introduced into the processing chamber from the gas introduction unit 31. Then, only the electrode forming pattern portion is irradiated with the excimer laser 2 to deposit polycrystalline silicon. In this way, semiconductor devices are manufactured in the same processing chamber. Also in this case, the pattern alignment error at the time of two exposures is zero, and the processing without using the resist is possible.

【0017】[0017]

【発明の効果】本発明は、一枚の投影マスク内に複数の
パタ−ンが含まれているために層間位置決めの不用な露
光が可能となる。また本方法は、エキシマレ−ザ等のレ
ジスト不用の直接エッチングやデポジションへの適用が
できるので、複合プロセス装置への応用ができる。この
他、本発明に用いる投影マスクはパタ−ン作製、消去お
よび再生が容易であるので安価で効率的なプロセスが可
能である。本実施例では、旋光性物質として固体結晶材
料を用いたが、旋光性液体を透過マスク基板上あるいは
マスク基板中に置いても同様の効果が得られる。また、
本発明の方法では、旋光角を多数設定することで設定し
た分のパタ−ン種を投影マスク内に内在させることが可
能で、パタ−ン間で共通する領域では、従来の遮光パタ
−ンを併用できる。
According to the present invention, since a plurality of patterns are included in one projection mask, it is possible to perform exposure without the need for interlayer positioning. Further, since the present method can be applied to direct etching or deposition that does not require a resist such as an excimer laser, it can be applied to a composite process apparatus. In addition, the projection mask used in the present invention is easy to pattern, erase and reproduce, so that an inexpensive and efficient process is possible. In this embodiment, the solid crystal material is used as the optical rotatory substance, but the same effect can be obtained by placing the optical rotatory liquid on or in the transparent mask substrate. Also,
According to the method of the present invention, it is possible to make the set pattern types set in the projection mask by setting a large number of optical rotation angles. In the area common to the patterns, the conventional light-shielding pattern is used. Can be used together.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る露光装置の構成を示す
図(その1)。
FIG. 1 is a diagram showing the configuration of an exposure apparatus according to an embodiment of the present invention (No. 1).

【図2】本発明の一実施例に係る露光装置の構成を示す
図(その2)。
FIG. 2 is a diagram showing the configuration of an exposure apparatus according to an embodiment of the present invention (No. 2).

【図3】本発明の一実施例に係る投影マスクの構成を示
す図。
FIG. 3 is a diagram showing a configuration of a projection mask according to an embodiment of the present invention.

【図4】本発明の一実施例に係るイオン打ち込みプロセ
スを示す図。
FIG. 4 is a diagram showing an ion implantation process according to an embodiment of the present invention.

【図5】本発明の一実施例に係る電極形成プロセスを示
す図。
FIG. 5 is a diagram showing an electrode forming process according to an embodiment of the present invention.

【図6】本発明の一実施例に係る強誘電体投影マスクを
示す図。
FIG. 6 is a diagram showing a ferroelectric projection mask according to an embodiment of the present invention.

【図7】本発明の一実施例に係る複合プロセス装置を示
す図。
FIG. 7 is a diagram showing a composite process apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…光源、2…光、3…レンズ、4…偏光フィルタ、5
…回転台、6…投影マスク、7…偏光フィルタ、8…回
転台、9…縮小レンズ、10…ウェ−ハ、11…マスク
パタ−ン、12…投影パタ−ン、13…マスク基板、1
4…パタ−ンA 15…パタ−ンB、16…透過光、17…レジスト、1
8…ウェ−ハ、19…ホウ素イオン、20、21…イオ
ン打ち込み領域、22…タングステン電極、23…磁場
発生コイル、24…磁場、25…イオン発生源、26…
プロセス処理室、27…高周波発生電源、28…上部電
極、29…ヒ−タ、30…排気部、31…ガス導入部、
32…マスク基板、33…強誘電体パタ−ンA、34…
強誘電体パタ−ンB、35…エキシマレ−ザ。
1 ... Light source, 2 ... Light, 3 ... Lens, 4 ... Polarization filter, 5
... Rotating table, 6 ... Projection mask, 7 ... Polarizing filter, 8 ... Rotating table, 9 ... Reduction lens, 10 ... Wafer, 11 ... Mask pattern, 12 ... Projection pattern, 13 ... Mask substrate, 1
4 ... Pattern A 15 ... Pattern B, 16 ... Transmitted light, 17 ... Resist, 1
8 ... Wafer, 19 ... Boron ion, 20, 21 ... Ion implantation area, 22 ... Tungsten electrode, 23 ... Magnetic field generating coil, 24 ... Magnetic field, 25 ... Ion generating source, 26 ...
Process treatment chamber, 27 ... High frequency power source, 28 ... Upper electrode, 29 ... Heater, 30 ... Exhaust section, 31 ... Gas introduction section,
32 ... Mask substrate, 33 ... Ferroelectric pattern A, 34 ...
Ferroelectric pattern B, 35 ... Excimer laser.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】光源および投影マスクおよび投影レンズか
らなり投影マスク上のパタ−ンをウェ−ハ上に露光する
露光装置において、光源と投影マスクの間に光源から発
せられる光の偏光方向を制御する偏光フィルタと投影マ
スクとウェ−ハの間に投影マスクからの透過光の偏光方
向を制御する偏光フィルタを設けたことを特徴とする露
光装置。
1. An exposure apparatus comprising a light source, a projection mask and a projection lens for exposing a pattern on the projection mask onto a wafer, and controlling the polarization direction of the light emitted from the light source between the light source and the projection mask. And a polarizing filter for controlling the polarization direction of the transmitted light from the projection mask between the projection mask and the wafer.
【請求項2】上記投影マスクが少なくとも二つ以上の相
異なる旋光特性を有する旋光性材料で構成されているこ
とを特徴とする特許請求項第1項記載の露光装置。
2. The exposure apparatus according to claim 1, wherein the projection mask is composed of at least two or more optical rotatory materials having different optical rotatory characteristics.
【請求項3】上記投影マスクが強誘電体結晶で構成され
ていることを特徴とする特許請求項第1項記載の露光装
置。
3. The exposure apparatus according to claim 1, wherein the projection mask is made of a ferroelectric crystal.
【請求項4】上記二つの偏光フィルタが投影マスクに対
しそれぞれ水平方向に回転する機構を設けたことを特徴
とする特許請求項第1項記載の露光装置。
4. The exposure apparatus according to claim 1, wherein the two polarizing filters are provided with a mechanism for rotating each of them in the horizontal direction with respect to the projection mask.
【請求項5】上記二つの偏光フィルタの間に光の進行方
向に対して垂直方向に磁場を発生するコイルを設けたこ
とを特徴とする特許請求項第1項記載の露光装置。
5. The exposure apparatus according to claim 1, wherein a coil for generating a magnetic field is provided between the two polarization filters in a direction perpendicular to the traveling direction of light.
【請求項6】光源および投影マスクおよび投影レンズを
用い投影マスク上のパタ−ンをウェ−ハ上に露光する露
光方法において、光源と投影マスクの間に設けた偏光フ
ィルタにより光源から発せられる光の偏光方向を一定の
方向に制御しまた投影マスクとウェ−ハの間に設けた偏
光フィルタにより投影マスクからの透過光の偏光方向を
制御することにより投影マスク内のパタ−ンをウェ−ハ
上に投影することを特徴とする露光方法。
6. An exposure method for exposing a pattern on a projection mask onto a wafer by using a light source, a projection mask and a projection lens, the light emitted from the light source by a polarizing filter provided between the light source and the projection mask. Of the pattern in the projection mask by controlling the polarization direction of the projection mask to a constant direction and controlling the polarization direction of the transmitted light from the projection mask by a polarization filter provided between the projection mask and the wafer. An exposure method, which comprises projecting onto an upper surface.
【請求項7】上記において少なくとも二つ以上の相異な
る旋光特性を有する旋光性材料で構成された投影マスク
を用い上記のうちの所望の旋光領域を上記偏光フィルタ
の回転もしくは上記偏光フィルタの間に設けたコイルか
ら発生する磁場の強さにより選択してウェ−ハ上に露光
することを特徴とする特許請求項第6項記載の露光方
法。
7. A projection mask composed of at least two or more optical rotatory materials having different optical rotatory characteristics is used, and a desired rotatory region among the above is set between rotation of the polarization filter or between the polarization filters. 7. The exposure method according to claim 6, wherein the exposure is performed on the wafer by selecting it according to the strength of the magnetic field generated from the coil provided.
【請求項8】上記において同じウェ−ハに対して相異な
る旋光特性を有するパタ−ン種を上記偏光フィルタの回
転もしくは上記偏光フィルタの間に設けたコイルから発
生する磁場の強さにより選択しながらウェ−ハ上に複数
回に分けて露光することを特徴とする特許請求項第7項
記載の露光方法。
8. A pattern type having different optical rotation characteristics for the same wafer is selected according to the rotation of the polarization filter or the strength of a magnetic field generated from a coil provided between the polarization filters. The exposure method according to claim 7, wherein the exposure is performed on the wafer in a plurality of times.
JP6075624A 1994-04-14 1994-04-14 Aligner and exposure method Pending JPH07283119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6075624A JPH07283119A (en) 1994-04-14 1994-04-14 Aligner and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6075624A JPH07283119A (en) 1994-04-14 1994-04-14 Aligner and exposure method

Publications (1)

Publication Number Publication Date
JPH07283119A true JPH07283119A (en) 1995-10-27

Family

ID=13581571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6075624A Pending JPH07283119A (en) 1994-04-14 1994-04-14 Aligner and exposure method

Country Status (1)

Country Link
JP (1) JPH07283119A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007045A1 (en) * 2001-07-10 2003-01-23 Nikon Corporation Projection optical system production method
US6788389B2 (en) 2001-07-10 2004-09-07 Nikon Corporation Production method of projection optical system
US6870668B2 (en) 2000-10-10 2005-03-22 Nikon Corporation Method for evaluating image formation performance
WO2005050718A1 (en) 2003-11-20 2005-06-02 Nikon Corporation Light flux conversion element, lighting optical device, exposure system, and exposure method
WO2006040184A2 (en) * 2004-10-15 2006-04-20 Carl Zeiss Smt Ag Illumination system for a microlithographic projection exposure apparatus
JP2006345006A (en) * 2003-11-20 2006-12-21 Nikon Corp Lighting optical device, exposure device, exposure method, and manufacturing method for micro device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870668B2 (en) 2000-10-10 2005-03-22 Nikon Corporation Method for evaluating image formation performance
US7061671B2 (en) 2000-10-10 2006-06-13 Nikon Corporation Method for evaluating image formation performance
US6788389B2 (en) 2001-07-10 2004-09-07 Nikon Corporation Production method of projection optical system
WO2003007045A1 (en) * 2001-07-10 2003-01-23 Nikon Corporation Projection optical system production method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
KR101220636B1 (en) * 2003-11-20 2013-01-18 가부시키가이샤 니콘 Diffractive optical element, illuminating optical apparatus, exposure apparatus, exposure method, and device manufacturing method
TWI385414B (en) * 2003-11-20 2013-02-11 尼康股份有限公司 Optical illuminating apparatus, illuminating method, exposure apparatus, exposure method and device fabricating method
EP2117034A1 (en) * 2003-11-20 2009-11-11 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
KR20100005131A (en) * 2003-11-20 2010-01-13 가부시키가이샤 니콘 Illuminating optical apparatus, exposure apparatus, exposure method, and device manufacturing method
CN101685264A (en) * 2003-11-20 2010-03-31 株式会社尼康 Lighting optical device, exposure system and exposure method
JP4976015B2 (en) * 2003-11-20 2012-07-18 株式会社ニコン Flux conversion element, illumination optical device, exposure apparatus, and exposure method
JPWO2005050718A1 (en) * 2003-11-20 2007-12-06 株式会社ニコン Light flux conversion element, illumination optical device, exposure device, and exposure method
KR101220616B1 (en) * 2003-11-20 2013-01-21 가부시키가이샤 니콘 Illuminating optical apparatus, exposure apparatus, exposure method, and device manufacturing method
KR101220667B1 (en) * 2003-11-20 2013-01-21 가부시키가이샤 니콘 Illuminating optical apparatus, exposure apparatus, exposure method, and device manufacturing method
EP1926129A1 (en) * 2003-11-20 2008-05-28 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
JP2006345006A (en) * 2003-11-20 2006-12-21 Nikon Corp Lighting optical device, exposure device, exposure method, and manufacturing method for micro device
KR20140029543A (en) * 2003-11-20 2014-03-10 가부시키가이샤 니콘 Illuminating optical apparatus
JP2017227906A (en) * 2003-11-20 2017-12-28 株式会社ニコン Flux conversion element, illumination optical device, exposure device, and exposure method
WO2005050718A1 (en) 2003-11-20 2005-06-02 Nikon Corporation Light flux conversion element, lighting optical device, exposure system, and exposure method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
JP2016212434A (en) * 2003-11-20 2016-12-15 株式会社ニコン Light flux conversion element, illumination optical device, exposure apparatus, and exposure method
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
WO2006040184A3 (en) * 2004-10-15 2006-10-12 Zeiss Carl Smt Ag Illumination system for a microlithographic projection exposure apparatus
WO2006040184A2 (en) * 2004-10-15 2006-04-20 Carl Zeiss Smt Ag Illumination system for a microlithographic projection exposure apparatus
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
JPH07283119A (en) Aligner and exposure method
JPH07288222A (en) Equipment and method for processing semiconductor using polarized radiant energy
US7569311B2 (en) Method of forming a pattern using a polarized reticle in conjunction with polarized light
US5429730A (en) Method of repairing defect of structure
Indutnyi et al. Holographic optical element fabrication using chalcogenide layers
JP2004134553A (en) Process for forming resist pattern and process for fabricating semiconductor device
JPH0212806A (en) Method of forming resist pattern
WO2009146014A1 (en) Patterning resolution enhancement combining interference lithography and self-aligned double patterning techniques
KR20160089515A (en) Direct current superposition freeze
KR100590575B1 (en) Method of electron beam lithography using new material
US4117301A (en) Method of making a submicrometer aperture in a substrate
JPH04344645A (en) Lithography technology and manufacture of phase shift mask
JPH04301846A (en) Manufacture of mask substrate for exposure
JPH03129349A (en) Production of photomask
US6707538B2 (en) Near-field exposure system selectively applying linearly polarized exposure light to exposure mask
CN111308791B (en) Photo-alignment method
JPH0526329B2 (en)
JPH0461317A (en) Method and device for ashing resist
JP2004327786A (en) Exposure method and aligner
JPH01185632A (en) Mask for transfer and exposing transfer method using said mask for transfer
JPH0822113A (en) Manufacture of phase shift mask
Lee et al. Repair of phase-shift masks using low energy focused ion beams
KR100422958B1 (en) Method for forming fine pattern by argon ion implantation process
Kenty et al. Electron beam fabrication of high resolution masks
JPS649616B2 (en)