JPH07270514A - Satellite automatic tracking method - Google Patents

Satellite automatic tracking method

Info

Publication number
JPH07270514A
JPH07270514A JP5848494A JP5848494A JPH07270514A JP H07270514 A JPH07270514 A JP H07270514A JP 5848494 A JP5848494 A JP 5848494A JP 5848494 A JP5848494 A JP 5848494A JP H07270514 A JPH07270514 A JP H07270514A
Authority
JP
Japan
Prior art keywords
antenna
time
drive
satellite
rain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5848494A
Other languages
Japanese (ja)
Inventor
Munehisa Takachi
宗寿 高地
Hideo Takashima
英雄 高島
Toru Yamada
徹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5848494A priority Critical patent/JPH07270514A/en
Publication of JPH07270514A publication Critical patent/JPH07270514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To continue an accurate tracking drive by predicting the direction of a satellite based on stored data and driving an antenna in that direction when rain is falling or a beacon signal transmission/reception system fails temporarily. CONSTITUTION:An antenna control drive panel 8 periodically drives an antenna 1 according to the output from a timer 4. The drive panel 8 examines the presence or absence of rain-fall by the alarm information from a beacon reception device 3 and a rain-fall detector 6 when the time for driving the antenna comes, and drives the antenna 1 in the direction where the beacon signal reception intensity of the device 3 is maximized by a step track system when neither alarm nor rain-fall exists and then stops the antenna 1. Also, when the rain-fall is detected by a detector 6, a prediction drive is performed if a elapsed time from a satellite trace correction is longer than a prediction drive startable time as in beacon failure. On the other hand, when the prediction drive startable time is shorter, a step track drive is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アンテナの方向に精度
を要求される衛星通信において、アンテナを常時正確に
衛星方向に向けるための衛星自動追尾方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a satellite automatic tracking method for always accurately pointing an antenna in the direction of a satellite in satellite communications requiring accuracy in the direction of the antenna.

【0002】[0002]

【従来の技術】従来は、衛星からのビーコン信号を常時
受信し、ビーコン信号の受信強度が最大となる方向を衛
星の方向とし、その方向へステップトラック駆動により
アンテナを駆動し追尾していた。
2. Description of the Related Art Conventionally, a beacon signal from a satellite is constantly received, and the direction in which the reception intensity of the beacon signal is maximized is the direction of the satellite, and the antenna is driven by step-track driving in that direction for tracking.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、衛星
追尾方法としてステップトラック方式を用いていたが、
降雨時にはビーコン信号受信レベルの変動が大きくな
り、その結果、ビーコン受信信号が最大となる位置を誤
り、正確に追尾を行えないといった問題があった。ま
た、追尾方法がビーコン信号に依存しているため、衛星
側のビーコン信号送信系或いは、地球局側のビーコン信
号受信系に障害が発生した際に追尾不能となる点に問題
があった。
The above-mentioned prior art uses the step track method as a satellite tracking method.
There is a problem that the beacon signal reception level fluctuates greatly during rainfall, and as a result, the position at which the beacon reception signal becomes maximum is incorrect and tracking cannot be performed accurately. Further, since the tracking method depends on the beacon signal, there is a problem in that tracking is impossible when a failure occurs in the beacon signal transmission system on the satellite side or the beacon signal reception system on the earth station side.

【0004】本発明の目的は、降雨時及び、ビーコン信
号送受信系の一般的な障害時にも高精度な追尾駆動を継
続できる方法を提供することである。
An object of the present invention is to provide a method capable of continuing highly accurate tracking drive even when it is raining and when a beacon signal transmitting / receiving system generally fails.

【0005】[0005]

【課題を解決するための手段及び作用】通常時はビーコ
ン信号を受信し、ステップトラック方式により衛星の追
尾駆動を行い、その間に時刻とアンテナ角度のデータを
記憶する。降雨時、又は一時的なビーコン信号送受信系
障害時には、記憶したデータに基づき衛星方向を予測
し、その方向にアンテナ駆動する。
Means and Actions for Solving the Problem In a normal time, a beacon signal is received and the satellite tracking drive is performed by a step track method, and during that time, data of time and antenna angle are stored. When it is raining or when a beacon signal transmission / reception system temporarily fails, the satellite direction is predicted based on the stored data and the antenna is driven in that direction.

【0006】[0006]

【実施例】以下、本発明の一実施例を図1〜図3により
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0007】まず図2は、本発明による衛星追尾方法の
一実施例を示す構成図である。図2において、1は目的
とする衛星電波を受信するアンテナ、2はアンテナの方
向角データを検出し出力する角度検出器、3はアンテナ
1より入力されるビーコン受信信号の強度を測定可能な
ビーコン受信装置、4は日時及び周期的な時間を出力す
るタイマー、5は書き換え可能な記憶装置、6は降雨を
検出可能な降雨検出器、7は入力された日時及びアンテ
ナの角度情報を記憶装置5へ出力する端末装置、8は2
〜7の装置が出力する情報を入力しアンテナ1を制御駆
動するアンテナ制御駆動盤である。
FIG. 2 is a block diagram showing an embodiment of the satellite tracking method according to the present invention. In FIG. 2, 1 is an antenna for receiving a target satellite radio wave, 2 is an angle detector for detecting and outputting direction angle data of the antenna, and 3 is a beacon capable of measuring the intensity of a beacon reception signal input from the antenna 1. Receiving device 4, timer for outputting date and time and periodic time, 5 rewritable storage device, 6 rainfall detector capable of detecting rainfall, 7 storage device 5 for input date and time and antenna angle information Output terminal device, 8 is 2
7 is an antenna control drive panel for inputting information output from the devices to control and drive the antenna 1.

【0008】次に図1は、本発明による衛星追尾方法の
一実施例を示すフローチャートである。本フローに従
い、衛星追尾の動作を説明する。アンテナ制御駆動盤
は、タイマー4からの出力により周期的にアンテナを駆
動する。アンテナ制御駆動盤8はアンテナ駆動を行なう
時刻になると、まずビーコン受信装置3のアラーム情報
及び降雨検出器6による、降雨の有無を調べる。アラー
ムが無く降雨が無い場合はステップトラック方式によ
り、ビーコン受信器3のビーコン信号受信強度が最大と
なる方向へアンテナ1を駆動し、アンテナを停止する。
又、この時のタイマー4が出力する日時及び、角度検出
器2が出力するアンテナ角度の情報を記憶装置5に記憶
させる。そして次にタイマー4が出力するアンテナ駆動
を行なう時刻になるまでアンテナを停止状態に保つ。ビ
ーコン受信系障害のアラームを検出した場合、障害発生
からの経過時間及び、衛星軌道修正からの経過時間を調
べる。障害発生からの経過時間は、障害発生時に記憶装
置5に記憶された時刻と、タイマー4が出力する現在の
日時の差から算出する。又、衛星軌道修正からの経過時
間は、記憶装置5に記憶した衛星が軌道を修正する日時
と、タイマー4が出力する現在の日時の差から算出す
る。保守等による衛星の軌道修正日時は、あらかじめ端
末装置7から入力し、記憶装置5に記憶しておく。障害
発生経過時間があらかじめ定められた予測駆動継続可能
時間を越えた場合、又、衛星軌道修正からの経過時間が
あらかじめ定められた予測駆動開始可能時間に満たない
場合には、アンテナを記憶装置5に記憶した軌道の中心
方向に向けて停止する。以降、ビーコン受信系障害アラ
ームが解除するまで停止状態を保つ。ここで予測駆動継
続可能時間は、予測駆動を継続して蓄積された追尾誤差
が、アンテナを軌道の中心の方向に向けた場合に比べ、
小さくなる時間であるように設定する。又、予測駆動開
始可能時間は、データの収集を開始してから十分時間が
経過し、アンテナを軌道の中心方向に向けた場合に比
べ、追尾誤差が小さくなる時間であるように設定する。
障害発生経過時間が予測駆動経過時間より短く、又、軌
道修正からの経過時間が予測駆動開始可能時間より長い
場合には、衛星方向予測駆動を行なう。この駆動は、記
憶装置5に記憶された時刻情報とその時刻に対応するア
ンテナ方向角度情報をアンテナ制御盤8に取り込み、衛
星の予測方向を算出し、その算出方向へ角度検出器2の
出力を利用してアンテナを駆動させるものである。アン
テナ制御駆動盤は、アンテナを予測方向へ駆動後、角度
データ、時刻データを記憶装置5に記憶してアンテナを
停止する。ビーコン送受信系は正常であるが降雨検出器
6により降雨が検出された場合には、先のビーコン障害
時と同様に、衛星軌道修正からの経過時間が予測駆動開
始可能時間より長ければ予測駆動を行なう。ただし、予
測駆動開始可能時間より短いときには、ステップトラッ
ク駆動を行なう。そして駆動後に時刻データ、角度デー
タを記憶装置に記憶する。衛星方向の予測方式として
は、衛星の軌道は周期的な運動と一方向への偏差の合成
からなり、その周期が一日であることが知られているこ
とに着目すれば、次のように考えることが出来る。
Next, FIG. 1 is a flow chart showing an embodiment of the satellite tracking method according to the present invention. The operation of satellite tracking will be described according to this flow. The antenna control drive board periodically drives the antenna by the output from the timer 4. When it is time to drive the antenna, the antenna control drive board 8 first checks the presence / absence of rainfall by the alarm information of the beacon receiving device 3 and the rainfall detector 6. When there is no alarm and no rain, the antenna 1 is driven in the direction in which the beacon signal reception intensity of the beacon receiver 3 is maximized by the step track method, and the antenna is stopped.
In addition, the date and time output by the timer 4 and the antenna angle information output by the angle detector 2 at this time are stored in the storage device 5. Then, the antenna is kept in the stopped state until the next time to drive the antenna output from the timer 4. When the alarm of the beacon reception system failure is detected, the elapsed time from the failure occurrence and the elapsed time from the satellite orbit correction are checked. The elapsed time from the occurrence of the failure is calculated from the difference between the time stored in the storage device 5 at the time of the failure and the current date and time output by the timer 4. The elapsed time from the satellite orbit correction is calculated from the difference between the date and time when the satellite corrects the orbit stored in the storage device 5 and the current date and time output by the timer 4. The satellite orbit correction date and time due to maintenance or the like is input from the terminal device 7 in advance and stored in the storage device 5. If the failure occurrence elapsed time exceeds the predetermined predictable drive continuation time, or if the elapsed time from the satellite orbit correction is less than the predetermined predictable drive startable time, the antenna is stored in the storage device 5. Stop toward the center of the orbit memorized in. After that, it remains in the stopped state until the beacon reception system failure alarm is cleared. Here, the predictable drive continuation time is compared with the case where the tracking error accumulated by continuing the predictive drive has the antenna directed toward the center of the orbit.
Set so that the time becomes smaller. Further, the predictable drive startable time is set such that a sufficient time has elapsed after the start of data collection and the tracking error becomes smaller than that when the antenna is directed toward the center of the orbit.
When the failure occurrence elapsed time is shorter than the predicted drive elapsed time and the elapsed time from the orbit correction is longer than the predicted drive startable time, satellite direction predictive drive is performed. In this driving, the time information stored in the storage device 5 and the antenna direction angle information corresponding to the time are fetched into the antenna control panel 8, the predicted direction of the satellite is calculated, and the output of the angle detector 2 is calculated in the calculated direction. It is used to drive the antenna. After driving the antenna in the predicted direction, the antenna control drive board stores the angle data and the time data in the storage device 5 and stops the antenna. If the beacon transmission / reception system is normal, but if rainfall is detected by the rainfall detector 6, predictive drive is performed if the elapsed time from satellite orbit correction is longer than the predictive drive startable time, as in the previous beacon failure. To do. However, when it is shorter than the predictable drive start time, the step track drive is performed. After driving, the time data and the angle data are stored in the storage device. As a satellite direction prediction method, if we focus on the fact that the orbit of a satellite consists of periodic movements and deviations in one direction, and its cycle is known to be one day, I can think.

【0009】t時における衛星位置をP(t)、前日の同
時刻の衛星位置をP(t−24)としたとき、その差ΔX
(t)は
When the satellite position at time t is P (t) and the satellite position at the same time on the previous day is P (t-24), the difference ΔX
(t) is

【0010】[0010]

【数1】ΔX(t)=P(t)−P(t−24) となる。時刻aにおける予測位置をP´(a)としたと
き、まず直前の時刻(a−1)までについて前日の同時
刻との差〔数1〕の平均値を求める。n時間分の平均値
をE〔ΔX〕(a)とすると
## EQU1 ## ΔX (t) = P (t) -P (t-24). When the predicted position at time a is P ′ (a), first, the average value of the difference [Equation 1] from the same time on the previous day is calculated up to the immediately preceding time (a-1). Let the average value for n hours be E [ΔX] (a)

【0011】[0011]

【数2】 となる。時刻aにおける予測位置は、〔数2〕で求めた
E〔ΔX〕(a)の値を用いて、前日の同時刻(a−2
4)における衛星位置P(a−24)を補正してもとめ
る。以上の考え方を図3に示す。
[Equation 2] Becomes For the predicted position at time a, the value of E [ΔX] (a) obtained by [Equation 2] is used to determine the predicted position at the same time (a-2
Correct the satellite position P (a-24) in 4) to stop. The above concept is shown in FIG.

【0012】[0012]

【数3】P´(a)=P(a−24)+E〔ΔX〕(a) 時刻a以降の時刻tについても予測開始時刻aでの補正
値E〔ΔX〕(a)を用い、t>aのときE〔ΔX〕
(t)≒E〔ΔX〕(a)として、t時の予測方向P´
(t)=P(t−24)+E〔ΔX〕(a)とする。
## EQU00003 ## P '(a) = P (a-24) + E [.DELTA.X] (a) For the time t after the time a, the correction value E [.DELTA.X] (a) at the predicted start time a is also used and t > [A] E [ΔX]
As (t) ≈E [ΔX] (a), the prediction direction P ′ at time t
(T) = P (t−24) + E [ΔX] (a).

【0013】本実施例では追尾駆動を行なうタイミング
をタイマー4から出力される時刻により起動したが、タ
イマーによる周期的な起動ではなく、ビーコン送受信装
置3からの入力値に一定値以上の変化があったときとし
ても良い。又、降雨時の判断を降雨の有無の代わりに降
雨強度或いは、降雨強度変化の測定値を用いても良い。
又、降雨検出器の代わりにビーコン受信装置の受信レベ
ルの変動幅を測定し、その値を判断基準としても良い。
又、ビーコン系障害時の予測駆動は、ビーコン信号に依
存した他の追尾方式、例えばモノパルス方式の場合にも
使用できる。
In the present embodiment, the timing for performing the tracking drive is activated by the time output from the timer 4. However, the input value from the beacon transmission / reception device 3 does not change cyclically by the timer, but changes by a certain value or more. It's okay if you do. In addition, instead of the presence / absence of rainfall, the rainfall intensity or the measured value of the rainfall intensity change may be used for the judgment at the time of rainfall.
Further, instead of the rainfall detector, the fluctuation range of the reception level of the beacon receiving device may be measured and the value thereof may be used as the judgment standard.
In addition, the predictive drive at the time of a beacon system failure can also be used in the case of another tracking method that depends on a beacon signal, for example, a monopulse method.

【0014】[0014]

【発明の効果】本発明によれば、降雨時、衛星ビーコン
送受信系障害時における追尾精度を大幅に良化させるこ
とができる。
According to the present invention, it is possible to significantly improve the tracking accuracy when it is raining or when there is a failure in the satellite beacon transmission / reception system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による衛星追尾方法の実施例を示すフロ
ーチャートである。
FIG. 1 is a flowchart showing an embodiment of a satellite tracking method according to the present invention.

【図2】同じく実施例を示す構成図である。FIG. 2 is a block diagram showing an embodiment of the same.

【図3】時刻aにおける予測位置を示す図である。FIG. 3 is a diagram showing a predicted position at time a.

【符号の説明】[Explanation of symbols]

1…アンテナ、 2…角度検出器、 3…ビーコン受信装置、 4…タイマー、 5…記憶装置、 6…降雨検出器、 7…監視制御端末装置、 8…アンテナ制御駆動装置。 DESCRIPTION OF SYMBOLS 1 ... Antenna, 2 ... Angle detector, 3 ... Beacon receiving device, 4 ... Timer, 5 ... Storage device, 6 ... Rainfall detector, 7 ... Monitoring control terminal device, 8 ... Antenna control drive device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】目的衛星のビーコン信号を受信するアンテ
ナ、アンテナの方向角度を出力する角度検出器、ビーコ
ン信号の受信信号強度を測定可能な受信装置、時刻を出
力するタイマー、降雨を検出する降雨検出器、時刻及び
角度データを記憶する記憶装置、及び上記構成物の出力
情報によりアンテナを制御駆動するアンテナ制御駆動装
置を備え、 降雨又は衛星ビーコン信号送受信系障害発生時に、衛星
方向の予測角度に向けてアンテナを駆動し、上記以外は
ビーコン信号を利用した追尾方式を用いてアンテナを駆
動することを特徴とする衛星自動追尾方法。
1. An antenna for receiving a beacon signal of a target satellite, an angle detector for outputting a direction angle of the antenna, a receiving device capable of measuring the received signal strength of the beacon signal, a timer for outputting time, a rainfall for detecting rainfall. It is equipped with a detector, a storage device that stores time and angle data, and an antenna control drive device that controls and drives the antenna based on the output information of the above components. A satellite automatic tracking method, characterized in that the antenna is driven toward the antenna, and the antenna is driven using a tracking method using a beacon signal other than the above.
JP5848494A 1994-03-29 1994-03-29 Satellite automatic tracking method Pending JPH07270514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5848494A JPH07270514A (en) 1994-03-29 1994-03-29 Satellite automatic tracking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5848494A JPH07270514A (en) 1994-03-29 1994-03-29 Satellite automatic tracking method

Publications (1)

Publication Number Publication Date
JPH07270514A true JPH07270514A (en) 1995-10-20

Family

ID=13085712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5848494A Pending JPH07270514A (en) 1994-03-29 1994-03-29 Satellite automatic tracking method

Country Status (1)

Country Link
JP (1) JPH07270514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2170725A1 (en) * 2000-06-30 2002-08-01 Mitsubishi Electric Corp Method for acquiring satellite
CN116404419A (en) * 2023-06-07 2023-07-07 武汉能钠智能装备技术股份有限公司四川省成都市分公司 Satellite signal broadband outdoor acquisition method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2170725A1 (en) * 2000-06-30 2002-08-01 Mitsubishi Electric Corp Method for acquiring satellite
CN116404419A (en) * 2023-06-07 2023-07-07 武汉能钠智能装备技术股份有限公司四川省成都市分公司 Satellite signal broadband outdoor acquisition method and device

Similar Documents

Publication Publication Date Title
US4843384A (en) Wireless remote control system
KR100205277B1 (en) Satellite-broadcast receiving mobile antenna apparatus
KR950010677A (en) Remote controller for selecting and setting preset data
JP3052897B2 (en) Satellite acquisition and tracking device
EP3502748B1 (en) Train position detection device and method
EP1115008A3 (en) A method for determining reference time error and an electronic device
CN101522457B (en) Method for scanning the surroundings of a vehicle and unit
CN101424946B (en) Pulse positioning system and method for compensating pulse positioning error thereof
JP3566628B2 (en) Satellite acquisition method
JPH07270514A (en) Satellite automatic tracking method
NZ286278A (en) Switch timer synchronised to daylight sensor
JP3826299B2 (en) Control method for mobile satellite tracking antenna system
JPH08271604A (en) Tracking antenna device
JPH1020010A (en) Satellite tracking system
JP2002341011A (en) Position measuring device, navigation system, position measuring method and navigation method
JP3218487B2 (en) Satellite tracking method
JPH10111360A (en) Measuring device for distance between vehicles
JPH02216074A (en) Antenna side lobe lock decider
JP2002249100A (en) Satellite tracking system and method
CN108994770A (en) Electric screwdriver control method and device
JP2950248B2 (en) Antenna tracking control method and device
WO2021161512A1 (en) Training device, training method, recording medium, and radar device
JPH0423756B2 (en)
JP3555437B2 (en) Mobile station equipment for satellite communication
JP3501214B2 (en) Satellite tracking device