JPH07264135A - Direct optical communication system - Google Patents

Direct optical communication system

Info

Publication number
JPH07264135A
JPH07264135A JP6077786A JP7778694A JPH07264135A JP H07264135 A JPH07264135 A JP H07264135A JP 6077786 A JP6077786 A JP 6077786A JP 7778694 A JP7778694 A JP 7778694A JP H07264135 A JPH07264135 A JP H07264135A
Authority
JP
Japan
Prior art keywords
communication system
optical communication
direct optical
reflected light
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6077786A
Other languages
Japanese (ja)
Inventor
Kazumasa Sasaki
一正 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6077786A priority Critical patent/JPH07264135A/en
Publication of JPH07264135A publication Critical patent/JPH07264135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To send information with sufficient quantity by allowing a laser ray from a sender side to be reflected by a receiver side and turned back and using a reflected light modulator to modulate even the reflected light for 2-way communication. CONSTITUTION:A laser ray (a) emitted from a transmitter A transmits through a reception window 36 of a receiver B and is reflected by a retro-reflector 33 to be a laser ray (b), it is emitted from the receiver B and is reflected in an opposite direction on the same path as the ray (a). The ray (b) is reflected upward by a Y axis deflection control mirror 24 and transmits through an X axis deflection control mirror 23 being a half mirror and is made incident onto a reflected light receiver. Then the signal of the transmitter A is superimposed on the ray (a) via a forward path signal modulator 22, and a signal detection section 35 of the receiver B detects and receives the signal. Furthermore, the signal of the receiver B is superimposed on the ray (b) via a reflected light modulator 32 to allow the receiver 27 of the transmitter A to receive the signal and to attain 2-way communication.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、1本の光ビームによ
り双方向の通信を行うことができる新規な直接光通信方
式に関するものである。本通信方式は、照準を自動化す
るとともに、固定局間通信は勿論のこと、移動体間通
信、移動体固定局間の通信に利用することができる。こ
のような通信技術は交通安全を確保する技術として重要
となると考えられている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel direct optical communication system capable of bidirectional communication with a single light beam. This communication system can be used not only for communication between fixed stations but also for communication between mobile units and communication between fixed units of mobile units as well as automation of aiming. Such communication technology is considered to be important as a technology for ensuring traffic safety.

【0002】[0002]

【従来の技術】従来、双方向の直接光通信(レーザー光
線を空間をとばして行う通信)を行う場合、図7に示す
ように往路用のレーザー光源1と復路用のレーザー光源
2との2本のレーザー光線a,bを用いて行うことが必
要であった。従って、双方向通信を行うためには、往路
用,復路用の送信装置および受信装置が双方にそれぞれ
別のレーザー光発射装置1,2を必要とし、それだけコ
ストがかかるものとなっていた。また、送信装置からの
レーザー光線を受信装置に照準を合わせる作業が煩わし
く、受信装置が移動すると照準がずれて回線が切断され
るなどの障害が発生することが頻繁で、回復作業にも多
くの時間と手間を要するなどの問題があった。このた
め、直接光通信は実用的な通信方式とは一般に認められ
ておらず、その利用は特殊の場合に限られたものとなっ
ていた。
2. Description of the Related Art Conventionally, when performing bidirectional direct optical communication (communication in which a laser beam skips a space), two laser light sources 1 for a forward path and a laser light source 2 for a backward path are used as shown in FIG. It was necessary to use the laser beams a and b. Therefore, in order to perform two-way communication, the transmitting device and the receiving device for the forward path and the returning apparatus need separate laser beam emitting devices 1 and 2, respectively, which increases the cost. Also, the task of aiming the laser beam from the transmitter to the receiver is troublesome, and when the receiver moves, it often causes troubles such as misalignment and disconnection of the line, and recovery work also takes a lot of time. There was a problem such as taking time. Therefore, direct optical communication is not generally accepted as a practical communication method, and its use has been limited to special cases.

【0003】[0003]

【発明が解決しようとする課題】この発明は、このよう
な点に鑑みてなされたもので、送信側のレーザー光線の
反射光を復路に用いることにより、1本の光ビームで経
済的に双方向通信を可能とならしめようとするものであ
る。さらに、この発明で解決する課題は、照準のための
必要な動作を自動化させ、照準の煩わしさを解消するこ
とである。つまり、もし照準がずれても自動的にこれを
補正することができる。このことにより、例えば、動く
相手側とも容易に交信することが可能となり、移動体間
の通信へ応用に途を拓くことができる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above point, and by using the reflected light of the laser beam on the transmitting side in the return path, it is possible to economically perform bidirectional operation with a single light beam. It tries to make communication possible. Further, the problem to be solved by the present invention is to automate the necessary operation for aiming and eliminate the troublesome aiming. In other words, if the aim is off, this can be automatically corrected. As a result, for example, it becomes possible to easily communicate with a moving partner side, and it is possible to open up an application to communication between mobile bodies.

【0004】[0004]

【課題を解決するための手段】この発明は、信号により
変調を受けた光線の自由空間媒体による直接光通信方式
において、受信装置側には反射体,反射光変調器および
光検出器を配置し、送信装置側からの光ビームを受信装
置側で反射させて折り返し、そのとき、反射光にも変調
を加えて双方向の通信を行う直接光通信方式である。ま
た、双方向通信の復路回線開設の目的で、受信装置側に
設ける反射体として、レトロリフレクタを用いる直接光
通信方式である。さらに、光線の自由空間媒体による直
接光通信方式において、受信装置側には目印となる受信
標的を配置し、送信装置側にはこの目印の方向と距離を
認知する装置と、さらに、レーザー光線の発射方向を制
御するミラー角度制御装置を設け、レーザー光線を正確
に受信標的に照準を合わせることができる機能を有する
直接光通信方式である。
According to the present invention, in a direct optical communication system using a free space medium of a light beam modulated by a signal, a reflector, a reflected light modulator and a photodetector are arranged on the receiving device side. A direct optical communication system in which a light beam from the transmitting device side is reflected by the receiving device side and returned, and at that time, reflected light is also modulated to perform bidirectional communication. Further, it is a direct optical communication system using a retro reflector as a reflector provided on the receiving device side for the purpose of opening a return line for bidirectional communication. Further, in a direct optical communication system using a free-space medium of light rays, a receiving target serving as a mark is arranged on the receiver side, and a device for recognizing the direction and distance of this mark on the transmitter side, and further, emitting a laser beam. It is a direct optical communication system that has a function to accurately aim a laser beam on a receiving target by providing a mirror angle control device for controlling the direction.

【0005】そして、受信装置側に設ける受信標的は、
識別可能な目印となる特徴をもたせる。例えば、発光体
を特定の形状に配置、もしくは特定の周期での点滅、も
しくは特定の波長等の特徴的性質を付与する。これを送
信装置側の撮像装置で検出し、検出した情報を用いて方
向と距離を計算し、この値に基づいてミラー角度を制御
することにより自動的に照準を合わせることを特徴とす
る直接光通信方式である。
The receiving target provided on the receiving device side is
It has a distinguishable feature. For example, the illuminant is arranged in a specific shape, or blinks at a specific cycle, or is given a characteristic property such as a specific wavelength. This direct light is characterized by detecting this with the imaging device on the transmitter side, calculating the direction and distance using the detected information, and automatically aiming by controlling the mirror angle based on these values. It is a communication method.

【0006】[0006]

【作用】光通信は、無線通信に比較して大容量の通信が
可能である。従って、この発明を適用することにより光
通信を移動体通信に利用することができ、移動体の高度
情報化を行うことが可能となる。また、1本のレーザー
光線を折り返して双方向通信を行うので、それだけコス
トの安価な経済的な直接光通信方式となる。また、照準
の自動化により信頼性の高い直接光通信方式となる。
The optical communication is capable of large-capacity communication as compared with the wireless communication. Therefore, by applying the present invention, optical communication can be used for mobile communication, and it becomes possible to perform advanced information on the mobile. In addition, since one laser beam is folded back and bidirectional communication is performed, an economical direct optical communication system with a correspondingly low cost is provided. In addition, a highly reliable direct optical communication system will be realized by automating the aim.

【0007】[0007]

【実施例】以下、図面に基づいてこの発明の反射による
双方向通信の概念を説明する。図1において、左側の送
信装置Aは、レーザー光線を発振させるレーザー光源1
1と、このレーザー光源11から発振されたレーザー光
線aに送信する信号を入力する変調出力器12と、受信
装置Bからのレーザー光線bを受信する受信器13およ
び受信装置Bから送信装置Aへ送信された信号を出力す
る出力装置14とから構成される。一方、右側の受信装
置Bは、受信装置Bから送信装置Aに送りたい信号を入
力する反射光変調器15と、反射体16と、送信装置A
から受信装置Bへ送信されたレーザー光線aを受信する
光検出器17と、この光検出器17から信号を出力する
出力装置18および受信装置Bから送信装置Aに送りた
い信号を反射光変調器15に入力する送信器19とから
構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The concept of bidirectional communication by reflection according to the present invention will be described below with reference to the drawings. In FIG. 1, a transmitter A on the left side is a laser light source 1 that oscillates a laser beam.
1, a modulation output device 12 for inputting a signal to be transmitted to the laser beam a oscillated from the laser light source 11, a receiver 13 for receiving the laser beam b from the receiving device B, and a transmitting device A for transmitting from the receiving device B. And an output device 14 for outputting the signal. On the other hand, the receiving device B on the right side receives the signal to be transmitted from the receiving device B to the transmitting device A, the reflected light modulator 15, the reflector 16, and the transmitting device A.
A photodetector 17 for receiving the laser beam a transmitted from the receiver B to the receiver B, an output device 18 for outputting a signal from the photodetector 17, and a reflected light modulator 15 for transmitting a signal from the receiver B to the transmitter A. And a transmitter 19 for inputting to the.

【0008】従って、送信装置Aからのレーザー光線a
を受信装置Bの反射体16で反射させて折り返し、この
とき反射光bにも反射光変調器15により変調を加えて
双方向通信を行うことができる。このとき、反射体とし
てレトロリフレクタを用いると送信装置Aからのレーザ
ー光線aは、受信装置B側のレトロリフレクタ16によ
り送信装置Aからのレーザー光線aと丁度逆の光路をた
どり、必ず送信装置Aに戻ることになり、照準が極めて
容易となる。つまり、送信装置A側で照準を行えば、受
信装置B側での照準を行う必要がなくなる。また、この
受信装置Bから送信装置Aへの信号は、図2に示すよう
に、往路の信号波形d、復路の信号波形eで示されるよ
うに、前半と後半とで時分割して使用することにより、
1本のレーザー光線だけで双方向通信が行われることに
なる。
Therefore, the laser beam a from the transmitter A is
Is reflected by the reflector 16 of the receiver B and folded back, and at this time, the reflected light b can also be modulated by the reflected light modulator 15 to perform bidirectional communication. At this time, if a retro-reflector is used as a reflector, the laser beam a from the transmitter A will follow the optical path just opposite to the laser beam a from the transmitter A by the retro-reflector 16 on the receiver B side, and always return to the transmitter A. This makes the aiming extremely easy. In other words, if the transmitter A side aims, it is not necessary to aim the receiver B side. Further, the signal from the receiving device B to the transmitting device A is used by time division in the first half and the second half as shown by a signal waveform d on the outward path and a signal waveform e on the return path as shown in FIG. By
Two-way communication will be performed with only one laser beam.

【0009】次に、図3に基づいて直接光通信方式の実
施例を説明する。図3は実施例の直接光通信方式の構成
を示す構成図である。即ち、左側の送信装置A側には、
1.55μmのレーザー光源21からの光を往路信号変
調器22を介して45度の角度に配設されたX軸振れ制
御ミラー(半透過鏡)23で下方に反射させ、上記X軸
振れ制御ミラー23と直交する方向45度の角度に配設
されたY軸振れ制御ミラー24で右側に反射させて送信
する。上記X軸振れ制御ミラー23とY軸振れ制御ミラ
ー24はミラー角度制御装置25に接続しており、X軸
方向およびY軸方向の角度がそれぞれ制御され、任意の
方向に送信することが可能である。上記1.55μmの
レーザー光は、人間の目に吸収されにくい波長の光であ
るため、もし、標的から外れて人間の目に入っても安全
であるからである。
Next, an embodiment of the direct optical communication system will be described with reference to FIG. FIG. 3 is a configuration diagram showing the configuration of the direct optical communication system of the embodiment. That is, on the left side transmitter A side,
Light from the 1.55 μm laser light source 21 is reflected downward by the X-axis shake control mirror (semi-transmissive mirror) 23 arranged at an angle of 45 degrees through the forward path signal modulator 22, and the X-axis shake control is performed. The Y-axis shake control mirror 24 arranged at an angle of 45 degrees in a direction orthogonal to the mirror 23 reflects the light on the right side and transmits. The X-axis shake control mirror 23 and the Y-axis shake control mirror 24 are connected to a mirror angle control device 25, and the angles of the X-axis direction and the Y-axis direction are controlled respectively, and it is possible to transmit in any direction. is there. This is because the laser beam of 1.55 μm has a wavelength that is difficult to be absorbed by the human eye, and therefore, it is safe to enter the human eye if it goes out of the target.

【0010】右側の受信装置Bは、主に受信標的目印3
1,反射光変調器32,レトロリフレクタ(再帰反射
体)33および信号検出器35から構成され、上記受信
標的31の詳細を図4の正面図に示す。即ち、目印とし
て中央部の受信窓36の周りに赤外光LEDの目印31
が複数個配設されて構成されている。
The receiving device B on the right side mainly receives the reception target mark 3
1, a reflected light modulator 32, a retroreflector (retroreflector) 33, and a signal detector 35. The details of the reception target 31 are shown in the front view of FIG. That is, as a mark, the infrared light LED mark 31 is provided around the reception window 36 in the central portion.
Are arranged.

【0011】送信装置Aから射出されたレーザー光線a
は、受信装置Bの受信窓36を透過し、レトロリフレク
タ33により反射され、レーザー光線bとなって受信装
置Bから射出されてレーザー光線aと同一経路を逆方向
に反射され、Y軸振れ制御ミラー24で上方に反射して
半透過鏡のX軸振れ制御ミラー23をそのまま透過して
反射光受信器27に入射することになる。従って、送信
装置A側の信号dを往路信号変調器22を介してレーザ
ー光線aに載せることにより、受信装置Bの信号検出器
35により検出して受信することができる。また、受信
装置B側の信号eを反射光変調器32を介してレーザー
光線bに載せることにより、送信装置A側の反射光受信
器27により受信することが可能となり、送信装置A側
からの1本のレーザー光線だけで双方向通信が可能とな
る。このために、送信装置Aから出射される光線には、
図2示すように受信装置Bからの信号を載せるための復
路信号eだけの余裕部分を有することになる。
A laser beam a emitted from the transmitter A
Is transmitted through the receiving window 36 of the receiving device B, reflected by the retro-reflector 33, becomes a laser beam b, is emitted from the receiving device B, and is reflected in the same direction as the laser beam a in the opposite direction. Then, the light is reflected upward and transmitted through the X-axis shake control mirror 23, which is a semi-transmissive mirror, as it is and enters the reflected light receiver 27. Therefore, by placing the signal d on the transmitter A side on the laser beam a via the outward signal modulator 22, the signal detector 35 of the receiver B can detect and receive the signal d. Further, by placing the signal e on the receiving device B side on the laser beam b via the reflected light modulator 32, it becomes possible for the reflected light receiver 27 on the transmitting device A side to receive the signal e from the transmitting device A side. Two-way communication is possible only with the laser beam of a book. For this reason, the light beam emitted from the transmitter A is
As shown in FIG. 2, there is a margin for only the return path signal e for carrying the signal from the receiver B.

【0012】上記送信装置Aのレーザー光線aの方向制
御には、2枚の反射鏡が用いられており、1枚のY軸振
れ制御ミラー24は高反射率の全反射鏡であり、他のX
軸振れ制御ミラー23は半透過鏡である。この2枚の鏡
はそれぞれX軸方向とY軸方向にレーザー光線aを振る
ために、その軸が直交した回転ステージに取り付けられ
ており、これらはミラー角度制御装置25のコンピュー
タにより制御される。
Two reflectors are used to control the direction of the laser beam a of the transmitter A, and one Y-axis shake control mirror 24 is a high-reflectance total reflector and the other X-mirrors.
The axis shake control mirror 23 is a semitransparent mirror. The two mirrors are mounted on a rotary stage whose axes are orthogonal to each other in order to swing the laser beam a in the X-axis direction and the Y-axis direction, and these are controlled by the computer of the mirror angle control device 25.

【0013】また、送信装置Aには、CCDカメラ29
が設けられていて、このカメラ29で受信装置Bの受信
標的31の像を受像し、これを画像化してコンピュータ
に取り込む。標的検知モニター画面の例を図6に示す。
即ち、画像30内での受信標的の像31´の位置から方
角が、受信標的の像31´の像の大きさから距離が計算
される。この値を基に送信装置AのX軸振れ制御ミラー
23およびY軸振れ制御ミラー24の鏡度をミラー角度
制御装置25のコンピュータを介して制御し、レーザー
光線aは受信装置Bに向けて正確に発射することにな
る。これを自動的、連続的に繰り返すことにより、受信
装置Bが移動しても送信装置AのCCDカメラ29の視
野にあれば双方向通信回線を開くことができる。
The transmitter A has a CCD camera 29.
The camera 29 receives an image of the reception target 31 of the receiving device B with the camera 29, forms an image of the image, and takes it into the computer. An example of the target detection monitor screen is shown in FIG.
That is, the direction is calculated from the position of the image 31 ′ of the receiving target in the image 30, and the distance is calculated from the size of the image of the image 31 ′ of the receiving target. Based on this value, the mirror degrees of the X-axis shake control mirror 23 and the Y-axis shake control mirror 24 of the transmitter A are controlled via the computer of the mirror angle controller 25, and the laser beam a is accurately directed to the receiver B. Will fire. By repeating this automatically and continuously, even if the receiving device B moves, the bidirectional communication line can be opened as long as it is within the field of view of the CCD camera 29 of the transmitting device A.

【0014】受信装置Bの詳しい断面構造を図5に示
す。受信窓36,反射光変調器32を透過してレトロリ
フレクタ33により反射されるレーザー光線bは、反射
光変調器32を通過するときに変調を受ける。レトロリ
フレクタ33の反射面のエバネッセント波によりレーザ
ー光線の一部cを取り出す。これが十分でない場合に
は、反射面の一部に接着剤などを付着させて平面性を損
なわせると、そこから光が漏洩するので、これを利用し
て信号検出器35に入射させて受信し、送信装置Aから
の信号を受信するようにしてもよい。
FIG. 5 shows a detailed sectional structure of the receiver B. The laser beam b that passes through the reception window 36 and the reflected light modulator 32 and is reflected by the retro-reflector 33 is modulated when passing through the reflected light modulator 32. A part c of the laser beam is extracted by the evanescent wave on the reflecting surface of the retro reflector 33. If this is not enough, if adhesive or the like is attached to a part of the reflecting surface to impair the flatness, light leaks from it, and this is used to make it incident on the signal detector 35 for reception. Alternatively, the signal from the transmitter A may be received.

【0015】受信装置Bの受信標的31は、図4の正面
図に示すように光を信号検出器35に導くための受信窓
36の周囲に赤外光LED31を8個を円形となるよう
に配置して構成されている。ここで赤外光b´を用いた
のは、赤外透過フィルタにより容易に周囲の像から分離
することができるためである。また、この配置は特徴的
であり、他にもし同様の波長帯域での発光があっても分
離識別可能である。そして、配置円の大きさから距離の
測定が可能となる。
As shown in the front view of FIG. 4, the receiving target 31 of the receiving apparatus B has eight infrared light LEDs 31 in a circular shape around the receiving window 36 for guiding the light to the signal detector 35. It is arranged and configured. The infrared light b ′ is used here because it can be easily separated from the surrounding image by the infrared transmission filter. In addition, this arrangement is characteristic, and even if there is light emission in the same wavelength band, it is possible to separate and identify. Then, the distance can be measured from the size of the arrangement circle.

【0016】上記例では、受信標的31の目印として赤
外光LEDからの光b´を使用するものについて説明し
たが、これは可視光ランプの発光を利用するようにして
もよい。また、LEDおよびランプを特定の周期で点滅
させて識別力を上げるようにしてもよく、さらに、特定
波長の反射光を識別に使用するようにしてもよいことは
勿論である。
In the above example, the light b'from the infrared LED is used as the mark of the reception target 31, but it may be possible to use the light emission of the visible light lamp. Further, it is needless to say that the LED and the lamp may be blinked at a specific cycle to increase the discrimination power, and further, the reflected light of the specific wavelength may be used for the discrimination.

【0017】レトロリフレクタの作製方法は、ガラスも
しくはプラスチック材料を用いて、前面は平面に、背面
を互いに90度をなすような3面で直三角錐をなす突起
をもつ形状に鋳型、もしくは研磨により作製する。ま
た、鏡を3面互いに垂直となるように向かい合わせて接
合する方法でも作製可能である。この場合には、鏡面を
アルミニュームなどの反射膜で被膜し、その一部を取り
除くことにより、漏洩光cを得る。
The retroreflector is manufactured by using a glass or plastic material, a mold having a front surface which is flat, and a back surface having three right-angled pyramid projections which form 90 degrees with each other. Create. Alternatively, the mirrors can be joined by facing each other so that the three surfaces are perpendicular to each other. In this case, the mirror surface is coated with a reflective film such as aluminum and a part thereof is removed to obtain the leaked light c.

【0018】[0018]

【発明の効果】以上説明したとおり、この発明の直接光
通信方式によれば、送信側の1本のレーザー光線を使用
して双方向通信が可能であり、経済性に優れ、かつ照準
の自動化によりその信頼性を高めることができ、その利
用分野を広げることが期待できる。殊に、移動体間通信
において、これまで通信容量が不十分であったが、十分
な量の情報を伝達することが可能となり、高度な情報網
の構築が可能となる。
As described above, according to the direct optical communication system of the present invention, it is possible to perform two-way communication by using one laser beam on the transmitting side, it is economical, and the aiming is automated. It can be expected to increase its reliability and expand its field of use. In particular, in mobile-to-mobile communication, the communication capacity has been insufficient until now, but it becomes possible to transmit a sufficient amount of information, and it becomes possible to construct an advanced information network.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の直接光通信方式の概念を示す構成
図、
FIG. 1 is a block diagram showing the concept of a direct optical communication system of the present invention,

【図2】図1の直接光通信方式に適用される信号波の波
形図、
2 is a waveform diagram of a signal wave applied to the direct optical communication system of FIG.

【図3】実施例の直接光通信方式の構成を示す構成図、FIG. 3 is a configuration diagram showing a configuration of a direct optical communication system according to an embodiment,

【図4】図3の受信装置の正面図、4 is a front view of the receiving device of FIG. 3,

【図5】図3の受信装置の断面図、5 is a cross-sectional view of the receiving device of FIG. 3,

【図6】標的検知モニター画面を示す説明図、FIG. 6 is an explanatory diagram showing a target detection monitor screen,

【図7】従来の直接光通信方式の説明図である。FIG. 7 is an explanatory diagram of a conventional direct optical communication system.

【符号の説明】[Explanation of symbols]

21 レーザー光源 22 往路信号変調器 23 X軸振れミラー 24 Y軸振れミラー 25 ミラー角度制御装置 27 反射光受信器 28 画像解析装置 29 CCDカメラ 31 受信標的 32 反射光変調器 33 レトロリフレクタ 35 光検出器 36 受信窓 21 laser light source 22 forward path signal modulator 23 X-axis deflection mirror 24 Y-axis deflection mirror 25 mirror angle control device 27 reflected light receiver 28 image analysis device 29 CCD camera 31 reception target 32 reflected light modulator 33 retroreflector 35 photodetector 36 reception window

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 信号により変調を受けた光線の自由空間
媒体による直接光通信方式において、受信装置側には反
射体,反射光変調器および光検出器を配置し、送信装置
側からのレーザー光線を受信装置側で反射させて折り返
し、そのとき、反射光にも反射光変調器により変調を加
えて双方向の通信を行うことを特徴とする直接光通信方
式。
1. In a direct optical communication system using a free space medium of a light beam modulated by a signal, a reflector, a reflected light modulator and a photodetector are arranged on the receiving device side, and a laser beam from the transmitting device side is arranged. A direct optical communication system characterized in that the reflected light is reflected back at the receiving device side, and at that time, reflected light is also modulated by a reflected light modulator to perform bidirectional communication.
【請求項2】 双方向通信の復路回線開設の目的で、受
信装置側にレトロリフレクタを用いることを特徴とする
請求項1記載の直接光通信方式。
2. The direct optical communication system according to claim 1, wherein a retro-reflector is used on the receiving device side for the purpose of opening a return line for bidirectional communication.
【請求項3】 上記請求項1記載の双方向直接光通信方
式において、受信装置側には目印となる特徴をもつ受信
標的を配置し、送信装置側にはこの目印の方向および距
離を認知する装置と、さらに、光線の発射方向を制御す
るミラー角度制御装置を有し、光ビームを受信標的に正
確に当てるように目印の認知装置の情報を基にミラー角
度を制御することを特徴とする直接光通信方式。
3. The bidirectional direct optical communication system according to claim 1, wherein a receiving target having a characteristic of a mark is arranged on the receiving device side, and the direction and distance of this mark are recognized on the transmitting device side. The device further comprises a mirror angle control device for controlling the emission direction of the light beam, and the mirror angle is controlled based on the information of the recognition device of the mark so that the light beam is accurately applied to the receiving target. Direct optical communication system.
【請求項4】 上記請求項1および請求項3記載の直接
光通信方式において、受信装置側に設ける受信標的は発
光体を特定の形状に配置、もしくは特定の周期での点
滅、もしくは特定の波長等の目印を用い、上記受信標的
からの反射光を用いて送信装置側のCCD撮像装置を用
いて撮像された画像から、受信標的からの目印を信号処
理あるいは特徴抽出により認識し、その位置と大きさか
ら受信側の方角、距離を求める機能を有することを特徴
とする直接光通信方式。
4. The direct optical communication system according to claim 1 or 3, wherein the receiving target provided on the receiving device side has a light emitter arranged in a specific shape, blinking at a specific cycle, or a specific wavelength. And the like, and recognize the mark from the receiving target by signal processing or feature extraction from the image captured using the CCD image pickup device on the transmitting device side using the reflected light from the receiving target, and determine its position. A direct optical communication system characterized in that it has a function of finding the direction and distance of the receiving side from the size.
JP6077786A 1994-03-25 1994-03-25 Direct optical communication system Pending JPH07264135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6077786A JPH07264135A (en) 1994-03-25 1994-03-25 Direct optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6077786A JPH07264135A (en) 1994-03-25 1994-03-25 Direct optical communication system

Publications (1)

Publication Number Publication Date
JPH07264135A true JPH07264135A (en) 1995-10-13

Family

ID=13643662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6077786A Pending JPH07264135A (en) 1994-03-25 1994-03-25 Direct optical communication system

Country Status (1)

Country Link
JP (1) JPH07264135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531515A (en) * 2000-04-07 2003-10-21 ザ・リージェンツ・オブ・ジ・ユニバーシティ・オブ・カリフォルニア Remote interrogation high data rate free space laser communication link
JP2007144192A (en) * 2005-11-29 2007-06-14 General Electric Co <Ge> Optical link for transmitting data through air from a plurality of receiver coils in magnetic resonance imaging system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531515A (en) * 2000-04-07 2003-10-21 ザ・リージェンツ・オブ・ジ・ユニバーシティ・オブ・カリフォルニア Remote interrogation high data rate free space laser communication link
JP2007144192A (en) * 2005-11-29 2007-06-14 General Electric Co <Ge> Optical link for transmitting data through air from a plurality of receiver coils in magnetic resonance imaging system

Similar Documents

Publication Publication Date Title
US5060304A (en) Alignment acquiring, optical beam communication link
CA1333932C (en) Modulated retroreflector system
US5142400A (en) Method and apparatus for automatic acquisition and alignment of an optical beam communication link
CN1092791C (en) Surveying instrument
EP2149995B1 (en) Method and apparatus for visible light communication using single light source
US20020135748A1 (en) Adjustable mirror for collimated beam laser sensor
US20070127928A1 (en) Large field of view modulating retro reflector (MRR) for free space optical communication
EP2587694A1 (en) Method and system for indoor wireless optical links
US7751716B2 (en) Open-path/free-space optical communication system and method using reflected or backscattered light
JPH11354831A (en) Area sensor with optical axis having narrow angular characteristics
JP4033550B2 (en) Optical device, photoelectric switch, fiber type photoelectric switch, and color identification sensor
US6834164B1 (en) Alignment of an optical transceiver for a free-space optical communication system
EP0465604A4 (en) Infrared network entry permission method and apparatus
JPH07264135A (en) Direct optical communication system
JP6960378B2 (en) Light receiving relay device, light receiving reflection device and light transmitting / receiving device
US20030090818A1 (en) Co-aligned receiver and transmitter for wireless link
JP2000244408A (en) Optical space communication equipment
EP4040196A1 (en) Optical detection system for improved alignment
WO2016198018A1 (en) Optical module and control method and device therefor
JPH0683145B2 (en) Optical wireless communication device for moving body
US20040208598A1 (en) Optical wireless transceiver
JPH05312953A (en) Optical ranging system
KR20180116548A (en) Monostatic bidrectional focusing and collecting optics system
CN209841677U (en) Non-contact type drunk driving remote measuring and early warning device
JP3155188B2 (en) Automatic tracking device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term