JPH07263315A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH07263315A
JPH07263315A JP6054297A JP5429794A JPH07263315A JP H07263315 A JPH07263315 A JP H07263315A JP 6054297 A JP6054297 A JP 6054297A JP 5429794 A JP5429794 A JP 5429794A JP H07263315 A JPH07263315 A JP H07263315A
Authority
JP
Japan
Prior art keywords
filter
light
mask
refractive index
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6054297A
Other languages
Japanese (ja)
Inventor
Satoshi Tanaka
聡 田中
Soichi Inoue
壮一 井上
Tadahito Fujisawa
忠仁 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6054297A priority Critical patent/JPH07263315A/en
Publication of JPH07263315A publication Critical patent/JPH07263315A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To always obtain the optimum oblique-incident lighting position and polarizing direction by controlling the refractive index, transmittance, and polarization of a filter so that the angle and direction of polarization of diffracted light can become equivalent to the optimum oblique-incident lighting position in accordance with the periodic direction and pitch of a mask pattern. CONSTITUTION:A reticle 5 is formed on a transparent substrate and composed of a light shielding section 10 which is made of such a light shielding material as chromium, etc., and does not transmit exposing light and an opening 11 which transmits the exposing light. The refractive index of a filter 9 electrically or optically changes in a cycle of 2D. The angle theta of diffraction of primary diffracted light can be decided from 2Dsintheta=lambda when the variation DELTAn of the refractive index and film thickness (t) of the filter 9 are adjusted. When a mask is irradiated with the diffracted light, two-flux interference is obtained on a wafer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路の製造
に於ける微細レジストパターンを形成する投影露光装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus for forming a fine resist pattern in the manufacture of semiconductor integrated circuits.

【0002】[0002]

【従来の技術】近年、光リソグラフィー技術の進歩は目
ざましく、露光光の短波長化(i線(365nm)、Kr
Fエキシマレーザー(248nm))や投影露光装置の高
性能化、特にレンズの高NA化によってより微細なレジ
ストパタンをウェハ上に形成できるようになってきた。
図3に従来一般的に用いられている投影露光装置の概略
構成を示す。光源1、第1集光光学系2、均一化光学系
3、第2集光光学系4、レチクル5、投影光学系6、ウ
ェハ7の順に配列されている。第1集光光学系2は楕円
反射鏡及びインプットレンズに相当する部分であり、楕
円鏡の他球面鏡、平面鏡、レンズ等を適当に配置し、光
源から光束をできるだけ効率よく均一化光学系3に入れ
る役目をもつ。また、均一化光学系3はオプチカルイン
テグレータ(蝿の目レンズ)に相当する部分であり、そ
の他として光ファイバや多面体プリズム等が使用される
こともある。
2. Description of the Related Art In recent years, the progress of photolithography technology has been remarkable, and the wavelength of exposure light has been shortened (i line (365 nm), Kr
It has become possible to form a finer resist pattern on a wafer by improving the performance of the F-excimer laser (248 nm) and the projection exposure apparatus, especially by increasing the NA of the lens.
FIG. 3 shows a schematic configuration of a projection exposure apparatus that is generally used conventionally. The light source 1, the first condensing optical system 2, the homogenizing optical system 3, the second condensing optical system 4, the reticle 5, the projection optical system 6, and the wafer 7 are arranged in this order. The first condensing optical system 2 is a portion corresponding to an elliptical reflecting mirror and an input lens. A spherical mirror, a plane mirror, a lens, and the like other than the elliptic mirror are appropriately arranged, and the light flux from the light source is made as uniform as possible in the homogenizing optical system 3. Has a role to put in. Further, the homogenizing optical system 3 is a portion corresponding to an optical integrator (fly's-eye lens), and an optical fiber, a polyhedral prism, or the like may be used as other portions.

【0003】第2集光光学系4はアウトプットレンズ及
びコリメーションレンズに相当する部分であり、均一化
光学系3の出射光を重畳させ、さらに像面テレセントリ
ック性を確保する。この他、光束が光軸平行に近い場所
に収差補正がされている波長のみを透過するフィルタが
挿入され、またコールドミラーも、場所は一義的ではな
いが挿入される。
The second condensing optical system 4 is a portion corresponding to the output lens and the collimation lens, superimposes the light emitted from the homogenizing optical system 3, and further secures the image plane telecentricity. In addition, a filter that transmits only the wavelength for which the aberration correction is performed is inserted at a position where the light beam is parallel to the optical axis, and a cold mirror is also inserted, although the position is not unique.

【0004】このように構成された装置においてレチク
ル5から光が来る側を見た場合、光の性質は、第2集光
光学系4を通して均一化光学系3から出てくる光の性質
となり、均一化光学系3の出射側が見かけ上の光源に見
える。このため上記のような構成の場合、一般に均一化
光学系3の出射側8を2次光源と称している。チクル5
がウェハ7上に投影される時、投影露光パタンの形成特
性、即ち解像度や焦点深度等は、投影光学系6の開口数
NA及びレチクル5を照射する光の性質、即ち2次光源
8の性質によってきまる。
When looking at the side of the reticle 5 where light comes from in the apparatus constructed as described above, the nature of the light becomes the nature of the light coming out of the homogenizing optical system 3 through the second focusing optical system 4. The emission side of the homogenizing optical system 3 looks like an apparent light source. Therefore, in the case of the above-mentioned configuration, the emitting side 8 of the homogenizing optical system 3 is generally called a secondary light source. Chickle 5
Is projected onto the wafer 7, the formation characteristics of the projection exposure pattern, that is, the resolution, the depth of focus, etc., are the numerical aperture NA of the projection optical system 6 and the nature of the light that illuminates the reticle 5, that is, the nature of the secondary light source 8. Depends on

【0005】しかし、微細なパタンをレジスト上に形成
するため露光光の短波長化、投影光学装置の高NA化に
よって解像度をあげると、逆に焦点深度が低下するため
実用解像度はあまり向上しない。そこで投影露光装置に
おいて2次光源強度分布、レチクル、投影光学系の瞳面
の複素透過率分布を従来のものから変化させることで、
解像度や焦点深度の向上が考えられてきている。
However, if the resolution is increased by shortening the wavelength of the exposure light and increasing the NA of the projection optical apparatus to form a fine pattern on the resist, the depth of focus will be lowered, and the practical resolution will not be improved so much. Therefore, by changing the secondary light source intensity distribution, the reticle, and the complex transmittance distribution of the pupil plane of the projection optical system in the projection exposure apparatus from the conventional one,
Improvements in resolution and depth of focus are being considered.

【0006】解像力を向上させるものとして、特にLS
Iにおける配線パタンのような1次周期性をもつパタン
(以下L/Sと略記)に対しては、図4に示すように、
マスク20の開口部21に対して隣合う開口部22を通
過する露光光23との位相差がほぼ180度となるよう
に形成されたマスクを用いることにより、透明基板上に
L/Sパタンをクロム等の遮光性物質を用いて形成した
従来のマスクに対して、解像度が約2倍向上することが
知られている。この種の公知例としては特開昭57−6
2052号が挙げられる。
As a means for improving the resolution, particularly LS
For a pattern having a first-order periodicity (hereinafter abbreviated as L / S) like the wiring pattern in I, as shown in FIG.
The L / S pattern is formed on the transparent substrate by using a mask formed so that the phase difference between the opening 21 of the mask 20 and the exposure light 23 passing through the adjacent opening 22 is approximately 180 degrees. It is known that the resolution is about twice as high as that of a conventional mask formed using a light-shielding substance such as chromium. A publicly known example of this type is JP-A-57-6.
2052 is mentioned.

【0007】しかし、上記マスクを用いる場合、シフタ
を交互にはることが一般的には困難であることや、シフ
タ作成が困難なことにより、このマスクとほぼ同等の効
果を得られる別の方法が考えられてきている。
However, in the case of using the above mask, it is generally difficult to alternate the shifters and it is difficult to make the shifters. Therefore, another method that can obtain an effect almost equal to that of the mask is obtained. Is being considered.

【0008】上記方法の1つとして、図5に示すように
パタン周期方向に光軸30から偏心した位置から照明す
ることで隣合う開口31を透過する光32の間に位相差
をつけ、解像力をます方法(特開平4−273428)
が提案されている。この場合、従来は2次光源位置9に
フィルタ(σ絞り)33をおいて形成しており、遮光部
での露光光の損失が大きくなってしまう。
As one of the above-mentioned methods, as shown in FIG. 5, by illuminating from a position decentered from the optical axis 30 in the pattern cycle direction, a phase difference is provided between the lights 32 passing through the adjacent apertures 31, and the resolution is increased. Method (Japanese Patent Laid-Open No. 4-273428)
Is proposed. In this case, conventionally, the filter (σ stop) 33 is formed at the secondary light source position 9 so that the loss of the exposure light in the light shielding portion becomes large.

【0009】これらを解決する方法として、図6に示す
ようにマスク5の上方にダミーマスク40をおき、これ
により得られる回折光を用いることで、マスクに対し斜
入射効果を得て、解像力を向上するという方法が提案さ
れている(1993春季応物30p−L−10)。ダミ
ーマスクのパタンとして位相シフタオンリーのものを用
い、パタンサイズはマスクパタンサイズの2倍の大きさ
にする。これによって得られる回折光によってマスクを
照明することにより、斜入射照明を実現している。2次
光源位置で斜入射照明を実現する場合に比べ、ダミーマ
スクを用いた場合光量の損失が削減され、かつパタンに
対応したダミーパタンを形成することで最適な斜入射位
置を常に維持することが可能となっている。
As a method of solving these problems, a dummy mask 40 is placed above the mask 5 as shown in FIG. 6, and the diffracted light obtained by this is used to obtain an oblique incidence effect on the mask and increase the resolution. The method of improving is proposed (1993 spring adaptation 30p-L-10). A phase shifter-only pattern is used as the dummy mask pattern, and the pattern size is twice the mask pattern size. Oblique incidence illumination is realized by illuminating the mask with the diffracted light obtained thereby. Compared to the case of realizing oblique incidence illumination at the position of the secondary light source, the loss of light amount is reduced when a dummy mask is used, and the optimum oblique incidence position can always be maintained by forming a dummy pattern corresponding to the pattern. It is possible.

【0010】しかし、ここにおいて提案されているダミ
ーマスクは、透明基板上にパタンを彫り込みまたは張り
付けて作成するものであり、マスクと一体化するには作
成上困難が生じる。またマスクとは別に形成する場合に
おいても、今度はマスクが変わるたびにダミーマスクも
交換する必要が生じる。
However, the dummy mask proposed here is prepared by engraving or adhering a pattern on a transparent substrate, and it is difficult to form the dummy mask when it is integrated with the mask. Even when the mask is formed separately from the mask, it is necessary to replace the dummy mask each time the mask is changed.

【0011】[0011]

【発明が解決しようとする課題】以上のようにダミーマ
スクを用いた場合、その作成過程及び実際の露光過程の
面で問題があった。上記問題は、ダミーマスクとして、
透明基板の膜厚を周期的に変化させることで回折光を得
ているために、1つのパタンに対して1つのダミーマス
クを制作しなければならないところに存在するものであ
る。
As described above, when the dummy mask is used, there is a problem in the process of forming the dummy mask and the actual exposure process. The above problem is as a dummy mask
Since the diffracted light is obtained by periodically changing the film thickness of the transparent substrate, one dummy mask must be produced for one pattern.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、マスクに形成されたパタンを投影光学
系を介してウェハ上に投影露光する投影露光装置におい
て、前記マスクと光源との間に、微細領域より形成さ
れ、上記領域内の屈折率、透過率及び偏光を任意に変化
する事が可能なフィルタを装備し、前記マスクパタンの
周期方向及びピッチに応じて、上記フィルタにより生じ
る回折光角度を得るようにフィルタ屈折率・透過率及び
偏光を制御すること、及び、上記に記載のフィルタとし
て、電気光学材料を用いることで屈折率・透過率及び偏
光を電気的、光学的に制御することを特徴とする、投影
露光装置を提供する。該フィルタ材料として、フォトリ
フラクティブ材料、液晶、音響光学変調素子(AOM)
などを用いることとする。
In order to solve the above problems, according to the present invention, in a projection exposure apparatus for projecting and exposing a pattern formed on a mask onto a wafer through a projection optical system, the mask and a light source are provided. In between, a fine region is provided with a filter capable of arbitrarily changing the refractive index, the transmittance and the polarization in the region, according to the periodic direction and pitch of the mask pattern, by the filter The refractive index / transmittance and polarization are controlled electrically and optically by controlling the refractive index / transmittance and polarization of the filter so as to obtain the generated diffracted light angle, and by using an electro-optic material as the filter described above. Provided is a projection exposure apparatus, which is controlled by As the filter material, photorefractive material, liquid crystal, acousto-optic modulator (AOM)
Will be used.

【0013】[0013]

【作用】本発明によれば、ダミーマスクとして上記フィ
ルタをもちいることで、マスク上の任意の線幅・ピッチ
を有する周期パタンに対して、当パタンにより生じる0
次回折光と1次回折光のなす角度の1/2でもって入射
するように、該フィルタの屈折率・透過率分布を形成
し、また、偏光方向を当パタンの周期方向に直交するよ
うに形成することが可能となり、常に最適な斜入射照明
位置及び偏光方向をえることが可能となる。
According to the present invention, by using the filter as a dummy mask, a periodic pattern having an arbitrary line width / pitch on the mask is generated by this pattern.
The refractive index / transmittance distribution of the filter is formed so that the light enters at a half of the angle formed by the second-order diffracted light and the first-order diffracted light, and the polarization direction is formed so as to be orthogonal to the periodic direction of the pattern. Therefore, it is possible to always obtain the optimum oblique incidence illumination position and polarization direction.

【0014】[0014]

【実施例】図1に従って本発明の実施例について説明す
る。本発明で用いる投影露光装置の基本的な構成は従来
の装置と同一であり、異なるのは図3のレチクル5の上
部にフィルタ9を設置することである。図1は本発明の
実施例のフィルタ及びレチクルの配置の基本構成であ
る。
EXAMPLE An example of the present invention will be described with reference to FIG. The basic structure of the projection exposure apparatus used in the present invention is the same as that of the conventional apparatus, except that a filter 9 is installed on the reticle 5 in FIG. FIG. 1 shows a basic arrangement of filters and reticles according to an embodiment of the present invention.

【0015】本実施例で使用されるレチクル5は透明基
板上に、クロム等の遮光性物質よりなり露光光を透過し
ない遮光部10及び露光光を透過する開口部11により
形成されたものである。本発明で用いるフィルタ9は電
気的あるいは光学的に、周期2Dで屈折率が変化したも
の用いる。屈折率変化量△n及びフィルタ膜厚tを調整
することによって、1次回折光として回折角θが以下の
式で決まるようにする事が可能となる。
The reticle 5 used in this embodiment is formed on a transparent substrate by a light-shielding portion 10 made of a light-shielding material such as chromium that does not transmit exposure light and an opening 11 that transmits exposure light. . As the filter 9 used in the present invention, a filter whose refractive index is changed electrically or optically in a period of 2D is used. By adjusting the refractive index change amount Δn and the filter film thickness t, the diffraction angle θ as the first-order diffracted light can be determined by the following equation.

【0016】2Dsinθ=λ この回折光50によりマスクを照明することで、得られ
る回折光51は図1のようになり、ウェハ上では2光束
干渉が得られる。これにより、解像力向上効果並びに焦
点深度向上効果が得られる。
2Dsin θ = λ By illuminating the mask with this diffracted light 50, the diffracted light 51 obtained is as shown in FIG. 1, and two-beam interference is obtained on the wafer. Thereby, the effect of improving the resolution and the effect of improving the depth of focus can be obtained.

【0017】またこの場合、フィルタとマスクとはフラ
ウンホーファ回折で近似できる程度の距離離して置かれ
るため、斜入射光の双方はインコヒーレントであると考
えることができる。
Further, in this case, since the filter and the mask are placed apart from each other by a distance that can be approximated by Fraunhofer diffraction, both of the obliquely incident light can be considered to be incoherent.

【0018】次に上記フィルタを形成する方法について
更に詳しく述べることとする。フィルタを構成する材料
として、まずフォトリフラクティブ材料等の光電場の2
乗に比例して屈折率が変化するものを考える。図2に示
すように、上記材料60に波長λで互いにコヒーレント
な光波61を入射角度θで入射したとする。フィルタ中
には干渉により周期Pの光強度分布が形成される。
Next, the method for forming the above filter will be described in more detail. As a material for constructing a filter, first, a photorefractive material or the like, which is a photoelectric field, is used.
Consider that the refractive index changes in proportion to the power. As shown in FIG. 2, it is assumed that light waves 61 having a wavelength λ and coherent with each other are incident on the material 60 at an incident angle θ. A light intensity distribution having a period P is formed in the filter due to interference.

【0019】P=λ/2sinθ この光強度分布に応じて屈折率変化が生じる。フォトリ
フラクティブ材料など電場の2乗に比例して屈折率が変
化するものでは、この光強度分布と屈折変化分布は周期
が等しくなる。この屈折率分布にたいして、得られる回
折光を求める。得られる回折光の角度が所望の値になる
ように、形成時の光強度や波長・フィルタ膜厚を調整す
る。その1つとしてP=2Dとし、屈折率の最大と最小
を通る光の位相差が180度となるようにすると、回折
光はほぼ所望の値に得られることになる。
P = λ / 2 sin θ The refractive index changes according to this light intensity distribution. In a photorefractive material whose refractive index changes in proportion to the square of the electric field, the light intensity distribution and the refractive index change distribution have the same period. Obtained diffracted light is obtained for this refractive index distribution. The light intensity, wavelength, and filter film thickness at the time of formation are adjusted so that the angle of the obtained diffracted light has a desired value. As one of them, if P = 2D and the phase difference of the light passing through the maximum and the minimum of the refractive index is 180 degrees, the diffracted light can be obtained to a substantially desired value.

【0020】なお実施例において、図1、図2のD、P
で表されるピッチは必ずしもパタンサイズdあるいはD
の2倍である必要はなく、その周期性が完全である必要
もなく、一部パタンが欠けても構わない。
In the embodiment, D and P in FIGS.
The pitch represented by is not necessarily the pattern size d or D
It does not need to be twice as long as the above, its periodicity does not need to be perfect, and a part of the pattern may be missing.

【0021】またフィルタ材料も、必ずしもフォトリフ
ラクティブ材料である必要はなく、液晶等の素子を用い
て同等の効果を得られれば差し支えない。また液晶等と
組み合わせて、偏光方向をパタン周期方向と直交するよ
うに制御することができれば更に解像力向上効果が得ら
れる。またフィルタも、必ずしも回折光を離散的に発生
するようにする必要はない。
The filter material does not necessarily have to be a photorefractive material, and it is acceptable as long as the same effect can be obtained by using an element such as liquid crystal. Further, if it is possible to control the polarization direction so as to be orthogonal to the pattern cycle direction in combination with liquid crystal or the like, the effect of further improving the resolution can be obtained. Further, the filter does not necessarily need to discretely generate the diffracted light.

【0022】更に本実施例に、像面側の焦点面位置を変
えて多重露光することや、瞳面にて回折光の複素透過率
分布に変調をかけることを加えても、本発明にはなんら
差し支えるところではない。
Furthermore, even if multiple exposure is performed by changing the focal plane position on the image plane side or modulation of the complex transmittance distribution of the diffracted light on the pupil plane is added to the present embodiment, the present invention will be realized. It's not a hindrance.

【0023】本発明の望ましい実施形態としては、マス
クパタンとして周期性をもったもののを用いること、マ
スクとしては通常のクロム等の遮光部と透過部よりなる
マスクを用いること、及び、上記フィルタとして、屈折
率分布を書き換えることが可能なものを用いることが挙
げられる。
As a preferred embodiment of the present invention, a mask pattern having periodicity is used, a mask made of a light-shielding portion and a transmission portion such as ordinary chromium is used as the mask, and the filter is used. It is possible to use a material whose refractive index distribution can be rewritten.

【0024】[0024]

【発明の効果】マスクに形成されたパタンを投影光学系
を介してウェハ上に投影露光する投影露光装置におい
て、前記マスクと光源との間に、微細領域より形成さ
れ、上記領域内の屈折率、透過率及び偏光に対し任意に
変調する事が可能なフィルタを装備し、前記マスクパタ
ンの周期方向及びピッチに応じて、最適斜入射照明位置
と等価な回折光角度及び偏光方向を得るように上記フィ
ルタ屈折率・透過率及び偏光を制御することを特徴とす
る投影露光装置を用いることで、L/Sパタンに対し、
斜入射照明法と同等の解像力を有し、且つ露光光のロス
の少ない転写が可能となる。更に上記フィルタとして電
気光学素子等を用いることによって、異なるマスクに対
して1つのフィルタで同様の効果を得ることが可能とな
る。
In the projection exposure apparatus for projecting and exposing the pattern formed on the mask onto the wafer through the projection optical system, a fine region is formed between the mask and the light source, and the refractive index in the region is set. Equipped with a filter capable of arbitrarily modulating the transmittance and the polarization, so as to obtain the diffracted light angle and the polarization direction equivalent to the optimum oblique incident illumination position according to the periodic direction and pitch of the mask pattern. By using a projection exposure apparatus characterized by controlling the filter refractive index / transmittance and polarization,
It is possible to perform transfer with a resolution equivalent to that of the oblique incidence illumination method and with little loss of exposure light. Further, by using an electro-optical element or the like as the filter, it is possible to obtain the same effect with one filter for different masks.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に用いるレチクル及び光源フ
ィルタの構成図。
FIG. 1 is a configuration diagram of a reticle and a light source filter used in an embodiment of the present invention.

【図2】 本発明の実施例に用いるフィルタの機能説明
図。
FIG. 2 is a functional explanatory diagram of a filter used in an embodiment of the present invention.

【図3】 従来の投影露光装置の概略構成図。FIG. 3 is a schematic configuration diagram of a conventional projection exposure apparatus.

【図4】 従来の位相シフトマスクの例を示す構成図。FIG. 4 is a configuration diagram showing an example of a conventional phase shift mask.

【図5】 従来の斜入射照明の例を示す構成図。FIG. 5 is a configuration diagram showing an example of conventional oblique incidence illumination.

【図6】 従来のダミーマスクを用いた斜入射照明の例
を示す構成図。
FIG. 6 is a configuration diagram showing an example of oblique incidence illumination using a conventional dummy mask.

【符号の説明】[Explanation of symbols]

1 光源 2 第1集光光学系 3 均一化光学系 4 第2集光光学系 5 レチクル 6 投影光学系 7 ウェハ 8 2次光源位置 9 フィルタ(ダミーマスク) 10 レチクルの開口部 11 レチクルの遮光部 12 フィルタを形成する為のコヒーレント光 DESCRIPTION OF SYMBOLS 1 light source 2 1st condensing optical system 3 homogenizing optical system 4 2nd condensing optical system 5 reticle 6 projection optical system 7 wafer 8 secondary light source position 9 filter (dummy mask) 10 reticle opening 11 reticle light shielding part 12 Coherent light to form a filter

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/30 528 Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/30 528

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マスクに形成されたパタンを投影光学系
を介してウェハ上に投影露光する投影露光装置におい
て、前記マスクと光源との間に、屈折率、透過率及び偏
光に対し変調可能なフィルタを装備し、前記マスクパタ
ンの周期方向及びピッチに応じて、最適斜入射照明位置
と等価な回折光角度、偏光方向を得るようにフィルタ屈
折率・透過率及び偏光を制御することを特徴とする投影
露光装置。
1. A projection exposure apparatus for projecting and exposing a pattern formed on a mask onto a wafer via a projection optical system, wherein the mask, a light source, and the like can be modulated with respect to refractive index, transmittance, and polarization. A filter is provided, and the refractive index / transmittance and polarization of the filter are controlled so as to obtain a diffracted light angle and a polarization direction equivalent to the optimal oblique incidence illumination position according to the periodic direction and pitch of the mask pattern. Projection exposure system.
【請求項2】 前記フィルタとして、電気光学材料を用
い、屈折率・透過率及び偏光を電気的、光学的に制御す
ることを特徴とする請求項1記載の投影露光装置。
2. The projection exposure apparatus according to claim 1, wherein an electro-optic material is used as the filter, and the refractive index / transmittance and polarization are electrically and optically controlled.
JP6054297A 1994-03-25 1994-03-25 Projection aligner Pending JPH07263315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6054297A JPH07263315A (en) 1994-03-25 1994-03-25 Projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6054297A JPH07263315A (en) 1994-03-25 1994-03-25 Projection aligner

Publications (1)

Publication Number Publication Date
JPH07263315A true JPH07263315A (en) 1995-10-13

Family

ID=12966642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6054297A Pending JPH07263315A (en) 1994-03-25 1994-03-25 Projection aligner

Country Status (1)

Country Link
JP (1) JPH07263315A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173305A (en) * 2004-12-15 2006-06-29 Canon Inc Aligner and its method, and device manufacturing method
JP2006345006A (en) * 2003-11-20 2006-12-21 Nikon Corp Lighting optical device, exposure device, exposure method, and manufacturing method for micro device
JPWO2005050718A1 (en) * 2003-11-20 2007-12-06 株式会社ニコン Light flux conversion element, illumination optical device, exposure device, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2006345006A (en) * 2003-11-20 2006-12-21 Nikon Corp Lighting optical device, exposure device, exposure method, and manufacturing method for micro device
JPWO2005050718A1 (en) * 2003-11-20 2007-12-06 株式会社ニコン Light flux conversion element, illumination optical device, exposure device, and exposure method
JP4976015B2 (en) * 2003-11-20 2012-07-18 株式会社ニコン Flux conversion element, illumination optical device, exposure apparatus, and exposure method
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2006173305A (en) * 2004-12-15 2006-06-29 Canon Inc Aligner and its method, and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
US5715089A (en) Exposure method and apparatus therefor
JP3339174B2 (en) Photomask manufacturing method, exposure method, and semiconductor device manufacturing method
JP3099933B2 (en) Exposure method and exposure apparatus
JP2000021742A (en) Method of exposure and exposure equipment
KR20090033165A (en) Illuminating optical apparatus, exposure apparatus and device manufacturing method
TWI391989B (en) Hologram, generation method, and exposure apparatus
JPH07263315A (en) Projection aligner
JP5339721B2 (en) Computer generated hologram and exposure apparatus
JP2003195475A (en) Exposure method and device for making hologram mask and recording method using hologram mask
JP3647272B2 (en) Exposure method and exposure apparatus
JP2000021720A (en) Exposure method and manufacture of aligner
US5985491A (en) Reflectors for photolithographic projection and related systems and methods
JP3148818B2 (en) Projection type exposure equipment
JPH05267124A (en) Projection exposure device
JPH0950117A (en) Photomask and exposing method using the same
JPH05234850A (en) Projecton aligner and manufacture of semiconductor device by using the same
JP3647270B2 (en) Exposure method and exposure apparatus
JP3296296B2 (en) Exposure method and exposure apparatus
US5733687A (en) Photomask, exposing method using photomask, and manufacturing method of photomask
US8531747B2 (en) Hologram, hologram data generation method, and exposure apparatus
JPH06267822A (en) Fine pattern formation
JP3189009B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JP3244076B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JP3647271B2 (en) Exposure method and exposure apparatus
JP2000150374A (en) Projective aligner and method, and manufacture of element