JPH0725618A - Production of soft ferrite - Google Patents

Production of soft ferrite

Info

Publication number
JPH0725618A
JPH0725618A JP5171654A JP17165493A JPH0725618A JP H0725618 A JPH0725618 A JP H0725618A JP 5171654 A JP5171654 A JP 5171654A JP 17165493 A JP17165493 A JP 17165493A JP H0725618 A JPH0725618 A JP H0725618A
Authority
JP
Japan
Prior art keywords
average particle
additive
particle size
soft ferrite
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5171654A
Other languages
Japanese (ja)
Inventor
Takashi Kono
貴史 河野
Satoru Narutani
哲 成谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5171654A priority Critical patent/JPH0725618A/en
Publication of JPH0725618A publication Critical patent/JPH0725618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a technology enabling the stable production of a soft ferrite having excellent magnetic characteristics. CONSTITUTION:A soft ferrite is produced by adding at least one kind of additive as a subsidiary component to a basic component. In the above production process, the average particle diameter of the additive is controlled, according to the addition timing, to a size finer than the average particle diameter of the mixed raw material powder and/or the average particle diameter of crushed ferrite powder obtained by crushing a burnt product. This process enables stable production of a soft ferrite having excellent magnetic characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ソフトフェライトの製
造方法に関し、特に、磁気特性に優れたソフトフェライ
トを安定して製造する方法についての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing soft ferrite, and particularly to a method for stably producing soft ferrite having excellent magnetic properties.

【0002】[0002]

【従来の技術】一般に、 Mn-Zn系フェライトや Ni-Zn系
フェライトなどのソフトフェライト材料は、各種通信機
器のノイズフィルターやトランス用磁心などの用途に広
く用いられている。このソフトフェライト材料は、今日
における電子機器の小型化や高集積化を実現するため
に、磁気特性の一層の高性能化が求められている。その
ため、従来のソフトフェライト材料は、Fe2O3, MnO, Zn
O, NiO, MgO などの基本成分に対し、焼結体の結晶粒界
に偏析して結晶粒との相互作用により電磁気的,機械的
特性を制御改善するような種々の添加物が用いられ、そ
れぞれの用途に応じた改良が施されている。
2. Description of the Related Art Generally, soft ferrite materials such as Mn-Zn type ferrite and Ni-Zn type ferrite are widely used for noise filters of various communication devices and transformer cores. This soft ferrite material is required to have further improved magnetic characteristics in order to realize miniaturization and high integration of today's electronic devices. Therefore, the conventional soft ferrite materials are Fe 2 O 3 , MnO, Zn
With respect to basic components such as O, NiO, and MgO, various additives that segregate at the crystal grain boundaries of the sintered body and control and improve electromagnetic and mechanical properties by interaction with the crystal grains are used. Improvements have been made according to each application.

【0003】例えば、多結晶の Mn-Zn系フェライトに、
SiO2, CaO を微量添加して電気抵抗を増大させることに
より、渦電流損失を減少させ、 Mn-Zn系フェライトの磁
気損失を低減させる技術が提案されている(特公昭36−
2283号公報参照)。ところが、この技術では、近年のよ
うなより一層低い磁気損失化への要求に応えるにはなお
不十分であり、さらに他の種類の添加物を使用すること
が不可欠であった。例えば、上記SiO2, CaO の添加物の
他に、 Nb2O5, V2O5, Al2O3, CoO, CuO, ZrO2を添加す
ることにより磁気損失の一層の低減を図る技術が、特開
昭60−132301号公報などで提案されている。このよう
に、従来から数多くの添加物について種々の検討が行わ
れてきたが、これらは、添加物が偏析する結晶粒界の成
分組成や厚さを均一にするという観点にたって、添加物
の粉体性状を制御することにより磁気特性の向上を図る
技術ではない。
For example, in polycrystalline Mn-Zn type ferrite,
A technique has been proposed in which a small amount of SiO 2 or CaO is added to increase electric resistance to reduce eddy current loss and magnetic loss of Mn-Zn ferrite (Japanese Patent Publication No. 36-
2283). However, this technique is still insufficient to meet the demand for even lower magnetic loss in recent years, and it was essential to use other types of additives. For example, a technique for further reducing magnetic loss by adding Nb 2 O 5 , V 2 O 5 , Al 2 O 3 , CoO, CuO, ZrO 2 in addition to the above SiO 2 and CaO additives is known. , JP-A-60-132301. As described above, various studies have been performed on many additives from the past, but these are based on the viewpoint of making the component composition and thickness of the grain boundaries where the additives segregate uniform. It is not a technique for improving the magnetic characteristics by controlling the powder properties.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
実情に鑑みてなされたものであり、添加物の粉体性状を
制御することにより、磁気特性に優れたソフトフェライ
トを安定製造することができる技術を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and it is possible to stably produce soft ferrite having excellent magnetic properties by controlling the powder property of the additive. The purpose is to provide the technology that can.

【0005】[0005]

【課題を解決するための手段】さて、ソフトフェライト
の製造においては、母体となる基本成分に加えて、焼結
体の結晶粒界に偏析し結晶粒との相互作用により電磁気
的,機械的特性等を制御改善するような,様々な添加物
が使用される。この添加物の含有量は、通常数十〜数千
ppm の微量であり、形成される結晶粒界は数nm程度の極
薄構造を有しているとされ、粒界近傍の組成のばらつき
も無視できないと考えられる。従って、高特性を実現さ
せるためには、このような超微細構造を均質に形成させ
る必要があり、それには、添加物を原料混合粉中または
仮焼後の粉砕粉中にできるだけ均一に分散させることが
重要である。
[Means for Solving the Problems] In the production of soft ferrite, in addition to the basic component as a matrix, it segregates at the crystal grain boundaries of the sintered body and interacts with the crystal grains, resulting in electromagnetic and mechanical properties. Various additives are used to control and improve the like. The content of this additive is usually tens to thousands.
It is said that the amount is as small as ppm, and the crystal grain boundaries that are formed have an ultrathin structure of about several nanometers, and it is considered that variations in the composition near the grain boundaries cannot be ignored. Therefore, in order to realize high characteristics, it is necessary to form such an ultrafine structure uniformly, in which the additives are dispersed as uniformly as possible in the raw material mixed powder or the pulverized powder after calcination. This is very important.

【0006】このような知見に基づいて発明者らは、上
記目的の実現に向け、添加物の分散性を改善するための
種々の検討を行った。その結果、添加物の平均粒径を制
御することで、この微量成分をフェライト中に均一に分
散させることができ、磁気特性を改善できることを見出
し、本発明に想到したのである。
On the basis of such knowledge, the inventors have conducted various studies for improving the dispersibility of additives in order to realize the above object. As a result, the inventors have found that by controlling the average particle diameter of the additive, it is possible to uniformly disperse this trace component in the ferrite and improve the magnetic characteristics, and have reached the present invention.

【0007】すなわち、本発明は、基本成分に、副成分
として少なくとも1種以上の添加物を添加してなるソフ
トフェライトの製造方法において、この添加物が原料混
合時に添加されるとき、この添加物は、その平均粒径
が、原料混合粉の平均粒径以下の大きさのものを用いる
ことを特徴とするソフトフェライトの製造方法であり
(第1発明)、前記添加物が仮焼物の粉砕時に添加され
るとき、この添加物は、その平均粒径が、仮焼物粉砕後
の粉砕粉の平均粒径以下の大きさのものを用いることを
特徴とするソフトフェライトの製造方法であり(第2発
明)、前記添加物が原料混合時および仮焼物の粉砕時の
両方に分けて添加されるとき、この添加物は、その平均
粒径が、原料混合粉の平均粒径以下の大きさのものを用
いると共に、仮焼物粉砕後の粉砕粉の平均粒径以下の大
きさのものを用いることを特徴とするソフトフェライト
の製造方法である(第3発明)。
That is, the present invention relates to a method for producing soft ferrite which comprises adding at least one additive as a sub-component to a basic component, and when the additive is added at the time of mixing raw materials, the additive is added. Is a method for producing soft ferrite, characterized in that the average particle size thereof is equal to or smaller than the average particle size of the raw material mixed powder (first invention), and the additive is used during pulverization of the calcined product. When added, this additive is a method for producing soft ferrite, characterized in that its average particle size is equal to or smaller than the average particle size of the pulverized powder after calcination of the calcinated product (second method). Invention), when the additive is added separately at the time of mixing the raw materials and at the time of pulverizing the calcined product, the average particle diameter of the additive is not more than the average particle diameter of the raw material mixed powder. With the calcination powder It is a manufacturing method of the soft ferrite, which comprises using an an average particle under size or less size of pulverized powder after (the third invention).

【0008】[0008]

【作用】本発明の特徴は、添加物の混合に際し、添加物
の平均粒径を、この添加物の添加時期に応じて、原料混
合粉の平均粒径以下の大きさおよび/または仮焼物粉砕
後のフェライト粉砕粉の平均粒径以下の大きさに制御す
る点にある(第1発明,第2発明,第3発明)。これに
より、これら添加物のフェライト中への均一分散が可能
となり、磁気特性が改善される。このように、添加物の
平均粒径を制御する理由は、添加物の平均粒径が、混合
原料粉の平均粒径または仮焼物粉砕後のフェライト粉砕
粉の平均粒径を超えると、混合や粉砕操作を経ても添加
物の均一分散が行われず、微視的には添加物濃度の高い
部分と低い部分が生じて、組成の不均一性が高まるの
で、磁気特性を改善することができないからである。
The feature of the present invention is that, when the additive is mixed, the average particle size of the additive is adjusted to be smaller than the average particle size of the raw material mixed powder and / or the calcined product is pulverized, depending on the time of addition of the additive. The point is to control the size to be equal to or smaller than the average particle size of the subsequent pulverized ferrite powder (first invention, second invention, third invention). As a result, it becomes possible to uniformly disperse these additives in the ferrite and improve the magnetic characteristics. In this way, the reason for controlling the average particle size of the additive is that when the average particle size of the additive exceeds the average particle size of the mixed raw material powder or the average particle size of the pulverized ferrite powder after calcination, Even after the pulverization operation, the additives are not uniformly dispersed, and microscopically, there are parts with high and low concentrations of additives, which increases composition non-uniformity, so magnetic properties cannot be improved. Is.

【0009】なお、本発明方法では、各種粉末原料を所
定の成分組成になるように混合,仮焼,粉砕し、次い
で、常法に従い圧縮成形し、その後、焼成を施すことに
より、ソフトフェライトを製造することができる。この
際、添加物の添加は、原料混合時および/または仮焼物
粉砕時に行われる。
In the method of the present invention, various powder raw materials are mixed, calcined and pulverized so as to have a predetermined component composition, then compression-molded according to a conventional method, and then fired to form soft ferrite. It can be manufactured. At this time, the additives are added at the time of mixing the raw materials and / or at the time of pulverizing the calcined product.

【0010】[0010]

【実施例】【Example】

(実施例1)焼結体の成分組成がFe2O3 :53.5 mol%,
MnO: 37.5mol%, ZnO:9.0mol%となるように、平均
粒径がそれぞれ Fe2O3:0.8 μm, Mn3O4 :0.7 μm,
ZnO: 0.8μmである主原料を混合して原料混合粉と
し、次いで、得られた原料混合粉を仮焼し、その後、得
られた仮焼物を粉砕,乾燥して、平均粒径が1.0 μmで
あるフェライト粉砕粉を得た。この際、添加物として、
SiO2=150ppm, CaO=350ppm, Nb2O5=180ppm, SnO2=350pp
m, TiO2=900ppm を、原料混合時および/または仮焼物
粉砕時に添加配合した。これらの添加物の添加時期と平
均粒径をそれぞれ表1に示す。なお、実施例に記載の平
均粒径は、空気透過法に基づく測定値である。次に、得
られたフェライト粉砕粉にバインダーとしてPVAを混
合した後、リング状に成形し、本焼成を施し、ソフトフ
ェライトを製造した。
(Example 1) composition of the sintered body is Fe 2 O 3: 53.5 mol% ,
The average particle diameters of Fe 2 O 3 : 0.8 μm, Mn 3 O 4 : 0.7 μm, and MnO: 37.5 mol% and ZnO: 9.0 mol%, respectively.
ZnO: 0.8 μm of the main raw material is mixed to make a raw material mixed powder, then the obtained raw material mixed powder is calcined, and then the obtained calcined product is crushed and dried to obtain an average particle size of 1.0 μm. A pulverized powder of ferrite was obtained. At this time, as an additive,
SiO 2 = 150ppm, CaO = 350ppm, Nb 2 O 5 = 180ppm, SnO 2 = 350pp
m, TiO 2 = 900 ppm was added and blended at the time of mixing the raw materials and / or at the time of pulverizing the calcined product. Table 1 shows the addition timing and average particle diameter of these additives. The average particle size described in the examples is a measured value based on the air permeation method. Next, PVA as a binder was mixed with the obtained pulverized ferrite powder, and then molded into a ring shape and subjected to main firing to manufacture soft ferrite.

【0011】このようにして製造したソフトフェライト
の500kHz, 50mT, 80℃におけるコアロスを測定し、その
結果を表1に併せて示す。また、添加物(SiO2)の平均
粒径とソフトフェライトのコアロスとの関係を図1に示
す。図1に示す結果から明らかなように、添加物の細粒
化によって磁気特性を改善することができることを確認
した。また、全ての添加物の平均粒径が原料混合粉およ
び/またはフェライト粉砕粉の平均粒径以下となる場合
には、優れた磁気特性を得ることができるが、それ以外
の場合にはコアロスが大きく、添加物の平均粒径を、原
料混合粉および/またはフェライト粉砕粉の平均粒径以
下に制御することが必要であることを確認した。
The core loss of the soft ferrite thus produced was measured at 500 kHz, 50 mT and 80 ° C., and the results are also shown in Table 1. The relationship between the average particle size of the additive (SiO 2 ) and the core loss of soft ferrite is shown in FIG. As is clear from the results shown in FIG. 1, it was confirmed that the magnetic characteristics can be improved by making the additives finer. Further, when the average particle size of all the additives is equal to or less than the average particle size of the raw material mixed powder and / or the crushed ferrite powder, excellent magnetic properties can be obtained, but in other cases, the core loss is It was confirmed that it is necessary to control the average particle size of the additive to be equal to or smaller than the average particle size of the raw material mixed powder and / or the crushed ferrite powder.

【0012】[0012]

【表1】 [Table 1]

【0013】(実施例2)焼結体の成分組成がFe2O3
45.3 mol%, MnO: 20.2mol%, MgO:11.4mol%, ZnO
:23.1 mol%となるように、平均粒径がそれぞれ Fe2O
3:0.8 μm, Mn 3O4 :0.7 μm, MgO : 0.6μm, ZnO
: 0.8μmである主原料を混合して原料混合物とし、
次いで、この原料混合物を仮焼し、その後、添加物とし
てSiO2=1000ppm, CaO=3500ppm を添加配合してから粉
砕,乾燥を施して、平均粒径が1.0 μmであるフェライ
ト粉砕粉を得た。この際、使用した添加物の平均粒径を
表2に示す。次に、実施例1と同様にしてソフトフェラ
イトを製造した後、15.75kHz, 100mT, 100℃におけるコ
アロスを測定し、その結果を表2に併せて示す。表2に
示す結果から明らかなように、実施例1のMn-Zn 系フェ
ライトと同様に、添加物の細粒化によってコアロス(磁
気特性)を改善することができることを確認した。
(Example 2) The composition of the sintered body was Fe.2O3:
45.3 mol%, MnO: 20.2 mol%, MgO: 11.4 mol%, ZnO
 : The average grain size of Fe is 23.1 mol%.2O
3: 0.8 μm, Mn 3OFour : 0.7 μm, MgO: 0.6 μm, ZnO
 : Mixing main raw materials of 0.8 μm to form a raw material mixture,
Then, this raw material mixture is calcined, and then used as an additive.
SiO2= 1000ppm, CaO = 3500ppm
Ferrai with an average particle size of 1.0 μm after crushing and drying
Obtained crushed powder. At this time, the average particle size of the additives used
It shows in Table 2. Next, in the same manner as in Example 1, soft blowjob
After manufacturing the ferrite, it was tested at 15.75kHz, 100mT, 100 ℃.
Aros was measured, and the results are also shown in Table 2. In Table 2
As is clear from the results shown, the Mn-Zn system ferrite of Example 1 was
As with the light, core loss (magnetism
It has been confirmed that it is possible to improve the physical characteristics).

【0014】[0014]

【表2】 [Table 2]

【0015】(実施例3)焼結体の成分組成がFe2O3
49.8 mol%, NiO: 35.7mol%, ZnO:14.5 mol%とな
るように、平均粒径がそれぞれ Fe2O3:0.8 μm, NiO
:0.7 μm, ZnO: 0.8μmである主原料を混合して原
料混合物とし、次いで、この原料混合物を仮焼し、その
後、添加物としてV2O5=1.4wt%, CoO=0.1 wt%を添加配
合してから粉砕,乾燥を施して、平均粒径が1.1 μmの
フェライト粉砕粉を得た。この際、使用した添加物の平
均粒径を表3に示す。次に、実施例1と同様にしてソフ
トフェライトを製造した後、5MHz におけるtan δ/μ
i を測定し、その結果を表3に併せて示す。表3に示す
結果から明らかなように、本実施例も他の実施例と同様
に、添加物の細粒化によって磁気特性を改善することが
できることを確認した。
Example 3 The composition of the sintered body was Fe 2 O 3 :
49.8 mol%, NiO: 35.7 mol%, ZnO: 14.5 mol% so that the average particle size of each is Fe 2 O 3 : 0.8 μm, NiO
: 0.7 μm, ZnO: 0.8 μm are mixed to form a raw material mixture, which is then calcined, and then V 2 O 5 = 1.4 wt% and CoO = 0.1 wt% are added as additives. After the addition and blending, the mixture was pulverized and dried to obtain a pulverized powder of ferrite having an average particle size of 1.1 μm. Table 3 shows the average particle diameters of the additives used at this time. Next, after manufacturing soft ferrite in the same manner as in Example 1, tan δ / μ at 5 MHz
i was measured, and the results are also shown in Table 3. As is clear from the results shown in Table 3, it was confirmed that the magnetic properties can be improved in this example as well as the other examples by making the additives finer.

【0016】[0016]

【表3】 [Table 3]

【0017】以上説明したように本発明によれば、原料
混合粉やフェライト粉砕粉の平均粒径を超えるような平
均粒径を示す添加物を使用する場合に比較して、磁気特
性に優れたソフトフェライトを安定製造することができ
る。しかも、本発明方法は、同等の磁気特性を得るのに
必要な添加物の量が少量で済むため、原料コストの低減
にも有効である。なお、本発明は、実施例で示したよう
なMn-Zn 系フェライト、Mn-Mg-Zn系フェライト、Ni-Zn
系フェライトを含むあらゆるソフトフェライトに応用で
き、しかも、ソフトフェライトに加える微量添加物の全
てに適用することができる。
As described above, according to the present invention, the magnetic characteristics are excellent as compared with the case of using the additive having the average particle diameter exceeding the average particle diameter of the raw material mixed powder or the crushed ferrite powder. It is possible to stably manufacture soft ferrite. Moreover, the method of the present invention requires only a small amount of additive to obtain the same magnetic characteristics, and is therefore effective in reducing the raw material cost. The present invention is based on Mn-Zn series ferrite, Mn-Mg-Zn series ferrite, Ni-Zn series ferrite as shown in the examples.
It can be applied to all soft ferrites including system ferrites, and can be applied to all trace additives added to soft ferrites.

【0018】[0018]

【発明の効果】以上説明したように本発明方法によれ
ば、磁気特性に優れたソフトフェライトを安定製造する
ことができる。これにより、本発明方法により製造した
材料をスイッチング電源の磁心等に使用すれば、電源等
の高効率化や小型化に有効である。
As described above, according to the method of the present invention, it is possible to stably produce soft ferrite having excellent magnetic characteristics. As a result, if the material manufactured by the method of the present invention is used for the magnetic core of a switching power supply, etc., it is effective for increasing the efficiency and downsizing of the power supply and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】添加物(SiO2)の平均粒径とソフトフェライト
のコアロスとの関係を示す図である。
FIG. 1 is a diagram showing the relationship between the average particle size of an additive (SiO 2 ) and the core loss of soft ferrite.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基本成分に、副成分として少なくとも1
種以上の添加物を添加してなるソフトフェライトの製造
方法において、この添加物が原料混合時に添加されると
き、この添加物は、その平均粒径が、原料混合粉の平均
粒径以下の大きさのものを用いることを特徴とするソフ
トフェライトの製造方法。
1. A base component containing at least 1 as a subcomponent.
In the method for producing a soft ferrite obtained by adding at least one kind of additive, when the additive is added at the time of mixing the raw materials, the average particle size of the additive is larger than the average particle size of the raw material mixed powder. A method for producing soft ferrite, characterized in that
【請求項2】 基本成分に、副成分として少なくとも1
種以上の添加物を添加してなるソフトフェライトの製造
方法において、この添加物が仮焼物の粉砕時に添加され
るとき、この添加物は、その平均粒径が、仮焼物粉砕後
の粉砕粉の平均粒径以下の大きさのものを用いることを
特徴とするソフトフェライトの製造方法。
2. A basic component and at least 1 as a secondary component.
In the method for producing a soft ferrite formed by adding at least one kind of additive, when this additive is added during pulverization of the calcined product, this additive has an average particle size of pulverized powder after calcination of the pulverized product. A method for producing soft ferrite, characterized in that a material having an average particle size or less is used.
【請求項3】 基本成分に、副成分として少なくとも1
種以上の添加物を添加してなるソフトフェライトの製造
方法において、この添加物が原料混合時および仮焼物の
粉砕時の両方に分けて添加されるとき、この添加物は、
その平均粒径が、原料混合粉の平均粒径以下の大きさの
ものを用いると共に、仮焼物粉砕後の粉砕粉の平均粒径
以下の大きさのものを用いることを特徴とするソフトフ
ェライトの製造方法。
3. A basic component, and at least 1 as a secondary component.
In the method for producing a soft ferrite formed by adding at least one kind of additive, when the additive is added separately at both the raw material mixing time and the calcination product crushing time, the additive is
The average particle size of the soft ferrite is characterized by using one having a size equal to or less than the average particle size of the raw material mixed powder, and one having a size equal to or less than the average particle size of the pulverized powder after calcination. Production method.
JP5171654A 1993-07-12 1993-07-12 Production of soft ferrite Pending JPH0725618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5171654A JPH0725618A (en) 1993-07-12 1993-07-12 Production of soft ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5171654A JPH0725618A (en) 1993-07-12 1993-07-12 Production of soft ferrite

Publications (1)

Publication Number Publication Date
JPH0725618A true JPH0725618A (en) 1995-01-27

Family

ID=15927223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5171654A Pending JPH0725618A (en) 1993-07-12 1993-07-12 Production of soft ferrite

Country Status (1)

Country Link
JP (1) JPH0725618A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238617A (en) * 1997-12-19 1999-08-31 Tdk Corp Manganese-zinc based ferrite
JP2007197253A (en) * 2006-01-26 2007-08-09 Tdk Corp METHOD OF MANUFACTURING Mn-Zn FERRITE
US7438849B2 (en) 2002-09-20 2008-10-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy and process for producing the same
JP2015078095A (en) * 2013-10-17 2015-04-23 Fdk株式会社 Ferrite and manufacturing method of ferrite
CN111243815A (en) * 2018-11-29 2020-06-05 株式会社村田制作所 Magnetic material, electronic component, and coil core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238617A (en) * 1997-12-19 1999-08-31 Tdk Corp Manganese-zinc based ferrite
US7438849B2 (en) 2002-09-20 2008-10-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy and process for producing the same
JP2007197253A (en) * 2006-01-26 2007-08-09 Tdk Corp METHOD OF MANUFACTURING Mn-Zn FERRITE
JP2015078095A (en) * 2013-10-17 2015-04-23 Fdk株式会社 Ferrite and manufacturing method of ferrite
CN111243815A (en) * 2018-11-29 2020-06-05 株式会社村田制作所 Magnetic material, electronic component, and coil core
US11437171B2 (en) 2018-11-29 2022-09-06 Murata Manufacturing Co., Ltd. Magnetic material, electronic component, and winding core

Similar Documents

Publication Publication Date Title
KR100639770B1 (en) Method for producing Mn-Zn ferrite
CN104230323A (en) M-type calcium-lanthanum-cobalt permanent magnetic ferrite and preparation method thereof
CN109485403A (en) A kind of high BsLow loss soft magnetic ferrite material and preparation method thereof
EP1101736A1 (en) Mn-Zn ferrite and production thereof
JP2000501893A (en) Ferrite magnets, powders for ferrite magnets, and methods for producing them
JP2917706B2 (en) Oxide magnetic material
CN104230321A (en) M-type calcium permanent magnetic ferrite and preparation method thereof
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
JP3597673B2 (en) Ferrite material
JPH06310320A (en) Oxide magnetic substance material
JPH0725618A (en) Production of soft ferrite
JP2005330126A (en) MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP2855990B2 (en) Oxide magnetic material
CN1686927A (en) Higher magnetic permcability lowloss ferritc in manganese zinc series and preparation method thereof
CN103641464B (en) An anti-electromagnetic interference magnesium-zinc ferrite material and a preparation method thereof
JP2000323317A (en) Ferrite magnet and manufacture of powder thereof
JP2021150619A (en) Ferrite sintered magnet
JP2021150620A (en) Ferrite sintered magnet
JP3039784B2 (en) High frequency low loss ferrite for power supply
JP2556917B2 (en) Manufacturing method of high frequency and low loss ferrite for power supply
JP2802839B2 (en) Oxide soft magnetic material
JP5660698B2 (en) Magnetic oxide material
JPH10270231A (en) Mn-ni ferrite material
JP2007197253A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE