JPH07254153A - Method for outputting information in information recording medium - Google Patents

Method for outputting information in information recording medium

Info

Publication number
JPH07254153A
JPH07254153A JP6043624A JP4362494A JPH07254153A JP H07254153 A JPH07254153 A JP H07254153A JP 6043624 A JP6043624 A JP 6043624A JP 4362494 A JP4362494 A JP 4362494A JP H07254153 A JPH07254153 A JP H07254153A
Authority
JP
Japan
Prior art keywords
recording medium
amorphous
information
fluorescence
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6043624A
Other languages
Japanese (ja)
Inventor
Katsuyuki Naito
勝之 内藤
Akira Miura
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6043624A priority Critical patent/JPH07254153A/en
Publication of JPH07254153A publication Critical patent/JPH07254153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To read out high density recorded information and to display it without using a light source by using a compd. producing a significant difference in the intensity of fluorescence or electroluminescence at the time of crystalline- amorphous transition in an information recording medium. CONSTITUTION:Metal Cr is vapor-deposited on a glass sheet to form a photo- thermal conversion layer. A compd. considerably reducing the intensity of fluorescence by transition from a crystalline state to an amorphous state is put on a glass substrate and melted by heating. The glass sheet is brought into contact with the resultant melt with the conversion layer downward so as to uniformly hold the melt. The compd. is then allowed to form a recording layer of an amorphous solid by cooling the glass substrate to obtain an optical recording medium. This recording medium is irradiated with a specified laser beam spot to record information. The recorded part emits fluorescence and enables readout. When the recorded part is irradiated with another specified laser beam spot, the irradiated part loses its fluorescence and the record is erased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ディスクや表示記録素
子などに適用される情報記録媒体の情報出力方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an information output method for an information recording medium applied to an optical disc, a display recording element and the like.

【0002】[0002]

【従来の技術】近年、書換え可能な高密度記録媒体が盛
んに研究されている。このうち、物理的な結晶−非晶質
転移を利用した記録媒体は、化学反応を伴う記録媒体よ
りも繰り返し耐性がよいことが知られている。しかしな
がら、結晶−非晶質転移を利用した記録媒体において
は、従来結晶と非晶質との反射率の差を検出して記録さ
れた情報を読み出すのが一般的であり、十分な感度で読
み出しを行うには記録領域をあまり小さくすることがで
きず、高密度化には限界があった。また記録媒体からの
反射光の検出に当って、検出手段の厳密な位置制御が必
要となることから、システムの大型化を招きやすいとい
う問題もあった。
2. Description of the Related Art In recent years, rewritable high density recording media have been actively studied. Among them, it is known that a recording medium utilizing a physical crystal-amorphous transition has a higher repeating durability than a recording medium involving a chemical reaction. However, in a recording medium utilizing the crystal-amorphous transition, it is general to read the recorded information by detecting the difference in reflectance between the conventional crystal and the amorphous, and read with sufficient sensitivity. However, the recording area cannot be made too small to carry out, and there is a limit to the increase in density. Further, in detecting the reflected light from the recording medium, it is necessary to strictly control the position of the detecting means, which causes a problem that the system is likely to be upsized.

【0003】さらに、このような記録媒体に用いられる
記録材料は、これまで主として無機物質に限られてい
た。これは、ポリマーを除く低分子量の有機物質は常温
以上で安定な非晶質状態を保つものが少なく、逆にポリ
マーは安定な非晶質状態を保つことができるが結晶化が
起こりにくいことから、記録媒体には用いることが困難
であるためである。しかし、無機物質の結晶−非晶質転
移を利用した記録媒体では、転移温度が高温であるた
め、耐熱性のある基板を用いる必要がある。また、無機
物質のうち金属や半導体では熱伝導率が大きいため記録
や消去に大きなエネルギーを要し、しかも記録スポット
が大きくなって密度を上げるのが困難である。
Further, the recording materials used for such recording media have hitherto been mainly limited to inorganic substances. This is because few low molecular weight organic substances except polymers maintain a stable amorphous state at room temperature or higher, and on the other hand, polymers can maintain a stable amorphous state, but crystallization does not easily occur. This is because it is difficult to use as a recording medium. However, in a recording medium that utilizes the crystal-amorphous transition of an inorganic substance, the transition temperature is high, so it is necessary to use a substrate having heat resistance. Further, among the inorganic substances, metals and semiconductors have large thermal conductivity and thus require a large amount of energy for recording and erasing, and it is difficult to increase the density because the recording spot becomes large.

【0004】これに対し近年、有機物質を用いた書換え
可能な表示記録媒体も盛んに研究されている。例えば、
ロイコ染料と顕・消色材とを組み合わせて発色および消
色を可逆的に起こさせるもの(特開平4−50290号
公報)、マトリックスポリマー中の有機結晶粒子の凝固
条件に応じて透明性を変化させるもの(特開昭54−1
19377号公報)、液晶ポリマーの分子配列の熱的挙
動を利用して透明性を変化させる方法(特開昭4−13
0412号公報)、結晶−非晶質転移を利用して着色状
態の変化を生じさせるもの(Mol.Cryst.Li
quid Cryst.,1993,235,p.14
7)などが提案されている。しかし、これらの表示記録
媒体は情報の読み出しに当って全て別途に光源が必要と
なるという問題があった。
On the other hand, in recent years, rewritable display recording media using organic substances have been actively studied. For example,
A combination of a leuco dye and a color-developing / decoloring material to reversibly cause color development and color erasing (JP-A-4-50290), and changes transparency depending on coagulation conditions of organic crystal particles in a matrix polymer. What is allowed (Japanese Patent Laid-Open No. 54-1)
No. 19377), a method of changing the transparency by utilizing the thermal behavior of the molecular arrangement of a liquid crystal polymer (JP-A-4-13).
No. 0412), which causes a change in a colored state by utilizing a crystal-amorphous transition (Mol. Cryst. Li).
quid Crystal. , 1993, 235, p. 14
7) etc. are proposed. However, these display recording media have a problem that a separate light source is required for reading information.

【0005】[0005]

【発明が解決しようとする課題】以上のように、結晶−
非晶質転移を利用した従来の書換え可能な記録媒体にお
いては、システムの小形化が困難で、記録密度も低いと
いう問題があった。また、有機物質を用いた従来の表示
記録媒体には別途に光源が必要であるという問題があっ
た。
As described above, the crystal-
The conventional rewritable recording medium utilizing the amorphous transition has a problem that it is difficult to downsize the system and the recording density is low. Further, there is a problem that a conventional display recording medium using an organic substance requires a separate light source.

【0006】本発明の目的は、システムの小形化に有利
で、かつ高感度かつ高密度の可逆的情報記録への対応が
可能となる結晶−非晶質転移を利用した情報記録媒体の
情報出力方法を提供することにある。また本発明の別の
目的は、記録された情報の出力当って特に光源を必要と
しない、結晶−非晶質転移を利用した情報記録媒体の情
報出力方法を提供することにある。
An object of the present invention is to output information from an information recording medium utilizing a crystal-amorphous transition, which is advantageous for downsizing of a system and which can be applied to reversible information recording with high sensitivity and high density. To provide a method. Another object of the present invention is to provide an information output method for an information recording medium utilizing a crystal-amorphous transition, which does not require a light source for outputting recorded information.

【0007】[0007]

【課題を解決するための手段と作用】本発明の情報記録
媒体の情報出力方法は、記録材料の結晶−非晶質転移を
利用して情報の記録を行う情報記録媒体の蛍光強度また
はエレクトロルミネセンス強度を検出して記録された情
報の出力を行うことを特徴とするものである。
The information output method for an information recording medium according to the present invention is a method for recording information by utilizing the crystal-amorphous transition of a recording material. It is characterized by detecting the sense intensity and outputting the recorded information.

【0008】本発明者らは、以前より有機物質の蒸着膜
を用いたエレクトロルミネセンス(EL)素子の研究を
重ねてきた。EL素子においては、印加電圧を低くする
ために膜厚が数十nm程度の薄膜が必要であり、かつ上
部電極の蒸着プロセスに耐え、電気的短絡がなく、動作
安定性のよい素子を作製するためには、アモルファス有
機薄膜を用いることが必要になる。これらの観点から、
本発明者らは、高いガラス転移温度(Tg)を有し、安
定な非晶質状態を保つことができる色素分子の具体的な
分子構造を明らかにすることができた。
The inventors of the present invention have long been conducting research on an electroluminescence (EL) device using a vapor deposition film of an organic material. An EL element requires a thin film with a thickness of about several tens of nm to reduce the applied voltage, and withstands the vapor deposition process of the upper electrode, does not cause an electrical short circuit, and produces an element with good operation stability. Therefore, it is necessary to use an amorphous organic thin film. From these perspectives,
The present inventors have been able to clarify a specific molecular structure of a dye molecule that has a high glass transition temperature (Tg) and can maintain a stable amorphous state.

【0009】しかも、上述したような高いTgを有する
色素分子の大部分は、結晶と非晶質とでその蛍光強度ま
たはEL強度が大きく異なる。このような知見に基づき
本発明者らは、高いTgを有する色素分子を記録材料と
して用いることにより本発明を完成するに至った。ここ
で、結晶−非晶質転移により蛍光強度が変化する有機色
素についての検討結果をより具体的に説明する。これら
の検討過程において、市販品または合成により得られた
色素分子を、再結晶または昇華により精製した結晶粉末
を用いた。また、これらの結晶を融解した後に急冷する
かまたは無蛍光ガラス基板上に蒸着することにより非晶
質とした。結晶であるか非晶質であるかはX線回折によ
り調べた。蛍光強度は励起光源としてUVランプを用い
て目視により評価した。その結果、下記のA−1〜A−
8で示す色素分子は、結晶から非晶質へと転移すると特
に蛍光強度が大きく低下することが判明した。
In addition, most of the dye molecules having a high Tg as described above are largely different in crystalline or amorphous fluorescence intensity or EL intensity. Based on such knowledge, the present inventors have completed the present invention by using a dye molecule having a high Tg as a recording material. Here, the results of studies on organic dyes whose fluorescence intensity changes due to the crystal-amorphous transition will be described more specifically. In the course of these studies, a crystal powder obtained by purifying a commercially available product or a dye molecule obtained by synthesis by recrystallization or sublimation was used. Further, these crystals were melted and then rapidly cooled or vapor-deposited on a non-fluorescent glass substrate to make them amorphous. Whether crystalline or amorphous was examined by X-ray diffraction. The fluorescence intensity was visually evaluated using a UV lamp as an excitation light source. As a result, the following A-1 to A-
It has been found that the dye molecule shown by 8 has a particularly large decrease in fluorescence intensity when it transitions from crystalline to amorphous.

【0010】[0010]

【化1】 [Chemical 1]

【0011】[0011]

【化2】 [Chemical 2]

【0012】[0012]

【化3】 [Chemical 3]

【0013】なお、有機色素分子は一般に、平面構造で
ある場合に最も蛍光強度が強く、非平面構造では蛍光強
度が弱くなる。したがって本発明においては、自由度の
少ない結晶構造では平面構造をとりやすく、自由度の大
きい非晶質状態では平面構造をとりにくい分子が記録材
料として好ましい。しかし、複雑な色素分子について
は、置換基などのわずかな分子構造の違いによっても結
晶構造や非晶質構造が変化するため、与えられた条件下
での結晶構造や非晶質構造を予測するのは極めて困難で
ある。このため、上述したように実際に結晶と非晶質と
を作製し、それらの蛍光強度を評価することが有効であ
る。なお、有機色素分子に関しては、蛍光強度が大きい
ほどEL強度が大きいことが知られているため、EL強
度を検出する場合も素子には結晶と非晶質とで蛍光強度
が大きく変化する色素分子がやはり好適である。
The organic dye molecule generally has the highest fluorescence intensity when it has a planar structure, and has the weakest fluorescence intensity when it has a non-planar structure. Therefore, in the present invention, it is preferable that the recording material is a molecule in which a crystal structure having a small degree of freedom is likely to have a planar structure and an amorphous state having a large degree of freedom is unlikely to have a planar structure. However, for complex dye molecules, the crystal structure or amorphous structure changes due to slight differences in the molecular structure such as substituents, so predict the crystal structure or amorphous structure under given conditions. Is extremely difficult. For this reason, it is effective to actually manufacture crystals and amorphous materials and evaluate their fluorescence intensities as described above. Regarding organic dye molecules, it is known that the higher the fluorescence intensity is, the higher the EL intensity is. Therefore, even when the EL intensity is detected, the dye molecules whose fluorescence intensity greatly changes between crystalline and amorphous in the element. Is still suitable.

【0014】なお本発明においては、結晶−非晶質転移
を利用することが可能でかつ結晶と非晶質との蛍光強度
またはEL強度の差が十分であれば、無機物質を記録材
料として用いることもできる。ただし、上述したように
無機物質は一般に結晶−非晶質転移の生じる転移温度が
高く、熱伝導率も大きいことから、本発明では有機色素
を用いることが好ましい。すなわち本発明では通常、有
機色素分子の薄膜を有する光記録媒体または表示記録媒
体を作製する。有機色素分子の薄膜の製造方法として
は、キャスト法、蒸着法、LB法、水面展開法、電解法
など種々の方法を適用できる。このうち、キャスト法は
最も簡便であり、蒸着法は多層構造膜を作製するのに優
れている。なお、有機色素を適当なバインダー中に分散
させた薄膜も用いることができる。
In the present invention, if the crystal-amorphous transition can be utilized and the difference in fluorescence intensity or EL intensity between the crystal and the amorphous is sufficient, an inorganic substance is used as the recording material. You can also However, as described above, since an inorganic substance generally has a high transition temperature at which a crystal-amorphous transition occurs and has a high thermal conductivity, it is preferable to use an organic dye in the present invention. That is, in the present invention, an optical recording medium or display recording medium having a thin film of organic dye molecules is usually produced. As a method for producing a thin film of organic dye molecules, various methods such as casting method, vapor deposition method, LB method, water surface development method, and electrolysis method can be applied. Of these, the casting method is the simplest and the vapor deposition method is excellent for producing a multilayer structure film. A thin film in which an organic dye is dispersed in a suitable binder can also be used.

【0015】以下、本発明における記録・消去の原理に
ついて説明する。本発明では、例えば非晶質の有機色素
分子からなる薄膜を形成する。この状態では蛍光強度や
EL強度はほとんど0かまたは著しく小さい。この状態
が記録されていない初期状態である。次に、非晶質の有
機色素分子からなる薄膜の一部分を加熱することにより
非晶質を結晶に転移させる。結晶化した部分では、蛍光
強度やEL強度は著しく大きくなる。この操作により記
録が行われる。さらに、結晶を加熱溶融させた後、急冷
して非晶質状態に戻す。この操作により消去が行われ
る。ただし本発明は可逆的な可逆的な結晶−非晶質転移
に基づき記録された情報を消去することができる書換え
可能な情報記録媒体に限らず、DRAW(Direct
Read After Write)型情報記録媒体
などに適用することもできる。
The principle of recording / erasing in the present invention will be described below. In the present invention, for example, a thin film made of an amorphous organic dye molecule is formed. In this state, the fluorescence intensity and EL intensity are almost zero or extremely small. This is the initial state in which this state is not recorded. Next, a part of the thin film made of an amorphous organic dye molecule is heated to transform the amorphous into a crystal. In the crystallized portion, the fluorescence intensity and EL intensity are significantly increased. Recording is performed by this operation. Furthermore, after the crystal is heated and melted, it is rapidly cooled to return to an amorphous state. This operation erases. However, the present invention is not limited to a rewritable information recording medium capable of erasing recorded information based on a reversible reversible crystal-amorphous transition, and is not limited to a DRAW (Direct).
It can also be applied to a Read After Write) type information recording medium and the like.

【0016】上述した記録・消去の原理を図1を参照し
て説明する。図1は、記録材料の比容の温度依存性を示
す図である。ガラス転移点Tg以下の室温で非晶質の記
録材料の一部を結晶化温度Tcまで加熱すると、過冷却
液体を経て結晶に転移し、記録が行われる。この記録材
料を融点Tmまで加熱して溶融させた液体を急冷すると
元の非晶質に戻り、消去が行われる。
The principle of recording / erasing described above will be described with reference to FIG. FIG. 1 is a diagram showing the temperature dependence of the specific volume of a recording material. When a part of the amorphous recording material is heated to the crystallization temperature Tc at room temperature below the glass transition point Tg, it is transformed into crystals via the supercooled liquid and recording is performed. When this recording material is heated to the melting point Tm and the melted liquid is rapidly cooled, the original amorphous state is restored and erasing is performed.

【0017】なお、上記とは逆に、初期状態が結晶であ
って蛍光強度やEL強度が著しく大きい状態であり、そ
の一部分を加熱して結晶を融解させた後、急冷すること
によって非晶質にし、その部分の蛍光強度やEL強度を
著しく小さくするという方法で、記録を行うこともでき
る。この場合、非晶質を加熱して結晶化させることによ
り消去を行う。ただし本発明においては、非晶質から結
晶への転移を利用して記録する場合、この過程は発熱過
程であるため、熱エネルギーの投入量を少なくすること
ができ、高感度で高速な記録が可能となる。また上述し
たような記録材料では、非晶質が不安定であると室温設
置やわずかな加熱で全体に結晶化が進み記録された情報
が消去されてしまう。ここで非晶質の結晶化が進む結晶
化温度Tcは、加熱温度によっても変化するがガラス転
移点Tgと融点Tmの間の温度範囲に存在するので、本
発明で用いられる記録材料のガラス転移点Tgは少なく
とも室温(25℃)以上であることが必要となり、さら
には50℃以上であることが好ましい。一方非晶質があ
まりにも安定だと、結晶化に当り大きな熱エネルギーが
必要となって高速で記録・消去を行うことが困難となる
ため、記録材料のガラス転移点Tgは150℃以下であ
ることが好ましい。
On the contrary, contrary to the above, the initial state is crystalline and the fluorescence intensity and EL intensity are extremely high. A part of the crystalline substance is heated to melt the crystalline substance, and then the crystalline substance is rapidly cooled to be amorphous. Alternatively, recording can be performed by a method of significantly reducing the fluorescence intensity and EL intensity of that portion. In this case, erasing is performed by heating the amorphous material to crystallize it. However, in the present invention, when recording is performed by utilizing the transition from amorphous to crystalline, since this process is a heat generation process, the input amount of thermal energy can be reduced, and high sensitivity and high speed recording can be performed. It will be possible. In addition, in the recording material as described above, if the amorphous material is unstable, the crystallization proceeds to the whole and the recorded information is erased by installation at room temperature or slight heating. The crystallization temperature Tc at which the amorphous crystallization progresses is present in the temperature range between the glass transition point Tg and the melting point Tm, although it varies depending on the heating temperature. Therefore, the glass transition of the recording material used in the present invention. The point Tg needs to be at least room temperature (25 ° C.) or higher, and more preferably 50 ° C. or higher. On the other hand, if the amorphous material is too stable, a large amount of heat energy is required for crystallization, which makes it difficult to perform recording and erasing at high speed. Therefore, the glass transition temperature Tg of the recording material is 150 ° C. or less. It is preferable.

【0018】次に、本発明における記録および消去の具
体的な手段について説明する。本発明において、結晶−
非晶質間の転移を起こさせるには上述したように熱エネ
ルギーを用いる。熱エネルギーを与える手段としては、
レーザー光やサーマルヘッドなどを用いることができ
る。高密度記録にはスポット径を小さくできるレーザー
光が有利である。なお、レーザー光を効率よく有機色素
分子に吸収させるためには、一般にレーザー波長に吸収
を持つ光吸収層、光熱変換層などを設けることが好まし
い。また、サーマルヘッドは分解能は大きくないが、大
きな面積を加熱する場合および透明な物質を加熱する場
合に都合がよく、表示記録媒体に好適である。これらの
加熱方法は一般に記録操作で用いられる。一方、消去操
作には記録媒体を一度に加熱できる熱板プレス法やロー
ル法などが好ましい。さらに、加熱された記録媒体を冷
却するには自然放熱してもよいが、冷板プレス法、ロー
ル法、または冷気流により急冷する方法が好ましい。
Next, specific means for recording and erasing in the present invention will be described. In the present invention, the crystal-
As mentioned above, thermal energy is used to cause the transition between amorphous materials. As a means of applying heat energy,
Laser light or a thermal head can be used. Laser light that can reduce the spot diameter is advantageous for high-density recording. In order to efficiently absorb the laser light into the organic dye molecule, it is generally preferable to provide a light absorption layer, a photothermal conversion layer, etc., which absorbs the laser wavelength. Further, although the thermal head does not have a high resolution, it is convenient for heating a large area and for heating a transparent substance, and is suitable for a display recording medium. These heating methods are generally used in recording operations. On the other hand, for the erasing operation, a hot plate pressing method or a rolling method capable of heating the recording medium at one time is preferable. Further, natural heat may be radiated to cool the heated recording medium, but a cold plate pressing method, a roll method, or a method of rapidly cooling with a cold air flow is preferable.

【0019】本発明では、蛍光強度を検出して情報記録
媒体に記録された情報を出力する場合、励起光と蛍光と
の波長が異なるため、蛍光強度の測定感度(記録の読み
出し感度)を高くすることができる。しかも、蛍光は発
光領域が小さくても四方に放射されるため、記録領域を
極めて小さくすることができ、高密度記録に適する。例
えば最近では、分子1個からの蛍光発光も測定されてお
り、原理的に分子サイズ近くまでの超高密度記録も可能
である。さらに蛍光の検出に当って、検出手段の厳密な
位置制御が不要となり、ひいてはシステムの小形化が可
能となる。またEL強度を検出して情報を出力する場合
は、単に情報記録媒体に所定の電界を印加するだけで自
己発光を示すので、光源の別設などが不要となる。さら
に、いずれにおいても、反射率や吸収率の違いを検出す
る方法と異なり、膜厚を特に厳密に制御する必要はな
く、作製プロセス上も有利である。
In the present invention, when the fluorescence intensity is detected and the information recorded on the information recording medium is output, the wavelength of the excitation light and that of the fluorescence are different, so that the fluorescence intensity measurement sensitivity (recording read sensitivity) is high. can do. Moreover, since the fluorescence is emitted in all directions even if the light emitting area is small, the recording area can be made extremely small, which is suitable for high density recording. For example, recently, fluorescence emission from one molecule has also been measured, and in principle, ultra-high density recording up to near the molecular size is possible. Further, in detecting fluorescence, strict position control of the detection means is not required, and the system can be downsized. In addition, when the EL intensity is detected and information is output, self-light emission is exhibited simply by applying a predetermined electric field to the information recording medium, so that a separate light source is not required. Further, in any case, unlike the method of detecting the difference in reflectance or absorptance, it is not necessary to strictly control the film thickness, which is advantageous in the manufacturing process.

【0020】[0020]

【実施例】以下、本発明の実施例を説明する。 実施例1(高密度光記録媒体) 厚さ約0.1mmのガラス板上に金属クロムを蒸着して
光熱変換層を形成した。一方、光学研磨された厚さ1.
2mmのガラス基板上に構造式(A−1)で示される化
合物を載せ、加熱融解させた。この融液に、上記のガラ
ス板を光熱変換層側を下にして接触させ、融液を全面に
均一に広げて挟みこんだ。次に、このガラス基板を水で
冷却されたアルミニウム板に押し付けることにより融液
を冷却して化合物(A−1)の非晶質固体からなる記録
層を形成した。以上のようにして、ガラス基板\記録層
\光熱変換層\ガラス板という構造の光記録媒体を作製
した。
EXAMPLES Examples of the present invention will be described below. Example 1 (High Density Optical Recording Medium) Chromium metal was vapor-deposited on a glass plate having a thickness of about 0.1 mm to form a photothermal conversion layer. On the other hand, the optically polished thickness 1.
The compound represented by Structural Formula (A-1) was placed on a 2 mm glass substrate and heated and melted. The glass plate was brought into contact with the melt with the light-heat conversion layer side facing down, and the melt was uniformly spread over the entire surface and sandwiched. Next, this glass substrate was pressed against an aluminum plate cooled with water to cool the melt, thereby forming a recording layer made of an amorphous solid of the compound (A-1). As described above, an optical recording medium having a structure of glass substrate / recording layer / photothermal conversion layer / glass plate was produced.

【0021】この光記録媒体を900RPMで回転させ
ながら、半導体レーザーから波長780nmのレーザー
ビームをスポット径1μm、照射強度1mWの条件で照
射した。この後、光記録媒体を蛍光顕微鏡で観察した結
果、レーザービーム照射部に強い蛍光を発する幅約1μ
mのラインが明瞭なコントラストで認められた。また、
この光記録媒体を偏光顕微鏡で観察した結果、ライン状
に結晶化が起こっていることも認められた。これらの結
果から、記録がなされていることが確認された。
While rotating this optical recording medium at 900 RPM, a laser beam having a wavelength of 780 nm was irradiated from a semiconductor laser under the conditions of a spot diameter of 1 μm and an irradiation intensity of 1 mW. After that, as a result of observing the optical recording medium with a fluorescence microscope, a width of about 1 μm that emits strong fluorescence to the laser beam irradiation part
The line of m was recognized with a clear contrast. Also,
As a result of observing this optical recording medium with a polarization microscope, it was also found that crystallization occurred linearly. From these results, it was confirmed that recording was made.

【0022】次に、記録後の光記録媒体を回転させなが
ら、半導体レーザーから波長780nmのレーザービー
ムをスポット径2μm、照射強度8mWの条件で照射し
た。この後、光記録媒体を蛍光顕微鏡で観察したとこ
ろ、レーザービームを走査した領域では記録が消去され
ていた。
Next, while rotating the optical recording medium after recording, a laser beam having a wavelength of 780 nm was irradiated from a semiconductor laser under the conditions of a spot diameter of 2 μm and an irradiation intensity of 8 mW. After that, when the optical recording medium was observed with a fluorescence microscope, the recording was erased in the region scanned with the laser beam.

【0023】実施例2(高密度光記録媒体) 記録層として、構造式(A−1)で示される化合物の代
わりに構造式(A−2)で示される化合物を用いた以外
は実施例1と同様にして、ガラス基板\記録層\光熱変
換層\ガラス板という構造の光記録媒体を作製した。
Example 2 (High Density Optical Recording Medium) Example 1 except that as the recording layer, the compound represented by the structural formula (A-2) was used in place of the compound represented by the structural formula (A-1). An optical recording medium having a structure of glass substrate \ recording layer \ photothermal conversion layer \ glass plate was prepared in the same manner as in.

【0024】この光記録媒体を900RPMで回転させ
ながら、半導体レーザーから波長780nmのレーザー
ビームをスポット径1μm、照射強度1mWの条件で照
射した。この後、光記録媒体を蛍光顕微鏡で観察した結
果、レーザービーム照射部に強い蛍光を発する幅約1μ
mのラインが明瞭なコントラストで認められた。また、
この光記録媒体を偏光顕微鏡で観察した結果、ライン状
に結晶化が起こっていることも認められた。これらの結
果から、記録がなされていることが確認された。
While rotating this optical recording medium at 900 RPM, a laser beam having a wavelength of 780 nm was irradiated from a semiconductor laser under the conditions of a spot diameter of 1 μm and an irradiation intensity of 1 mW. After that, as a result of observing the optical recording medium with a fluorescence microscope, a width of about 1 μm that emits strong fluorescence to the laser beam irradiation part
The line of m was recognized with a clear contrast. Also,
As a result of observing this optical recording medium with a polarization microscope, it was also found that crystallization occurred linearly. From these results, it was confirmed that recording was made.

【0025】次に、記録後の光記録媒体を回転させなが
ら、半導体レーザーから波長780nmのレーザービー
ムをスポット径2μm、照射強度8mWの条件で照射し
た。この後、光記録媒体を蛍光顕微鏡で観察したとこ
ろ、レーザービームを走査した領域では記録が消去され
ていた。
Next, while rotating the optical recording medium after recording, a laser beam having a wavelength of 780 nm was irradiated from a semiconductor laser under the conditions of a spot diameter of 2 μm and an irradiation intensity of 8 mW. After that, when the optical recording medium was observed with a fluorescence microscope, the recording was erased in the region scanned with the laser beam.

【0026】実施例3(高密度光記録媒体) 厚さ1.2mmのガラス基板上に金属クロムを蒸着して
光熱変換層を形成した。また、構造式(A−3)で示さ
れる化合物とポリメチルメタクリレートとを重量比1:
1の割合で含有するTHF溶液を調製した。次いで、前
記光熱変換層上にこのTHF溶液を塗布し、60℃のホ
ットプレート上で乾燥させて記録層を形成した。以上の
ようにして、ガラス基板\光熱変換層\記録層からなる
光記録媒体を作製した。
Example 3 (High Density Optical Recording Medium) Chromium metal was vapor-deposited on a glass substrate having a thickness of 1.2 mm to form a photothermal conversion layer. The weight ratio of the compound represented by the structural formula (A-3) to polymethylmethacrylate is 1:
A THF solution containing 1 ratio was prepared. Then, the THF solution was applied onto the photothermal conversion layer and dried on a hot plate at 60 ° C. to form a recording layer. As described above, an optical recording medium composed of the glass substrate / light-heat conversion layer / recording layer was produced.

【0027】この光記録媒体を900RPMで回転させ
ながら、半導体レーザーから波長780nmのレーザー
ビームをスポット径1μm、照射強度1mWの条件で照
射した。この後、光記録媒体を蛍光顕微鏡で観察した結
果、レーザービーム照射部に強い蛍光を発する幅約1μ
mのラインが明瞭なコントラストで認められた。また、
この光記録媒体を偏光顕微鏡で観察した結果、ライン状
に結晶化が起こっていることも認められた。これらの結
果から、記録がなされていることが確認された。
While rotating this optical recording medium at 900 RPM, a laser beam having a wavelength of 780 nm was irradiated from a semiconductor laser under the conditions of a spot diameter of 1 μm and an irradiation intensity of 1 mW. After that, as a result of observing the optical recording medium with a fluorescence microscope, a width of about 1 μm that emits strong fluorescence to the laser beam irradiation part
The line of m was recognized with a clear contrast. Also,
As a result of observing this optical recording medium with a polarization microscope, it was also found that crystallization occurred linearly. From these results, it was confirmed that recording was made.

【0028】次に、記録後の光記録媒体を回転させなが
ら、半導体レーザーから波長780nmのレーザービー
ムをスポット径2μm、照射強度8mWの条件で照射し
た。この後、光記録媒体を蛍光顕微鏡で観察したとこ
ろ、レーザービームを走査した領域では記録が消去され
ていた。
Next, while rotating the optical recording medium after recording, a laser beam having a wavelength of 780 nm was irradiated from a semiconductor laser under the conditions of a spot diameter of 2 μm and an irradiation intensity of 8 mW. After that, when the optical recording medium was observed with a fluorescence microscope, the recording was erased in the region scanned with the laser beam.

【0029】実施例4(表示記録媒体) 50×50×1mmのガラス基板上にAlを蒸着し、構
造式( 1)で示されるオキサジアゾール誘導体(電子輸
送層)を50nmの厚さに蒸着し、構造式(A−2)で
示されるオキサジアゾール誘導体(発光層)を50nm
の厚さに蒸着し、さらに構造式( 2)で示されるカルバ
ゾール誘導体(電子輸送層)を50nmの厚さに蒸着し
た。最後に、スパッタ法によりITO透明電極を形成し
て表示記録媒体を作製した。
Example 4 (Display recording medium) Al was vapor-deposited on a glass substrate of 50 × 50 × 1 mm, and an oxadiazole derivative (electron transport layer) represented by the structural formula (1) was vapor-deposited to a thickness of 50 nm. Then, the oxadiazole derivative (light-emitting layer) represented by the structural formula (A-2) is added to 50 nm.
And a carbazole derivative (electron transport layer) represented by the structural formula (2) was deposited to a thickness of 50 nm. Finally, an ITO transparent electrode was formed by a sputtering method to prepare a display recording medium.

【0030】[0030]

【化4】 [Chemical 4]

【0031】次に、サーマルシミュレータ(株式会社東
芝製)を用い、この表示記録媒体に「T」字を印字する
ように加熱して、発光層である(A−2)のオキサジア
ゾール誘導体の一部を結晶化させた。この表示記録媒体
を10Vの直流電圧で駆動させたところ、強く発光する
「T」字が明瞭に現れた。次に、この表示記録媒体をホ
ットプレート上に2秒間押圧した後、急冷してオキサジ
アゾール誘導体の一部を非晶質化させた。この表示記録
媒体を10Vの直流電圧で駆動させたところ、「T」字
は完全に消去されて何らのパターンも認められなかっ
た。
Next, using a thermal simulator (manufactured by Toshiba Corp.), the display recording medium was heated so as to print a "T" character, and the oxadiazole derivative of (A-2) as the light emitting layer was heated. A portion was crystallized. When this display recording medium was driven with a direct current voltage of 10 V, the "T" letter that strongly emitted light appeared clearly. Next, this display recording medium was pressed on a hot plate for 2 seconds and then rapidly cooled to partially amorphize the oxadiazole derivative. When this display recording medium was driven with a DC voltage of 10 V, the "T" character was completely erased and no pattern was recognized.

【0032】実施例5(表示記録媒体) 発光層として、構造式(A−2)で示される化合物の代
わりに構造式(A−1)で示される化合物を用いること
を除いては、実施例4と同様にして表示記録媒体を作製
した。
Example 5 (Display Recording Medium) Example 5 (Display Recording Medium), except that the compound represented by the structural formula (A-1) was used in place of the compound represented by the structural formula (A-2) in the light emitting layer. A display recording medium was prepared in the same manner as in 4.

【0033】次に、サーマルシミュレータ(株式会社東
芝製)を用い、この表示記録媒体に「T」字を印字する
ように加熱して、発光層である(A−1)のオキサジア
ゾール誘導体の一部を結晶化させた。この表示素子を1
0Vの直流電圧で駆動させたところ、強く発光する
「T」字が明瞭に現れた。次に、この表示記録媒体をホ
ットプレート上に2秒間押圧した後、急冷してオキサジ
アゾール誘導体の一部を非晶質化させた。この表示記録
媒体を10Vの直流電圧で駆動させたところ、「T」字
は完全に消去されて何らのパターンも認められなかっ
た。
Next, using a thermal simulator (manufactured by Toshiba Corporation), the display recording medium was heated so as to print a "T" character, and the oxadiazole derivative of (A-1) as the light emitting layer was heated. A portion was crystallized. This display element 1
When it was driven with a direct current voltage of 0 V, a strongly emitting "T" was clearly shown. Next, this display recording medium was pressed on a hot plate for 2 seconds and then rapidly cooled to partially amorphize the oxadiazole derivative. When this display recording medium was driven with a DC voltage of 10 V, the "T" character was completely erased and no pattern was recognized.

【0034】実施例6(表示記録媒体) 50×50×1mmのガラス基板上にAlを蒸着し、構
造式( 1)で示されるオキサジアゾール誘導体(電子輸
送層)を20nmの厚さに蒸着し、構造式(A−2)で
示されるオキサジアゾール誘導体(発光層)を20nm
の厚さに蒸着し、さらに構造式( 2)で示されるカルバ
ゾール誘導体(電子輸送層)を50nmの厚さに蒸着し
た。その上に銅フタロシアニンを30nmの厚さに蒸着
した。最後に、スパッタ法によりITO透明電極を形成
して表示記録媒体を作製した。
Example 6 (Display recording medium) Al was vapor-deposited on a glass substrate of 50 × 50 × 1 mm, and an oxadiazole derivative (electron transport layer) represented by the structural formula (1) was vapor-deposited to a thickness of 20 nm. Then, the oxadiazole derivative (light-emitting layer) represented by the structural formula (A-2) is added to 20 nm.
And a carbazole derivative (electron transport layer) represented by the structural formula (2) was deposited to a thickness of 50 nm. Copper phthalocyanine was vapor-deposited thereon to a thickness of 30 nm. Finally, an ITO transparent electrode was formed by a sputtering method to prepare a display recording medium.

【0035】この表示記録媒体に、半導体レーザーから
波長630nmのレーザービームをスポット径1μm、
照射強度1mWの条件で照射した。この表示記録媒体を
10Vの直流電圧で駆動させたところ、レーザービーム
照射部に強い発光を示す幅約1μmのラインが明瞭なコ
ントラストで認められた。
A laser beam having a wavelength of 630 nm from a semiconductor laser was spotted on this display recording medium at a spot diameter of 1 μm.
Irradiation was performed under the condition of irradiation intensity of 1 mW. When this display recording medium was driven with a direct current voltage of 10 V, a line having a width of about 1 μm showing strong light emission was observed in the laser beam irradiation portion with clear contrast.

【0036】次に、記録後の表示記録媒体に、半導体レ
ーザーから波長630nmのレーザービームをスポット
径2μm、照射強度8mWの条件で照射した。この表示
記録媒体を10Vの直流電圧で駆動させたところ、レー
ザービームを走査した領域ではEL強度が低下してお
り、記録が消去されていることがわかった。
Next, the display recording medium after recording was irradiated with a laser beam having a wavelength of 630 nm from a semiconductor laser under the conditions of a spot diameter of 2 μm and an irradiation intensity of 8 mW. When this display recording medium was driven with a DC voltage of 10 V, it was found that the EL intensity was reduced in the region scanned with the laser beam, and the recording was erased.

【0037】[0037]

【発明の効果】以上詳述したように本発明によれば、記
録材料の結晶−非晶質転移を利用した情報記録媒体につ
いて、高感度かつ高密度に記録された情報を小形のシス
テムで読み出すことや、光源を用いることなく表示を行
うことが可能となる。
As described in detail above, according to the present invention, with respect to the information recording medium utilizing the crystal-amorphous transition of the recording material, the information recorded with high sensitivity and high density can be read by a small system. In addition, it is possible to perform display without using a light source.

【図面の簡単な説明】[Brief description of drawings]

【図1】記録材料の比容の温度依存性を示す特性図。FIG. 1 is a characteristic diagram showing temperature dependence of specific volume of a recording material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 記録材料の結晶−非晶質転移を利用して
情報の記録を行う情報記録媒体の蛍光強度またはエレク
トロルミネセンス強度を検出して記録された情報の出力
を行うことを特徴とする情報記録媒体の情報出力方法。
1. The recorded information is output by detecting the fluorescence intensity or electroluminescence intensity of an information recording medium for recording information by utilizing the crystal-amorphous transition of a recording material. Method for outputting information from an information recording medium.
JP6043624A 1994-03-15 1994-03-15 Method for outputting information in information recording medium Pending JPH07254153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6043624A JPH07254153A (en) 1994-03-15 1994-03-15 Method for outputting information in information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6043624A JPH07254153A (en) 1994-03-15 1994-03-15 Method for outputting information in information recording medium

Publications (1)

Publication Number Publication Date
JPH07254153A true JPH07254153A (en) 1995-10-03

Family

ID=12669010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6043624A Pending JPH07254153A (en) 1994-03-15 1994-03-15 Method for outputting information in information recording medium

Country Status (1)

Country Link
JP (1) JPH07254153A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197399B1 (en) 1998-03-13 2001-03-06 Kabushiki Kaisha Toshiba Recording medium and method of manufacturing the same
WO2003074282A1 (en) * 2002-02-15 2003-09-12 Sony Corporation Rewritable optical information recording medium and recording/reproducing method, recording/reproducing device
US6850480B1 (en) 1999-09-29 2005-02-01 Kabushiki Kaisha Toshiba Recording medium, recording apparatus and recording method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197399B1 (en) 1998-03-13 2001-03-06 Kabushiki Kaisha Toshiba Recording medium and method of manufacturing the same
US6850480B1 (en) 1999-09-29 2005-02-01 Kabushiki Kaisha Toshiba Recording medium, recording apparatus and recording method
WO2003074282A1 (en) * 2002-02-15 2003-09-12 Sony Corporation Rewritable optical information recording medium and recording/reproducing method, recording/reproducing device
CN100401400C (en) * 2002-02-15 2008-07-09 索尼株式会社 Rewritable optical information recording medium and recording/reproducing method, recording/reproducing device

Similar Documents

Publication Publication Date Title
JPS6248301B2 (en)
JPH07254153A (en) Method for outputting information in information recording medium
JP2001271061A (en) Fluorescent heat-sensitive compound, composition containing the same, thermal recording medium, organic electroluminescent element and temperature marker
JP2002501497A (en) Writable and erasable high-density optical storage medium
JPH058537A (en) Optical record medium and manufacture thereof
JP3732469B2 (en) Optical recording medium, manufacturing method thereof, and optical recording method
JPS59104996A (en) Optical recording medium
Pearson Polymeric optical disk recording media
JP4040230B2 (en) Optical recording device
JP2765235B2 (en) Optical information recording / reproducing / erasing method and optical recording apparatus
JP2583221B2 (en) Optical recording medium
JPH03152736A (en) Optical information recording medium and protective film for optical information recording medium
JP4076686B2 (en) Reversible recording medium and recording method using the reversible recording medium
JPS61179792A (en) Photo-thermal conversion recording medium
Zhang et al. Diarylethene materials for photon-mode optical storage
JP4845278B2 (en) Optical recording method of image showing selective reflection color
JP2002312936A (en) Method for recording optical recording medium and optical recording medium on which information is recorded
JPS61134944A (en) Optical information storage medium
Chang et al. Laser-induced crystallization in AgInSbTe phase-change optical disk
JP3054769B2 (en) Recording / erasing method
JPS63167440A (en) Method for recording or recording and erasing information
JP2995681B2 (en) recoding media
JP2001059954A (en) Method for recording picture on thermally reversible recording medium
JP2918234B2 (en) Information recording medium
JPS6256583B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040113