JPH07251043A - Filtering method and filter device - Google Patents

Filtering method and filter device

Info

Publication number
JPH07251043A
JPH07251043A JP7012947A JP1294795A JPH07251043A JP H07251043 A JPH07251043 A JP H07251043A JP 7012947 A JP7012947 A JP 7012947A JP 1294795 A JP1294795 A JP 1294795A JP H07251043 A JPH07251043 A JP H07251043A
Authority
JP
Japan
Prior art keywords
separation membrane
membrane
filtration
membranes
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7012947A
Other languages
Japanese (ja)
Inventor
Yasutoshi Shimizu
康利 清水
Kazuhiro Izumi
一弘 出水
Katsuji Uryu
勝嗣 瓜生
Yuichi Okuno
祐一 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP7012947A priority Critical patent/JPH07251043A/en
Publication of JPH07251043A publication Critical patent/JPH07251043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To efficiently peel the layer of matter to be filtered deposited on the surface of a separation membrane by supplying a predetermined amt. of air to mix the same with a raw soln. to form air bubble streams along the separation membrane. CONSTITUTION:In a filter device 3, a plurality of plate-shaped membranes 4 are vertically arranged so as to be spaced apart from each other and the suction pipe 6 connected to a pump 5 is connected to the upper end parts of the membranes 4 and a first air diffusion pipes 7 are arranged under the membranes 4 while a second air diffusion pipe 8 is provided on the lateral side of the lower ends of the membranes 4. The first air diffusion pipe 7 forms air bubble streams along the surfaces of the membranes 4 and the second air diffusion pipe 8 applies vibration and an impact to the membranes 4 to peel the layer of matter to be filtered on the surfaces of the membranes 4. In order to form the air bubble streams, the amt. V1 of air supplied to the lower parts of the separation membranes 4 is set to 0.5<=V1<=380(m<3>m<-2>h<-1>) per a unit projection area of the separation membranes 4 per a unit time. By this constitution, transmission flow velocity is ensured and operation is efficiently performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は菌体などのコロイド分散
粒子、酵素等の高分子或いは有機物等の粒子成分を含む
原液を限外濾過法や精密濾過法等によって濾過する方法
とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for filtering an undiluted solution containing colloidal dispersed particles such as bacterial cells, particles such as polymers such as enzymes and particles such as organic substances by ultrafiltration or microfiltration. .

【0002】[0002]

【従来の技術】食品工業における溶液の分離或いは濃
縮、工場排水の分離、便所、洗面所、風呂及び厨房など
からの排水を生物的に浄化する際の菌体濃度の維持等に
従来から分離膜が用いられている。斯かる分離膜は膜間
差圧或いは膜間濃度差を駆動力として原液から膜透過液
を分離するが、経時的に分離膜の原液側の表面には被濾
過物が濃縮されてゲル状に堆積し、この被濾過物層が厚
くなると急激に膜の透過流束が低下する。
2. Description of the Related Art Separation membranes have been conventionally used for separation or concentration of solutions in the food industry, separation of factory wastewater, maintenance of bacterial cell concentration when biologically purifying wastewater from toilets, washrooms, baths and kitchens. Is used. Such a separation membrane separates the membrane permeate from the stock solution by using the transmembrane pressure difference or the transmembrane concentration difference as a driving force, but the substance to be filtered is condensed into a gel over time on the surface of the separation membrane on the stock solution side. When the layer to be filtered is deposited and becomes thicker, the permeation flux of the membrane is rapidly reduced.

【0003】透過流束の低下を防止する手段として、気
泡流を用いる技術が特開昭56−21615号公報、或
いは特開平4−131182号公報に開示されている。
これら先行技術に開示される透過流束の低下防止手段
は、膜面に沿って気泡流の流れを作り、膜面に堆積した
被濾過物層を掻き取るようにしたものである。
A technique using a bubble flow is disclosed in Japanese Patent Laid-Open No. 56-21615 or Japanese Patent Laid-Open No. 4-131182 as a means for preventing a decrease in permeation flux.
The means for preventing reduction in permeation flux disclosed in these prior arts is one that creates a flow of a bubbly flow along the membrane surface and scrapes off the filtered material layer deposited on the membrane surface.

【0004】[0004]

【発明が解決しようとする課題】上述した従来技術にあ
っては、気泡流と透過流束との定性的な関係は示されて
いるが、両者の定量的な関係は示されていない。即ち、
気泡流を形成するために供給する気体の量が少ないと分
離膜面に堆積した被濾過物層を掻き取る効果は発揮され
ず、また供給する気体の量がある量に達すると、それ以
上気体を供給しても供給量に見合った掻き取り効果は得
られず、コスト的に不利になる。
In the above-mentioned prior art, the qualitative relationship between the bubbly flow and the permeation flux is shown, but the quantitative relationship between the two is not shown. That is,
If the amount of gas supplied to form the bubbly flow is small, the effect of scraping off the substance layer to be filtered deposited on the separation membrane surface will not be exhibited, and if the amount of gas supplied reaches a certain amount, it will be further gas. Even if it is supplied, the scraping effect corresponding to the supply amount cannot be obtained, which is disadvantageous in terms of cost.

【0005】[0005]

【課題を解決するための手段】上記課題を解決すべく本
願の第1発明に係る濾過方法は、分離膜表面に堆積した
被濾過物層を剥離すべく分離膜に沿って原液と気体が混
合した気泡流を連続的にまたは間欠的に形成するものと
し、この気泡流を形成するために分離膜下方に供給する
気体量(V1 )を、分離膜の単位投影面積当り且つ単位
時間当り、0.5≦V1 ≦380(m3m-2h-1)とした。
In order to solve the above-mentioned problems, in the filtration method according to the first invention of the present application, the undiluted solution and the gas are mixed along the separation membrane in order to separate the filtered substance layer deposited on the surface of the separation membrane. It is assumed that the generated bubble flow is formed continuously or intermittently, and the amount of gas (V 1 ) supplied below the separation membrane to form this bubble flow is set per unit projected area of the separation membrane and per unit time. It was set to 0.5 ≦ V 1 ≦ 380 (m 3 m −2 h −1 ).

【0006】また、本願の第2発明に係る濾過方法は、
分離膜表面に堆積した被濾過物層を剥離すべく分離膜に
沿って原液と気体が混合した気泡流を連続的にまたは間
欠的に形成するとともに気泡を連続的にまたは間欠的に
分離膜表面に当てるものとした。ここで、気泡流を形成
するとともに分離膜表面に当る気泡を形成するために分
離膜表面近傍に供給する気体量(V2 )は、例えば分離
膜の単位面積当り且つ単位時間当り、V2 ≦2000
(m3m-2h-1)とした。
[0006] The filtration method according to the second invention of the present application,
The separation membrane surface is formed continuously or intermittently as well as continuously or intermittently forming a bubbly flow in which the stock solution and the gas are mixed along the separation membrane in order to separate the to-be-filtered substance layer deposited on the separation membrane surface. I decided to hit it. Here, the amount of gas (V 2 ) supplied near the surface of the separation membrane to form the bubble flow and the bubbles that hit the surface of the separation membrane is, for example, V 2 ≤ per unit area of the separation membrane and per unit time. 2000
(M 3 m -2 h -1 ).

【0007】また、本願の第3発明に係る濾過装置は、
分離膜を原液内に上下方向に配置される平板状膜とし、
この平板状膜の下方に平板状膜に沿って原液と気体が混
合した気泡流を形成するための散気部材を配置し、また
平板状膜の側方に平板状膜に気泡を当てるための散気部
材を配置した。
The filtration device according to the third invention of the present application is
The separation membrane is a flat membrane arranged vertically in the stock solution,
A diffusing member for forming a bubbly flow of a mixture of a stock solution and a gas is arranged below the flat plate film, and a bubble is applied to the flat plate film to the side of the flat plate film. An air diffuser was placed.

【0008】また、本願の第4発明に係る濾過装置は、
分離膜を原液内に上下方向に架設される中空糸状膜と
し、この中空糸状膜を両端が上方になるように折り返し
て集水部材に連結し、また折り返し部には散気部材を配
置した。
Further, the filtration device according to the fourth invention of the present application is
The separation membrane was a hollow fiber membrane vertically suspended in the stock solution, and the hollow fiber membrane was folded back so that both ends were upward and connected to the water collecting member, and an air diffuser member was arranged at the folded portion.

【0009】また、本願の第5発明に係る濾過装置は、
分離膜を原液内に横方向に架設される中空糸状膜とし、
この中空糸状膜の両端を集水部材に連結し、また中空糸
状膜の下方に散気部材を配置した。
Further, the filtration device according to the fifth invention of the present application,
The separation membrane is a hollow fiber membrane that is laid horizontally in the stock solution,
Both ends of this hollow fiber membrane were connected to a water collecting member, and an air diffusing member was arranged below the hollow fiber membrane.

【0010】[0010]

【作用】所定量の気体を供給して気泡流を形成すること
で、分離膜表面に堆積した被濾過物層を効率よく剥離で
き、更に気泡流だけでなく気泡を分離膜表面の被濾過物
層に直接当てることで剥離効率を更に高めることができ
る。また、濾過を長期間にわたり継続すると、膜面の被
濾過物層の変成、液中微粒子成分のわずかながらの膜面
集積により、少々、膜濾過特性が劣化する。膜面の被濾
過物層の掻き取りを十分に行っておくと、この膜透過流
束の長期間にわたる経時的劣化も防止できる。
[Function] By supplying a predetermined amount of gas to form a bubble flow, the layer of the substance to be filtered deposited on the surface of the separation membrane can be efficiently separated, and not only the bubble flow but also the bubbles on the surface of the separation membrane to be filtered. The peeling efficiency can be further improved by directly applying the layer. Further, when filtration is continued for a long period of time, the membrane filtration characteristics are slightly deteriorated due to the transformation of the filtration target layer on the membrane surface and the slight accumulation of the fine particle components in the liquid membrane surface. Sufficient scraping of the filtration target layer on the membrane surface can prevent the membrane permeation flux from deteriorating with time.

【0011】[0011]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本願の第3発明に係る濾過装
置を組み込んだ浄化槽の縦断面図、図2は図1のAーA
方向から見た図であり、浄化槽の本体1内には隔壁2,
2が設けられ、これら隔壁2,2によって画成される空
間に濾過装置3が配置されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a vertical cross-sectional view of a septic tank incorporating a filtering device according to the third invention of the present application, and FIG. 2 is AA of FIG.
FIG. 2 is a view seen from the direction, in which the septum 2 is provided in the main body 1 of the septic tank.
2 is provided, and the filtering device 3 is disposed in the space defined by the partition walls 2 and 2.

【0012】濾過装置3は上下方向の平板状膜4を複数
枚離間して配列し、各平板状膜4の上端部にはポンプ5
につながる吸引管6を接続し、また各平板状膜4の下方
には第1散気管7が、各平板状膜4の下端側方には第2
散気管8が配置されている。
The filtering device 3 has a plurality of flat plate-like membranes 4 arranged in the vertical direction with a space therebetween, and a pump 5 is provided at the upper end of each flat-plate-like membrane 4.
Is connected to a suction pipe 6, and a first air diffusing pipe 7 is provided below each flat plate-like membrane 4, and a second diffuser pipe 7 is provided at the lower end side of each flat plate-like membrane 4.
An air diffuser 8 is arranged.

【0013】前記第1散気管7は平板状膜4の表面に沿
った気泡流を形成するためのものであり、平板状膜4の
下端からの距離は、この範囲を外れると気泡流の上昇に
よる掻き取り効果が充分期待できないため1cm以上2
m以下とする。また第2散気管8は平板状膜4の表面に
気泡を当てて平板状膜4に振動或いは衝撃を与え膜表面
の被濾過物層を剥離させるためのものであり、平板状膜
4表面からの距離は1cm以下で平板状膜4表面に接触
していてもよい。
The first air diffusing tube 7 is for forming a bubble flow along the surface of the flat plate-shaped film 4, and the distance from the lower end of the flat plate-shaped film 4 rises if the distance is out of this range. 1 cm or more 2
m or less. The second air diffuser 8 is used to apply air bubbles to the surface of the flat plate-like membrane 4 to vibrate or shock the flat plate-like membrane 4 to separate the filtration target layer on the surface of the flat plate-like membrane 4. The distance of 1 cm or less may be in contact with the surface of the flat film 4.

【0014】以上の濾過装置3を用いた濾過方法につい
て以下に説明する。尚、第1発明に係る濾過方法は気泡
流のみによって被濾過物層を剥離するので、第2散気管
8は使用しない。
A filtering method using the above filtering device 3 will be described below. Since the filtration method according to the first aspect of the invention separates the layer to be filtered by only the flow of bubbles, the second diffuser tube 8 is not used.

【0015】即ち、第1発明に係る濾過方法にあって
は、第1散気管7を介して空気等の気体を平板状膜4の
下方から供給して平板状膜4の表面に沿った気泡流を形
成する。すると、この気泡流によって浄化槽内に流れが
生成され、散気(曝気)によって吹込まれた酸素を利用
して活性汚泥に含まれる硝化菌により原液中に含まれる
アンモニア態窒素(NH4 +)が硝酸態窒素(NO3 -)や
亜硝酸態窒素(NO2 -)に酸化分解され、また未分解有
機物は活性汚泥中に取り込まれる。
That is, in the filtration method according to the first aspect of the invention, gas such as air is supplied from below the flat plate-shaped membrane 4 through the first air diffusing tube 7 to form bubbles along the surface of the flat plate-shaped membrane 4. Form a stream. Then, a flow is generated in the septic tank by this bubble flow, and the oxygen blown by aeration (aeration) is used to remove the ammonia nitrogen (NH 4 + ) contained in the stock solution by the nitrifying bacteria contained in the activated sludge. nitrate nitrogen (NO 3 -) and nitrite nitrogen (NO 2 -) are oxidized and decomposed to and undecomposed organic substance is incorporated into the activated sludge.

【0016】一方、ポンプ5を駆動して平板状膜4に膜
間差圧を発生させることで、原液から活性汚泥等の被濾
過物を除いた透過液を吸引管6を介して取り出し、この
透過液を消毒室に送り込んだり、直接下水として放出す
る。尚、膜間差圧以外に膜間濃度差、膜間電位差或いは
膜間温度差を発生させて、それにより濾過を行うように
してもよい。
On the other hand, by driving the pump 5 to generate a transmembrane pressure difference in the flat plate-shaped membrane 4, the permeated liquid from which the substances to be filtered such as activated sludge are removed from the stock solution is taken out through the suction pipe 6, and Send the permeate to the disinfection room or discharge it directly as sewage. In addition to the transmembrane pressure difference, a transmembrane concentration difference, a transmembrane potential difference, or a transmembrane temperature difference may be generated to perform filtration.

【0017】また、上記の濾過運転を継続すると、図3
に示すように平板状膜4の原液側表面に活性汚泥10等
が堆積し被濾過物層11が形成される。この被濾過物層
11が厚くなると透過流束が低下し、運転効率が落ち
る。しかしながら、第1発明にあっては気泡流による掻
き取り作用によって常時活性汚泥10等が剥離するので
被濾過物層11の厚みは厚くはならない。つまり、透過
流束をJ(m3・m-2・d-1)、活性汚泥10等の剥離速度を
V(m・d-1 )とすると、一定時間経過後は平衡状態に達
し、この平衡状態にあってはJ(m3・m-2・d-1)=V(m・
d-1 )となっている。
When the above filtering operation is continued, FIG.
As shown in FIG. 5, the activated sludge 10 and the like are deposited on the surface of the flat plate-shaped membrane 4 on the side of the undiluted solution to form the filtered material layer 11. If the filtered material layer 11 becomes thicker, the permeation flux will decrease and the operating efficiency will decrease. However, in the first invention, the activated sludge 10 and the like are constantly peeled off by the scraping action by the bubble flow, and therefore the thickness of the filtration target layer 11 is not increased. In other words, assuming that the permeation flux is J (m 3 · m -2 · d -1 ) and the separation speed of the activated sludge 10 etc. is V (m · d -1 ), an equilibrium state is reached after a certain period of time. In the equilibrium state, J (m 3 · m -2 · d -1 ) = V (m ·
d -1 ).

【0018】但し、気泡流が十分な掻き取り作用を発揮
するには、一定量以上の気体を供給しなければならず、
また必要以上に多量の気体を供給しても透過流束の向上
にはつながらないことが実験の結果判明した。図4は、
上記気体量によって膜透過流束が濾過時間の経過ととも
にどのように変化するかを示す上記実験結果のグラフで
ある。実験条件は、平板状膜4の細孔径Dp =0.1μ
m、平板状膜4に発生する膜間差圧ΔP=30kPa、
原液の温度T=20℃であった。このグラフは片対数方
眼紙に示されており、横軸の濾過時間が対数目盛となっ
ている。このグラフから膜透過流束が気体量(V1 )を
パラメータとして濾過時間の対数と直線関係にあること
が分る。濾過時間が5(h )のときの膜透過流束を初期
値とすれば、この初期値は気体量(V1 )が210(m3
m-2h-1)、290(m3m-2h-1)、380(m3m-2h-1)、
450(m3m-2h-1)と大きくなるにつれて、0.40
(m3m-2h-1)、0.48(m3m-2h-1)、0.51(m3m
-2h-1)、0.52(m3m-2h-1)と大きくなる。また、
直線の勾配は右下がりから次第に水平になって行く。し
かしながら、気体量(V1 )が380(m3m-2h-1)を超
えても膜透過流束はほとんど大きくならない。必要以上
に多量の気体を供給しても透過流束の向上にはつながら
ないことが分る。また、必要な気体量(V1 )は、膜濾
過特性の長期間にわたる経時的劣化防止も考慮して決定
する必要がある。
However, in order for the bubble flow to exert a sufficient scraping action, it is necessary to supply a certain amount of gas or more,
It was also found from experiments that the supply of more gas than necessary does not improve the permeation flux. Figure 4
It is a graph of the said experimental result which shows how a membrane permeation | flux flux changes with progress of filtration time with the said gas amount. The experimental condition is that the pore diameter of the flat plate-shaped film 4 is Dp = 0.1μ
m, transmembrane pressure difference ΔP = 30 kPa generated in the flat plate-shaped film 4,
The temperature T of the stock solution was 20 ° C. This graph is shown on a semilogarithmic graph paper, and the filtration time on the horizontal axis is on a logarithmic scale. From this graph, it can be seen that the membrane permeation flux has a linear relationship with the logarithm of the filtration time with the gas amount (V 1 ) as a parameter. Assuming that the membrane permeation flux when the filtration time is 5 (h) is the initial value, the gas amount (V 1 ) is 210 (m 3 ) in the initial value.
m -2 h -1 ), 290 (m 3 m -2 h -1 ), 380 (m 3 m -2 h -1 ),
0.40 as it increases to 450 (m 3 m -2 h -1 ).
(M 3 m -2 h -1 ), 0.48 (m 3 m -2 h -1 ), 0.51 (m 3 m
-2 h -1 ) and 0.52 (m 3 m -2 h -1 ). Also,
The slope of the straight line gradually becomes horizontal from the lower right. However, even when the gas amount (V 1 ) exceeds 380 (m 3 m -2 h -1 ), the membrane permeation flux hardly increases. It can be seen that supplying a larger amount of gas than necessary does not lead to improvement of the permeation flux. Further, the required gas amount (V 1 ) needs to be determined in consideration of prevention of long-term deterioration of the membrane filtration characteristics.

【0019】平板状膜4下方に供給する具体的な気体量
(V1 )は、分離膜を浄化槽底面に投影した場合の単位
投影面積当り且つ単位時間当り、0.5≦V1 ≦380
(m3m-2h-1)とする。これは、初期の膜面の掻き取りに
は200(m3m-2h-1)の気体量で十分なものの、長期間
にわたる膜濾過特性の経時劣化防止には380(m3m- 2h
-1)以下の気体量が必要で、380(m3m-2h-1)を超え
る気体量を供給しても、被濾過物層の掻き取り効果は変
化せず、気体量を供給する動力が無駄になるからであ
り、また、0.5(m3m-2h-1)より小さい気体量では気
泡流による掻き取り効果が得られないためである。気体
量と曝気による気泡流の上昇速度との間には正の相関が
存在することから、気体量を多くすればするほど、より
高い掻き取り効率が得られる。しかし、そのための動力
費と掻き取り効率は負の相関関係を示すことから、気体
量を大きくしすぎると動力費が過大となってしまう。そ
こで、膜濾過特性と動力費とのバランスから望ましい気
体量の上限は、290(m3m-2h-1)とする。下限は、装
置として十分な膜濾過特性を得るために1.0(m3m-2h
-1)とする。即ち、望ましい気体量(V1 )は、1.0
≦V1 ≦290(m3m-2h-1)とする。
The specific gas amount (V 1 ) supplied below the flat plate-shaped membrane 4 is 0.5 ≦ V 1 ≦ 380 per unit projected area and per unit time when the separation membrane is projected on the bottom surface of the purification tank.
(M 3 m -2 h -1 ). This is despite the scraping of the initial film surface sufficient in the amount of gas 200 (m 3 m -2 h -1 ), the time degradation prevention of membrane filtration properties over a long period of time 380 (m 3 m - 2 h
-1 ) or less gas amount is required, and even if a gas amount exceeding 380 (m 3 m -2 h -1 ) is supplied, the scraping effect of the filtration target layer does not change, and the gas amount is supplied. This is because power is wasted, and a gas amount smaller than 0.5 (m 3 m -2 h -1 ) cannot obtain the scraping effect by the bubble flow. Since there is a positive correlation between the gas amount and the rising rate of the bubbly flow due to aeration, the higher the gas amount, the higher the scraping efficiency obtained. However, since the power cost for that purpose and the scraping efficiency show a negative correlation, if the gas amount is too large, the power cost becomes excessive. Therefore, the upper limit of the desirable gas amount is 290 (m 3 m -2 h -1 ) in view of the balance between the membrane filtration characteristics and the power cost. The lower limit is 1.0 (m 3 m -2 h in order to obtain sufficient membrane filtration characteristics as a device.
-1 ). That is, the desired gas amount (V 1 ) is 1.0
≦ V 1 ≦ 290 (m 3 m −2 h −1 )

【0020】また、上記した好気性処理のみを行う場合
には連続して空気を散気管7から平板状膜4に向けて供
給すればよいが、嫌気性処理、つまり活性汚泥に含まれ
る酸生成菌によって合併排水中の有機物を酢酸(CH3
COOH )やプロピオン酸(CH3CH2COOH)等
の有機酸に低分子化し、更にこれら有機酸をメタン菌な
どによってメタン(CH4 )や二酸化炭素(CO2 )の
ガスに変換し、更に、タンパク質や尿素などの窒素分の
分解物であるアンモニア態窒素(NH4 +)を生成する嫌
気性処理を行いたい場合には、空気の代りに窒素ガス等
の酸素を含まないガスを供給するか、或いは好気と嫌気
の繰り返し処理を行う場合には、散気用空気の供給を間
欠的に行うようにすればよい。
Further, when only the aerobic treatment described above is performed, air may be continuously supplied from the air diffuser 7 toward the flat plate membrane 4, but anaerobic treatment, that is, acid production contained in activated sludge. Organic matter in the wastewater merged by the bacteria is converted into acetic acid (CH 3
COOH), propionic acid (CH 3 CH 2 COOH), and other organic acids are converted into low molecular weight compounds, and these organic acids are converted to methane (CH 4 ) and carbon dioxide (CO 2 ) gas by methane bacteria. If you want to perform anaerobic treatment that produces ammonia nitrogen (NH 4 + ), which is a decomposition product of nitrogen components such as protein and urea, do you supply oxygen-free gas such as nitrogen gas instead of air? Alternatively, when repeating the aerobic and anaerobic treatments, the air for aeration may be supplied intermittently.

【0021】また、濾過装置3を用いた第2発明に係る
濾過方法にあっては、第1散気管7と第2散気管8の両
方から空気を板状膜4に向けて供給する。すると、前記
したように平板状膜4の表面に沿った気泡流が形成され
るだけでなく、第2散気管8からの気泡が直接平板状膜
4の表面に当り、振動或いは衝撃によって平板状膜4表
面に付着している活性汚泥10等が剥離される。
Further, in the filtering method according to the second invention using the filtering device 3, air is supplied toward the plate-shaped membrane 4 from both the first air diffusing tube 7 and the second air diffusing tube 8. Then, as described above, not only the bubble flow along the surface of the flat plate-shaped film 4 is formed, but also the bubbles from the second diffusing tube 8 directly contact the surface of the flat plate-shaped film 4 and are vibrated or shocked to form a flat plate-shaped film. The activated sludge 10 or the like adhering to the surface of the membrane 4 is peeled off.

【0022】このように、気泡流だけでなく振動や衝撃
を加えることで剥離作用は第1発明よりも飛躍的に向上
する。但し、このような飛躍的な効果が期待できる気体
量(V2 )は、分離膜の単位面積当り且つ単位時間当
り、V2 ≦2000(m3m-2h-1)であり、この気体量よ
り多く供給しても剥離効果は向上しないためであり、好
ましくはV2 ≦500(m3m-2h-1)である。
As described above, the separation action is dramatically improved as compared with the first invention by applying not only the bubble flow but also vibration and impact. However, the amount of gas (V 2 ) at which such a dramatic effect can be expected is V 2 ≦ 2000 (m 3 m −2 h −1 ) per unit area of the separation membrane and per unit time. This is because the peeling effect is not improved even if a larger amount is supplied, and V 2 ≦ 500 (m 3 m −2 h −1 ) is preferable.

【0023】図5は本願の第4発明に係る濾過装置を組
み込んだ浄化槽の縦断面図、図6は図5のBーB方向か
ら見た図、図7は図6の要部拡大図であり、この浄化槽
は浄化槽本体1内を隔壁12によって2つの処理室に画
成し、一方の処理室に濾過装置13を配置している。
FIG. 5 is a vertical cross-sectional view of a septic tank in which a filtering device according to the fourth invention of the present application is incorporated, FIG. 6 is a view seen from the direction BB of FIG. 5, and FIG. 7 is an enlarged view of the main part of FIG. In this septic tank, the inside of the septic tank main body 1 is divided into two processing chambers by the partition wall 12, and the filtration device 13 is arranged in one of the processing chambers.

【0024】濾過装置13は保持枠14の上部に集水管
15を取り付け、この集水管15にポンプ16につなが
る吸引管17を接続し、また保持枠14の下部に下方に
向けて気体噴出穴18aが開口する散気管18を取り付
けている。そして、分離膜としての中空糸状膜19を両
端が上方になるように折り返し、その両端を前記集水管
15に連結し、また折り返し部には散気管18を配置
し、中空糸状膜19の下端に空気を供給し、上下方向の
中空糸状膜19に沿った気泡流を形成するとともに中空
糸状膜19に振動を与えるようにしている。ここで、分
離膜として中空糸状膜を用いているため、気体によって
膜自身が可動してゆらぎによる被濾過物層の剥離が効果
的に行われる。
The filtering device 13 has a water collecting pipe 15 attached to an upper portion of a holding frame 14, a suction pipe 17 connected to a pump 16 is connected to the water collecting pipe 15, and a gas ejection hole 18a is downwardly directed to a lower portion of the holding frame 14. Is attached to the air diffuser 18. Then, the hollow fiber membrane 19 as a separation membrane is folded back so that both ends are upward, both ends thereof are connected to the water collecting pipe 15, and an air diffuser pipe 18 is arranged at the folded portion, and the hollow fiber membrane 19 is arranged at the lower end of the hollow fiber membrane 19. Air is supplied to form a bubble flow along the hollow fiber membranes 19 in the vertical direction and to give vibrations to the hollow fiber membranes 19. Here, since the hollow fiber membrane is used as the separation membrane, the membrane itself is moved by the gas, and the layer of the substance to be filtered is effectively separated due to fluctuation.

【0025】図8は本願の第5発明に係る濾過装置を組
み込んだ浄化槽の縦断面図であり、この浄化槽は浄化槽
本体1内に2つの濾過装置20を並列して配置してい
る。濾過装置20は本体1内に2本の集水管21を左右
に離間して配置し、これら2本の集水管21間に横方向
に架設される中空糸状膜22の両端を集水管21に連結
し、この集水管21にポンプ23につながる吸引管24
を接続しまた中空糸状膜22の下方には散気管25を配
置している。
FIG. 8 is a vertical cross-sectional view of a septic tank incorporating the filtering device according to the fifth aspect of the present invention. In the septic tank, two filtering devices 20 are arranged in parallel in the septic tank body 1. The filtration device 20 has two water collecting pipes 21 spaced apart from each other in the main body 1, and both ends of a hollow fiber membrane 22 which is laterally installed between the two water collecting pipes 21 are connected to the water collecting pipe 21. The suction pipe 24 connected to the pump 23 is connected to the water collection pipe 21.
And an air diffuser 25 is arranged below the hollow fiber membrane 22.

【0026】図8に示す濾過装置20にあっては、中空
糸状膜22が横方向(斜めでもよい)に架設されている
ため散気管25から供給される気体によって形成される
気泡流により中空糸状膜22が振動するため、気泡流に
よる掻き取り作用と振動との相乗効果によって被濾過物
層11の剥離は極めて顕著である。
In the filtration device 20 shown in FIG. 8, since the hollow fiber membrane 22 is laid horizontally (or diagonally), the hollow fiber membrane is formed by the bubble flow formed by the gas supplied from the diffuser pipe 25. Since the membrane 22 vibrates, the peeling of the filtration target layer 11 is extremely remarkable due to the synergistic effect of the scraping action by the bubble flow and the vibration.

【0027】[0027]

【発明の効果】以上に説明した如く本願の第1発明に係
る濾過方法によれば、分離膜表面に堆積した被濾過物層
を剥離すべく分離膜に沿って原液と気体が混合した気泡
流を連続的にまたは間欠的に形成するものとし、この気
泡流を形成するために分離膜下方に供給する気体量(V
1 )を、分離膜の単位投影面積当り且つ単位時間当り、
0.5≦V1 ≦380(m3m-2h-1)としたので、効率よ
く被濾過物層を剥離することができる。
As described above, according to the filtration method according to the first invention of the present application, the bubble flow in which the stock solution and the gas are mixed along the separation membrane in order to separate the layer to be filtered accumulated on the surface of the separation membrane. Are formed continuously or intermittently, and the amount of gas (V
1 ) is per unit projected area of the separation membrane and per unit time,
Since 0.5 ≦ V 1 ≦ 380 (m 3 m −2 h −1 ) is set, the layer to be filtered can be efficiently peeled off.

【0028】また、本願の第2発明に係る濾過方法によ
れば、気泡流だけでなく気泡を分離膜表面に当てるよう
にしたので、気泡流による掻き取り作用と気泡による振
動作用の相乗効果によって更に効率よく被濾過物層を剥
離することができる。特にこの効果は供給する気体量
(V2 )を、分離膜の単位面積当り且つ単位時間当り、
2 ≦2000(m3m-2h-1)とした場合に顕著となる。
Further, according to the filtration method of the second invention of the present application, not only the bubble flow but also the bubbles are applied to the surface of the separation membrane. Therefore, the synergistic effect of the scraping action by the bubble flow and the vibration action by the bubbles is achieved. It is possible to more efficiently peel the layer to be filtered. In particular, this effect is achieved by changing the amount of gas (V 2 ) supplied per unit area of the separation membrane and per unit time,
It becomes remarkable when V 2 ≦ 2000 (m 3 m −2 h −1 ).

【0029】また、本願の第3発明に係る濾過装置によ
れば、分離膜を原液内に上下方向に配置される平板状膜
とし、この平板状膜の下方に平板状膜に沿って原液と気
体が混合した気泡流を形成するための散気部材を配置
し、また平板状膜の側方に平板状膜に気泡を当てるため
の散気部材を配置したので、気泡流による掻き取り作用
と気泡による振動作用の相乗効果によって被濾過物層を
剥離することができる。
According to the filtration device of the third aspect of the present invention, the separation membrane is a flat plate membrane arranged vertically in the stock solution, and the stock solution is placed below the flat plate membrane along the flat plate membrane. Since the air diffuser for forming the bubble flow mixed with the gas is arranged, and the air diffuser for applying the air bubbles to the flat plate-shaped film is arranged on the side of the flat plate-shaped film, the scraping action by the bubble flow and The substance layer to be filtered can be peeled off by the synergistic effect of the vibration action of the bubbles.

【0030】また、本願の第4発明に係る濾過装置によ
れば、分離膜を原液内に上下方向に架設される中空糸状
膜とし、この中空糸状膜を両端が上方になるように折り
返して集水部材に連結し、また折り返し部には散気部材
を配置したので、気泡流による効率的な掻き取り作用を
発揮でき、しかも散気部材が中空糸状膜の支持部材とし
ての機能を発揮するので、構造がシンプルとなる。
Further, according to the filtration device of the fourth aspect of the present invention, the separation membrane is a hollow fiber membrane which is vertically installed in the stock solution, and the hollow fiber membrane is folded back so that both ends thereof are upward. Since it is connected to the water member and the diffusing member is arranged at the folded back portion, an efficient scraping action due to the bubble flow can be exhibited, and the diffusing member also functions as a supporting member for the hollow fiber membrane. , The structure is simple.

【0031】更に、本願の第5発明に係る濾過装置によ
れば、分離膜を原液内に横方向に架設される中空糸状膜
とし、この中空糸状膜の両端を集水部材に連結し、また
中空糸状膜の下方に散気部材を配置したので、気泡流に
よる掻き取り作用の他に振動による剥離作用が極めて大
きくなる。
Furthermore, according to the filtration device of the fifth aspect of the present invention, the separation membrane is a hollow fiber membrane horizontally laid in the stock solution, and both ends of this hollow fiber membrane are connected to a water collecting member, Since the air diffuser is arranged below the hollow fiber membrane, the peeling action by vibration becomes extremely large in addition to the scraping action by the bubble flow.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の第3発明に係る濾過装置を組み込んだ浄
化槽の縦断面図
FIG. 1 is a vertical cross-sectional view of a septic tank incorporating a filtration device according to a third invention of the present application.

【図2】図1のAーA方向から見た図FIG. 2 is a view seen from the direction AA of FIG.

【図3】本発明の作用を説明した図FIG. 3 is a diagram explaining the operation of the present invention.

【図4】気体量によって膜透過流束が濾過時間の経過と
ともにどのように変化するかを示す実験結果のグラフ
FIG. 4 is a graph of experimental results showing how the membrane permeation flux changes with the passage of filtration time depending on the amount of gas.

【図5】本願の第4発明に係る濾過装置を組み込んだ浄
化槽の縦断面図
FIG. 5 is a vertical cross-sectional view of a septic tank incorporating a filtration device according to a fourth aspect of the present application.

【図6】図5のBーB方向から見た図FIG. 6 is a view seen from the direction BB of FIG.

【図7】図6の要部拡大図7 is an enlarged view of a main part of FIG.

【図8】本願の第5発明に係る濾過装置を組み込んだ浄
化槽の縦断面図
FIG. 8 is a vertical cross-sectional view of a septic tank in which a filtration device according to a fifth invention of the present application is incorporated.

【符号の説明】[Explanation of symbols]

1…浄化槽の本体、2,12…隔壁、3,13,20…
濾過装置、4…平板状膜、5,16,23…ポンプ、
6,17,24…吸引管、7,8,18,25…散気
管、10…活性汚泥粒子、11…被濾過物層、15,2
1…集水管、19,22…中空糸状膜。
1 ... Main body of septic tank, 2, 12 ... Partition walls, 3, 13, 20 ...
Filtration device, 4 ... Flat plate membrane, 5, 16, 23 ... Pump,
6, 17, 24 ... Suction tube, 7, 8, 18, 25 ... Air diffuser tube, 10 ... Activated sludge particles, 11 ... Filtered material layer, 15, 2
1 ... Water collecting pipe, 19, 22 ... Hollow fiber membrane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瓜生 勝嗣 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 奥野 祐一 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Urushi Katsushi 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka Prefecture Totoki Kikai Co., Ltd. (72) Yuichi Okuno Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka 2-1, 1-1 Totoki Equipment Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原液内に分離膜を浸漬し、濾過を行うよ
うにした濾過方法において、この濾過方法は分離膜表面
に堆積した被濾過物層を剥離すべく分離膜に沿って原液
と気体が混合した気泡流を連続的にまたは間欠的に形成
するものとし、且つ前記気泡流を形成するために分離膜
下方に供給する気体量(V1)は、分離膜の単位投影面
積当り且つ単位時間当り、0.5≦V1 ≦380(m3m
-2h-1)としたことを特徴とする濾過方法。
1. A filtration method in which a separation membrane is immersed in an undiluted solution and filtration is carried out. In this filtration method, the undiluted solution and the gas are separated along the separation membrane in order to separate a layer to be filtered deposited on the surface of the separation membrane. To form a mixed bubble flow continuously or intermittently, and the amount of gas (V 1 ) supplied below the separation membrane to form the bubble flow is per unit projected area of the separation membrane and in units. 0.5 ≤ V 1 ≤ 380 (m 3 m per hour
-2 h -1 ).
【請求項2】 原液内に分離膜を浸漬し、濾過を行うよ
うにした濾過方法において、この濾過方法は分離膜表面
に堆積した被濾過物層を剥離すべく分離膜に沿って原液
と気体が混合した気泡流を連続的にまたは間欠的に形成
するとともに気泡を連続的にまたは間欠的に分離膜表面
の被濾過物層に当てるようにしたことを特徴とする濾過
方法。
2. A filtration method in which a separation membrane is immersed in an undiluted solution and filtration is carried out. In this filtration method, the undiluted solution and the gas are separated along the separation membrane in order to remove the layer to be filtered accumulated on the surface of the separation membrane. The method of filtration is characterized in that the mixed bubble flow is formed continuously or intermittently, and the bubbles are continuously or intermittently applied to the layer to be filtered on the surface of the separation membrane.
【請求項3】 請求項2に記載の濾過方法において、前
記気泡流を形成するとともに分離膜表面に当る気泡を形
成をするために分離膜表面近傍に供給する気体量(V
2 )は、分離膜の単位面積当り且つ単位時間当り、V2
≦2000(m3m-2h-1)としたことを特徴とする濾過方
法。
3. The filtration method according to claim 2, wherein the amount of gas (V) supplied near the surface of the separation membrane to form the bubble flow and to form bubbles that contact the surface of the separation membrane.
2 ) is V 2 per unit area and unit time of the separation membrane.
≦ 2000 (m 3 m −2 h −1 ) The filtration method, wherein
【請求項4】 分離膜により原液の濾過を行う濾過装置
において、前記分離膜は原液内に上下方向に配置される
平板状膜であり、この平板状膜の下方には平板状膜に沿
って原液と気体が混合した気泡流を形成するための散気
部材が配置され、また平板状膜の側方には平板状膜に気
泡を当てるための散気部材が配置されていることを特徴
とする濾過装置。
4. A filtration device for filtering a stock solution by means of a separation membrane, wherein the separation membrane is a flat plate membrane arranged vertically in the stock solution, and below the flat plate membrane, along the flat plate membrane. An air diffuser for forming a bubble flow in which the stock solution and the gas are mixed is arranged, and an air diffuser for applying bubbles to the flat film is arranged on the side of the flat film. Filtering device.
【請求項5】 分離膜により原液の濾過を行う濾過装置
において、前記分離膜は原液内に上下方向に架設される
中空糸状膜であり、この中空糸状膜は両端が上方になる
ように折り返され、その両端は集水部材に連結し、また
折り返し部には散気部材が配置されていることを特徴と
する濾過装置。
5. A filtration device for filtering a stock solution by a separation membrane, wherein the separation membrane is a hollow fiber membrane laid vertically in the stock solution, and the hollow fiber membrane is folded back so that both ends thereof are upward. The filtration device is characterized in that both ends thereof are connected to a water collecting member, and an air diffuser member is arranged at the folded portion.
【請求項6】 分離膜により原液の濾過を行う濾過装置
において、前記分離膜は原液内に横方向に架設される中
空糸状膜であり、この中空糸状膜は両端が集水部材に連
結し、また中空糸状膜の下方には散気部材が配置されて
いることを特徴とする濾過装置。
6. A filtration device for filtering a stock solution with a separation membrane, wherein the separation membrane is a hollow fiber membrane laterally installed in the stock solution, and both ends of the hollow fiber membrane are connected to a water collecting member, Further, the filter device is characterized in that an air diffusing member is arranged below the hollow fiber membrane.
JP7012947A 1994-01-28 1995-01-30 Filtering method and filter device Pending JPH07251043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7012947A JPH07251043A (en) 1994-01-28 1995-01-30 Filtering method and filter device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP873294 1994-01-28
JP6-8732 1994-01-28
JP7012947A JPH07251043A (en) 1994-01-28 1995-01-30 Filtering method and filter device

Publications (1)

Publication Number Publication Date
JPH07251043A true JPH07251043A (en) 1995-10-03

Family

ID=26343309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7012947A Pending JPH07251043A (en) 1994-01-28 1995-01-30 Filtering method and filter device

Country Status (1)

Country Link
JP (1) JPH07251043A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003013706A1 (en) * 2001-08-09 2003-02-20 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
US20100326897A1 (en) * 1995-08-11 2010-12-30 Mailvaganam Mahendran Membrane filtration module with adjustable header spacing
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137404A (en) * 1983-12-26 1985-07-22 Sankyo Seiki Mfg Co Ltd Backwashing process for suspended filter
JPS61181507A (en) * 1985-02-06 1986-08-14 Mitsubishi Rayon Co Ltd Method for washing hollow yarn filter module
JPS62155906A (en) * 1985-12-28 1987-07-10 Mitsubishi Rayon Eng Co Ltd Method for washing hollow yarn filter module
JPH02227122A (en) * 1989-02-27 1990-09-10 Akua Runesansu Gijutsu Kenkyu Kumiai Treatment by membrane
JPH04180821A (en) * 1990-11-16 1992-06-29 Ebara Infilco Co Ltd Hollow yarn film filtration device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137404A (en) * 1983-12-26 1985-07-22 Sankyo Seiki Mfg Co Ltd Backwashing process for suspended filter
JPS61181507A (en) * 1985-02-06 1986-08-14 Mitsubishi Rayon Co Ltd Method for washing hollow yarn filter module
JPS62155906A (en) * 1985-12-28 1987-07-10 Mitsubishi Rayon Eng Co Ltd Method for washing hollow yarn filter module
JPH02227122A (en) * 1989-02-27 1990-09-10 Akua Runesansu Gijutsu Kenkyu Kumiai Treatment by membrane
JPH04180821A (en) * 1990-11-16 1992-06-29 Ebara Infilco Co Ltd Hollow yarn film filtration device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326897A1 (en) * 1995-08-11 2010-12-30 Mailvaganam Mahendran Membrane filtration module with adjustable header spacing
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing
AU2002322160B2 (en) * 2001-08-09 2008-05-01 Evoqua Water Technologies Llc Method of cleaning membrane modules
WO2003013706A1 (en) * 2001-08-09 2003-02-20 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
JPH07251043A (en) Filtering method and filter device
JPH07256281A (en) Waste water purifying method and tank
JPWO2009028435A1 (en) Immersion type membrane separation device, water purification treatment device, and water purification treatment method using the same
JPH07155758A (en) Waste water treating device
JP2010082597A (en) Immersion type membrane separation apparatus
JPS61274799A (en) Apparatus for treating waste water
JPH09117647A (en) Operation of air diffusion device
JPH07275887A (en) Purifying tank
JP3821566B2 (en) Membrane separation activated sludge treatment method
JPH11104698A (en) Drainage treatment method
JPH10296252A (en) Aeration tank immersed membrane separation activated sludge apparatus
JPH07246320A (en) Filtration method
JPH02268890A (en) Device for treating sewage by hollow-fiber membrane
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JPH10244262A (en) Filtration method for wastewater
JP2003290766A (en) Method and apparatus for treating waste water by membrane separation
JPH1177044A (en) Wastewater treatment apparatus
JPH0487695A (en) Organic waste water treating device
JPH07308683A (en) Septic tank
JP2699108B2 (en) Sewage treatment method by hollow fiber membrane
JP2003275546A (en) Apparatus for treating membrane separated waste water
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JPH09108672A (en) Parallel two-stage membrane separation type septic tank
JPH07290075A (en) Septic tank
JP2001252679A (en) Waste water treating device and method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040331