JPH07249788A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH07249788A
JPH07249788A JP6041110A JP4111094A JPH07249788A JP H07249788 A JPH07249788 A JP H07249788A JP 6041110 A JP6041110 A JP 6041110A JP 4111094 A JP4111094 A JP 4111094A JP H07249788 A JPH07249788 A JP H07249788A
Authority
JP
Japan
Prior art keywords
barrier layer
solar cell
silicon substrate
single crystal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6041110A
Other languages
Japanese (ja)
Inventor
Naotake Kono
尚毅 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP6041110A priority Critical patent/JPH07249788A/en
Publication of JPH07249788A publication Critical patent/JPH07249788A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a solar cell having enhanced photoelectric conversion efficiency. CONSTITUTION:The main part of solar cell comprises a p-type single crystal silicon substrate 1, an n<+> amorphous silicon layer 2 forming an pn junction with respect to the silicon substrate 1 disposed on the light incident side face of the p-type single crystal silicon substrate 1, a barrier wall 5 (exhibiting selective transmitting/transporting function for electron) formed of SiO1.5 of 1nm thick having wide band gap on the opposite side face of the silicon substrate 1 while being added with n-type dopant, and a rear electrode 6 provided on the back side of the barrier layer 5. When compared with a conventional solar cell where the barrier wall layer is composed of an HL(High-low) junction, a high energy difference can be set between the silicon substrate 1 and the barrier wall 5 depending on the type of semiconductor material, e.g. SiO1.5, being applied to the barrier layer. Furthermore, diffusion of hole to the rear electrode 6 side can be suppressed significantly and thereby the photoelectric conversion efficiency can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、少数キャリアのみに対
するポテンシャルバリアとして機能する障壁層が半導体
基板と裏面電極との間に設けられた太陽電池に係り、特
に、光電変換効率の改善が図れる太陽電池の改良に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell in which a barrier layer functioning as a potential barrier for only minority carriers is provided between a semiconductor substrate and a back electrode, and more particularly to a solar cell capable of improving photoelectric conversion efficiency. It relates to the improvement of batteries.

【0002】[0002]

【従来の技術】この種の太陽電池としては、例えば、図
3〜4に示すようにn型単結晶シリコン基板aと、この
単結晶シリコン基板aの光入射側面に設けられ単結晶シ
リコン基板aとの間でpn接合を形成するp+シリコン
層bと、このp+シリコン層b上に一様に製膜されたI
TO(酸化インジウム錫)の反射防止層cと、この反射
防止層c上に設けられた櫛歯状電極dと、上記単結晶シ
リコン基板aの光入射側とは反対面に設けられ単結晶シ
リコン基板aとの間でHL(High-Low)接合を形成する
+シリコン層(高濃度のドーピング層)の障壁層e
と、この障壁層eの背面側に一様に設けられた裏面電極
fとでその主要部が構成され、光入射に伴って発生した
ホールとエレクトロンがそれぞれ上記電極d、fから電
流(Iph)として取出される構造のものが知られてい
る。
2. Description of the Related Art As a solar cell of this type, for example, as shown in FIGS. 3 to 4, an n-type single crystal silicon substrate a and a single crystal silicon substrate a provided on the light incident side surface of the single crystal silicon substrate a. a p + silicon layer b to form a pn junction, is uniformly formed into a film on the p + silicon layer b I with the
The antireflection layer c of TO (indium tin oxide), the comb-teeth-shaped electrode d provided on the antireflection layer c, and the single crystal silicon provided on the surface of the single crystal silicon substrate a opposite to the light incident side. Barrier layer e of n + silicon layer (high-concentration doping layer) forming an HL (High-Low) junction with the substrate a
And a back surface electrode f uniformly provided on the back surface side of the barrier layer e constitutes a main part thereof, and holes and electrons generated due to the incidence of light enter the electrodes (d and f) with electric current (I ph). ) Is known as a structure.

【0003】尚、図5はこの太陽電池の構造をモデル的
に記載した構造概念図(但し、反射防止膜cは省略され
ている)であり、また、図6はこの構造を有する太陽電
池のエネルギーバンド図を示している。
Incidentally, FIG. 5 is a structural conceptual diagram (however, the antireflection film c is omitted) in which the structure of this solar cell is described as a model, and FIG. 6 shows a solar cell having this structure. The energy band diagram is shown.

【0004】そして、上記障壁層eを具備しない構造の
太陽電池に較べてこの太陽電池においては、HL接合g
を構成する単結晶シリコン基板aと障壁層e間に存在す
る内蔵電界が少数キャリア(この場合、ホール)の裏面
電極fへの拡散の障壁になるため(原則として光により
励起されたキャリアはシリコン基板中を等方に拡散す
る)、単結晶シリコン基板aの裏面側付近で発生した少
数キャリアが上記内蔵電界の作用を受けて加速される結
果、この少数キャリアを表面側の上記電極dから効果的
に収集することが可能となり、その光電変換効率の向上
が図れる利点を有するものであるとされていた。
In this solar cell, the HL junction g is higher than that of the solar cell having no barrier layer e.
Since the built-in electric field existing between the single crystal silicon substrate a and the barrier layer e constituting the layer becomes a barrier for diffusion of minority carriers (holes in this case) to the back surface electrode f (in principle, carriers excited by light are silicon Minority carriers generated near the back surface side of the single crystal silicon substrate a are accelerated by the action of the built-in electric field. As a result, the minority carriers are effective from the electrode d on the front surface side. It has been said that it has the advantage that it can be collected in an effective manner and the photoelectric conversion efficiency thereof can be improved.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述した構
造の太陽電池においては、単結晶シリコン基板aと上記
障壁層eとは共に単結晶シリコンにより構成されている
ことから両者のバンドギャップは同一であるが、単結晶
シリコン基板a内に拡散された高濃度のドーパント(こ
の場合、n型ドーパント)が作用して高濃度のドーピン
グ層から成る障壁層eのバンドを相対的に下げるため、
この障壁層eと単結晶シリコン基板aとの間において図
6に示すようなエネルギ差(ΔE)が形成される。この
ため、上記単結晶シリコン基板aに対するドーパントの
拡散量を増大させることにより単結晶シリコン基板aと
障壁層eとの間のエネルギ差(ΔE)を大きく設定する
ことは原理的に可能である。
By the way, in the solar cell having the above-mentioned structure, since the single crystal silicon substrate a and the barrier layer e are both made of single crystal silicon, they have the same band gap. However, since the high-concentration dopant (n-type dopant in this case) diffused in the single crystal silicon substrate a acts to relatively lower the band of the barrier layer e formed of the high-concentration doping layer,
An energy difference (ΔE) as shown in FIG. 6 is formed between the barrier layer e and the single crystal silicon substrate a. Therefore, it is theoretically possible to set a large energy difference (ΔE) between the single crystal silicon substrate a and the barrier layer e by increasing the diffusion amount of the dopant into the single crystal silicon substrate a.

【0006】しかし、単結晶シリコン基板aに対する上
記ドーパントの拡散量(固溶量)には一定の限界がある
ため、単結晶シリコン基板aと障壁層e間において設定
されるエネルギ差(ΔE)の大きさについても限界があ
った。
However, since the diffusion amount (solid solution amount) of the above-mentioned dopant with respect to the single crystal silicon substrate a has a certain limit, the energy difference (ΔE) set between the single crystal silicon substrate a and the barrier layer e. There was also a limit to the size.

【0007】従って、HL接合gによる上記少数キャリ
アに対する障壁層eの機能にはドーパントの拡散量に起
因した一定の限界があるため、単結晶シリコン基板aの
裏面側付近で発生した少数キャリアの一部が裏面電極f
側に拡散しかつ界面再結合により消滅し易く、太陽電池
の光電変換効率を向上させる上において未だ改善の余地
を有していた。
Therefore, since the function of the barrier layer e for the minority carriers due to the HL junction g has a certain limit due to the diffusion amount of the dopant, one of the minority carriers generated in the vicinity of the back surface side of the single crystal silicon substrate a. Is the backside electrode f
There is still room for improvement in improving the photoelectric conversion efficiency of the solar cell because it diffuses to the side and easily disappears by interfacial recombination.

【0008】本発明はこのような問題点に着目してなさ
れたもので、その課題とするところは、光電変換効率の
大幅な改善が図れる太陽電池を提供することにある。
The present invention has been made by paying attention to such a problem, and an object thereof is to provide a solar cell capable of significantly improving photoelectric conversion efficiency.

【0009】[0009]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、n型半導体基板と、この半導体基板の光入射
側とは反対面に設けられホールのみに対するポテンシャ
ルバリアとして機能する障壁層と、この障壁層の裏面側
に設けられた裏面電極を備える太陽電池を前提とし、上
記障壁層が、エレクトロンに対する選択透過輸送機能を
有する薄膜の半絶縁性材料により構成されていることを
特徴とするものである。
That is, the invention according to claim 1 is an n-type semiconductor substrate, and a barrier layer provided on the surface of the semiconductor substrate opposite to the light incident side and functioning as a potential barrier for only holes. Assuming a solar cell having a back surface electrode provided on the back surface side of the barrier layer, the barrier layer is composed of a thin film semi-insulating material having a selective permeation transport function for electrons. It is a thing.

【0010】そして、この請求項1に係る発明において
は、n型半導体基板に高濃度のドーピング層を形成しH
L接合(同型ホモ接合)により障壁層を構成させる従来
の手段に代えて、エレクトロンに対する選択透過輸送機
能(すなわち、ホールは比較的透過し難いがエレクトロ
ンは比較的自由に透過できる機能)を有する薄膜の半絶
縁性材料により障壁層を構成させており、障壁層に適用
される半絶縁性材料のバンドギャップの大きさに対応さ
せてホール伝導に対し上記半導体基板と障壁層との間の
エネルギ差(ΔE)を従来より大きく設定できるため、
上記少数キャリア(ホール)の裏面電極側への拡散を大
幅に抑制することが可能となる。
In the invention according to claim 1, a high-concentration doping layer is formed on the n-type semiconductor substrate, and H
A thin film having a selective permeation transport function for electrons (that is, a function in which holes are relatively hard to pass but electrons are relatively free to pass) instead of the conventional means of forming a barrier layer by an L junction (homomorphic homojunction). The barrier layer is made of the semi-insulating material, and the energy difference between the semiconductor substrate and the barrier layer for hole conduction is adjusted according to the size of the band gap of the semi-insulating material applied to the barrier layer. Since (ΔE) can be set larger than before,
It is possible to significantly suppress the diffusion of the minority carriers (holes) to the back electrode side.

【0011】また、請求項1記載の発明に係る太陽電池
においては太陽電池の主要部を構成する半導体基板と障
壁層とが種類の異なる半導体材料にて形成されているた
め、太陽電池を構成する材料設計、プロセス設計の自由
度を増大させることも可能となる。
Further, in the solar cell according to the invention of claim 1, since the semiconductor substrate and the barrier layer constituting the main part of the solar cell are made of different semiconductor materials, the solar cell is constituted. It is also possible to increase the degree of freedom in material design and process design.

【0012】この請求項1に係る発明において上記n型
半導体基板には従来技術で例示された単結晶シリコン基
板や、GaAs基板、InP基板等が挙げられる。
In the invention according to the first aspect, the n-type semiconductor substrate may be a single crystal silicon substrate, a GaAs substrate, an InP substrate or the like exemplified in the prior art.

【0013】また、上記障壁層に適用できる半絶縁性材
料とはホールは透過し難いがエレクトロンは比較的自由
に透過できる膜厚及びバンド構造をとるような材料で、
半導体基板として単結晶シリコン基板が適用されている
場合には、例えば、SiOx(但し、1.5≦x≦2.
0)、SiNx (但し、1.0≦x≦4/3)、及び、
SiCx (但し、0.7≦x≦1.0)等が挙げられ
る。尚、これ等SiOx、SiNx 、SiCx について
はその組成に応じてそのバンドギャップの大きさを適宜
調整することが可能である。また、これ等半絶縁性材料
で構成される障壁層の膜厚が大きいとこの障壁層に上述
した選択透過輸送機能を具備させることが困難になるた
め、その膜厚は3nm以下に設定することが望ましい。
The semi-insulating material applicable to the barrier layer is a material which has a film thickness and a band structure in which holes are difficult to penetrate but electrons can relatively freely penetrate.
When a single crystal silicon substrate is used as the semiconductor substrate, for example, SiOx (provided that 1.5 ≦ x ≦ 2.
0), SiNx (where 1.0≤x≤4 / 3), and
SiCx (however, 0.7 ≦ x ≦ 1.0) and the like can be mentioned. It should be noted that the band gap size of these SiOx, SiNx, and SiCx can be appropriately adjusted according to the composition thereof. If the barrier layer made of these semi-insulating materials has a large thickness, it is difficult to provide the barrier layer with the above-mentioned selective permeation transport function. Therefore, the thickness should be set to 3 nm or less. Is desirable.

【0014】次に、上記障壁層の製膜手段としてはその
材料の種類により任意な方法が適用でき、例えば、蒸着
法、スパッタリング法、MBE(分子線エピタキシ)法
等の物理的気相成長法、熱CVD、プラズマCVD、光
CVD法等の化学的気相成長法等が挙げられる。尚、単
結晶シリコン基板が適用されている場合、障壁層として
のSiOx (酸化膜)は、硝酸、硫酸、過酸化水素水等
の酸化剤によるウエット酸化、酸素中あるいは水蒸気中
での熱酸化、プラズマ酸化等の各種酸化法により形成が
可能である。また、障壁層としてのSiNx (窒化膜)
は、NH3 中での熱窒化法あるいは窒素含有プラズマ窒
化法等による形成が可能である。
Next, as the film forming means for the barrier layer, any method can be applied depending on the kind of the material, for example, physical vapor deposition method such as vapor deposition method, sputtering method, MBE (molecular beam epitaxy) method and the like. Chemical vapor deposition methods such as thermal CVD, plasma CVD, and photo-CVD. When a single crystal silicon substrate is applied, the SiOx (oxide film) as a barrier layer may be wet oxidized by an oxidizing agent such as nitric acid, sulfuric acid, hydrogen peroxide solution, thermal oxidation in oxygen or water vapor, It can be formed by various oxidation methods such as plasma oxidation. Also, SiNx (nitride film) as a barrier layer
Can be formed by a thermal nitriding method in NH 3 or a nitrogen-containing plasma nitriding method.

【0015】ここで、上記障壁層に適用される半絶縁性
材料のバンド特性によりエレクトロンに対する選択透過
輸送機能を障壁層に具備させることが困難になる場合が
ある。このような場合にはn型ドーパントを障壁層を構
成する半導体材料内に添加することにより回避できる。
このn型ドーパントとしては適用される半絶縁性材料の
種類に応じて適宜材料が利用できる。例えば、障壁層を
構成する半絶縁性材料に上述したSiOx 、SiNx 、
SiCx 等シリコン系材料が適用されている場合には、
n型ドーパントとして、P(リン)、Sb(アンチモ
ン)、As(ヒ素)等が例示できる。そして、シリコン
系障壁層の製膜時にPH3(フォスフィン)ガス、As
3(アルシン)ガス等のドーパントガスを作用させる
ことにより上記障壁層内にn型ドーパントを添加させる
ことができる。そして、障壁層を構成する半導体材料内
にn型ドーパントを添加することにより障壁層の多数キ
ャリア(エレクトロン)に対する電気伝導度が増大する
ためこの障壁層にエレクトロンに対する選択透過輸送機
能を確実に具備させることが可能となる。
Here, it may be difficult to provide the barrier layer with a selective permeation transport function for electrons due to the band characteristic of the semi-insulating material applied to the barrier layer. In such a case, it can be avoided by adding an n-type dopant into the semiconductor material forming the barrier layer.
As the n-type dopant, a material can be appropriately used depending on the type of semi-insulating material applied. For example, the above-mentioned SiOx, SiNx,
If a silicon-based material such as SiCx is used,
Examples of the n-type dopant include P (phosphorus), Sb (antimony), As (arsenic) and the like. When the silicon-based barrier layer is formed, PH 3 (phosphine) gas, As
An n-type dopant can be added into the barrier layer by acting a dopant gas such as H 3 (arsine) gas. Then, by adding an n-type dopant in the semiconductor material forming the barrier layer, the electrical conductivity of the barrier layer with respect to majority carriers (electrons) increases, so that the barrier layer is surely provided with a selective permeation transport function for electrons. It becomes possible.

【0016】尚、この技術的手段は、従来技術において
説明したpn接合を有する通常の太陽電池に適用できる
他、単結晶シリコン基板等半導体基板が組込まれている
各種構造の太陽電池に適用することができる。
This technical means can be applied not only to the ordinary solar cell having the pn junction described in the prior art but also to the solar cells having various structures in which a semiconductor substrate such as a single crystal silicon substrate is incorporated. You can

【0017】[0017]

【作用】請求項1に係る発明によれば、エレクトロンに
対する選択透過輸送機能(ホールは比較的透過し難いが
エレクトロンは比較的自由に透過できる機能)を有する
薄膜の半絶縁性材料により障壁層を構成させており、障
壁層に適用される半絶縁性材料のバンドギャップの大き
さに対応させてホール伝導に対し上記半導体基板と障壁
層との間のエネルギ差を従来より大きく設定できるため
上記少数キャリアの裏面電極側への拡散を大幅に抑制す
ることが可能となり、かつ、半導体基板と障壁層とが種
類の異なる半導体材料にて構成されることから太陽電池
の材料設計、プロセス設計の自由度を増大させることも
可能となる。また、上記障壁層を構成する半絶縁性材料
内にn型ドーパントを添加した場合、障壁層のエレクト
ロンに対する電気伝導度が増大するためエレクトロンに
対する選択透過輸送機能をより確実に具備させることが
可能となる。
According to the first aspect of the present invention, the barrier layer is formed of a thin film semi-insulating material having a selective permeation transport function for electrons (a function in which holes are relatively difficult to penetrate but electrons can be relatively free). Since the energy difference between the semiconductor substrate and the barrier layer can be set larger than that of the conventional one for hole conduction in accordance with the band gap size of the semi-insulating material applied to the barrier layer, It is possible to significantly suppress the diffusion of carriers to the back electrode side, and because the semiconductor substrate and the barrier layer are composed of different semiconductor materials, the degree of freedom in the material design and process design of the solar cell is increased. Can also be increased. In addition, when an n-type dopant is added to the semi-insulating material forming the barrier layer, the electrical conductivity of the barrier layer with respect to electrons increases, so that it is possible to more reliably have a selective permeation transport function for electrons. Become.

【0018】[0018]

【実施例】以下、本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0019】[実施例1]この実施例に係る太陽電池
は、図1に示すようにn型単結晶シリコン基板1と、こ
の単結晶シリコン基板1の光入射側面に設けられ単結晶
シリコン基板1との間でpn接合を形成するp+アモル
ファスシリコン層2と、このp+アモルファスシリコン
層2上に一様に製膜されたITO(酸化インジウム錫)
の反射防止層3と、この反射防止層3上に設けられた銀
ペーストの櫛歯状電極4と、上記単結晶シリコン基板1
の反対側面に設けられn型ドーパントであるPH3が添
加された膜厚1nmでそのバンドギャップが大きい(図
2参照)SiO1.5から成る障壁層5と、この障壁層5
の背面側に一様に設けられたアルミニウムの裏面電極6
とでその主要部が構成されている。
[First Embodiment] As shown in FIG. 1, a solar cell according to this embodiment includes an n-type single crystal silicon substrate 1 and a single crystal silicon substrate 1 provided on a light incident side surface of the single crystal silicon substrate 1. ITO pn junction between p + amorphous silicon layer 2 to form a, which is uniformly formed into a film on the p + amorphous silicon layer 2 with the (indium tin oxide)
Anti-reflection layer 3, comb-shaped electrode 4 of silver paste provided on this anti-reflection layer 3, and said single crystal silicon substrate 1
And a barrier layer 5 made of SiO 1.5 having a large band gap with a film thickness of 1 nm and having an n-type dopant PH 3 added on the opposite side of the barrier layer 5.
Backside electrode 6 of aluminum uniformly provided on the backside of the
Its main part consists of.

【0020】そしてこの太陽電池は以下の工程に従って
製造されている。
The solar cell is manufactured according to the following steps.

【0021】まず、上記n型単結晶シリコン基板1をプ
ラズマCVD装置内に導入し、以下の製膜条件によりp
+アモルファスシリコン層2を製膜した。
First, the n-type single crystal silicon substrate 1 is introduced into a plasma CVD apparatus, and p is formed under the following film forming conditions.
+ Amorphous silicon layer 2 was formed.

【0022】 (p+アモルファスシリコン層の製膜条件) 反応ガスの種類と組成:B26/SiH4=1% 反応ガスの供給速度:100 SCCM 反応ガスの圧力:0.3Torr 放電電力:10W n型単結晶シリコン基板の加熱温度:200℃ 次に、上記n型単結晶シリコン基板1をプラズマCVD
装置内に導入し、以下の製膜条件によりn型単結晶シリ
コン基板1のp+アモルファスシリコン層2が形成され
てない面に膜厚1nmの障壁層5を製膜した。
(Formation Conditions of p + Amorphous Silicon Layer) Kind and Composition of Reaction Gas: B 2 H 6 / SiH 4 = 1% Supply Rate of Reaction Gas: 100 SCCM Pressure of Reaction Gas: 0.3 Torr Discharge Power: Heating temperature of 10 W n-type single crystal silicon substrate: 200 ° C. Next, the n-type single crystal silicon substrate 1 is subjected to plasma CVD.
After being introduced into the apparatus, a barrier layer 5 having a film thickness of 1 nm was formed on the surface of the n-type single crystal silicon substrate 1 on which the p + amorphous silicon layer 2 was not formed under the following film forming conditions.

【0023】(障壁層の製膜条件) 反応ガスの種類と組成:SiH4、PH3(PH3/Si
4=1.0%)、及び、N2O 反応ガスの供給速度:PH3が含まれたSiH4…20
SCCM N2O…100 SCCM 反応ガスの圧力:0.3Torr 放電電力:50W n型単結晶シリコン基板の加熱温度:250℃ 次いで、スパッタリング法にて上記p+アモルファスシ
リコン層2上にITOを製膜して反射防止層3を形成
し、かつ、この面上に銀ペーストにより櫛歯状電極4を
形成すると共に、障壁層5の背面側にスパッタリング法
にてアルミニウムを一様に製膜して裏面電極6を形成し
実施例1に係る太陽電池を製造した。
(Film forming conditions for barrier layer) Type and composition of reaction gas: SiH 4 , PH 3 (PH 3 / Si
H 4 = 1.0%) and N 2 O reaction gas supply rate: PH 3 containing SiH 4 ... 20
SCCM N 2 O ... 100 SCCM Reaction gas pressure: 0.3 Torr Discharge power: 50 W n-type single crystal silicon substrate heating temperature: 250 ° C. Then, ITO is formed on the p + amorphous silicon layer 2 by a sputtering method. To form the antireflection layer 3 and form the comb-teeth-shaped electrode 4 on this surface with silver paste, and also to uniformly form aluminum on the back surface of the barrier layer 5 by the sputtering method to form the back surface. The electrode 6 was formed and the solar cell according to Example 1 was manufactured.

【0024】そしてこの太陽電池について、AM1.
5:100mW/cm2 のソーラーシュミレータを用い
て電流−電圧測定を行った結果、Vocは0.64ボル
ト、Jscは38.6mA/cm2 、及び、FFは0.6
8であり、光電変換効率ηは16.8%と良好であっ
た。
Regarding this solar cell, AM1.
As a result of current-voltage measurement using a solar simulator of 5: 100 mW / cm 2 , V oc is 0.64 V, J sc is 38.6 mA / cm 2 , and FF is 0.6.
8, and the photoelectric conversion efficiency η was as good as 16.8%.

【0025】[実施例2]障壁層5をPH3が添加され
ていないSiO1.5で構成している点を除き実施例1に
係る太陽電池と略同一である。
Example 2 The solar cell according to Example 1 is substantially the same as the solar cell except that the barrier layer 5 is made of SiO 1.5 to which PH 3 is not added.

【0026】尚、この障壁層のプラズマCVD装置によ
る製膜条件は以下の通りである。
The film forming conditions for this barrier layer by the plasma CVD apparatus are as follows.

【0027】 反応ガスの種類と組成:SiH4、及び、N2O 反応ガスの供給速度:SiH4…20 SCCM N2O…100 SCCM 反応ガスの圧力:0.3Torr 放電電力:50W n型単結晶シリコン基板の加熱温度:250℃ この太陽電池について、実施例1と同様にAM1.5:
100mW/cm2 のソーラーシュミレータを用いて電
流−電圧測定を行った結果、Vocは0.63ボルト、J
scは38mA/cm2 、及び、FFは0.65であり、
光電変換効率ηは15.56%と良好であった。
Type and composition of reaction gas: SiH 4 and N 2 O Reaction gas supply rate: SiH 4 20 SCCM N 2 O 100 SCCM Reaction gas pressure: 0.3 Torr Discharge power: 50 W n-type single Heating temperature of crystalline silicon substrate: 250 ° C. For this solar cell, AM1.5:
As a result of current-voltage measurement using a solar simulator of 100 mW / cm 2 , V oc is 0.63 V, J
sc is 38 mA / cm 2 and FF is 0.65,
The photoelectric conversion efficiency η was good at 15.56%.

【0028】[0028]

【発明の効果】請求項1に係る発明によれば、エレクト
ロンに対する選択透過輸送機能を有する薄膜の半絶縁性
材料により障壁層を構成させており、障壁層に適用され
る半絶縁性材料のバンドギャップの大きさに対応させて
ホール伝導に対し半導体基板と障壁層との間のエネルギ
差を従来より大きく設定できるためホールの裏面電極側
への拡散を大幅に抑制することが可能となり、かつ、半
導体基板と障壁層とが種類の異なる半導体材料にて構成
されることから太陽電池の材料設計、プロセス設計の自
由度を増大させることも可能となる。
According to the first aspect of the invention, the barrier layer is made of a thin film semi-insulating material having a selective permeation transport function for electrons, and the band of the semi-insulating material applied to the barrier layer is formed. Since the energy difference between the semiconductor substrate and the barrier layer for hole conduction can be set to be larger than before in accordance with the size of the gap, it is possible to significantly suppress the diffusion of holes to the back electrode side, and Since the semiconductor substrate and the barrier layer are composed of different kinds of semiconductor materials, it is possible to increase the degree of freedom in material design and process design of the solar cell.

【0029】従って、太陽電池の光電変換効率を従来に
較べて大幅に改善できる効果を有しており、かつ、電変
換効率が改善された太陽電池を簡便に製造できる効果を
有している。
Therefore, it has an effect that the photoelectric conversion efficiency of the solar cell can be greatly improved as compared with the conventional one, and that a solar cell having an improved electric conversion efficiency can be easily manufactured.

【0030】また、上記障壁層を構成する半絶縁性材料
内にn型ドーパントを添加した場合、障壁層のエレクト
ロンに対する電気伝導度が増大しエレクトロンに対する
選択透過輸送機能をより確実に具備させることが可能に
なるため太陽電池の光電変換効率を更に改善できる効果
を有している。
When an n-type dopant is added into the semi-insulating material forming the barrier layer, the electric conductivity of the barrier layer with respect to the electrons is increased, so that the selective permeation transport function with respect to the electrons can be more surely provided. Since it becomes possible, it has the effect of further improving the photoelectric conversion efficiency of the solar cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係る太陽電池の断面図。FIG. 1 is a cross-sectional view of a solar cell according to a first embodiment.

【図2】実施例1に係る太陽電池のエネルギーバンド
図。
FIG. 2 is an energy band diagram of the solar cell according to the first embodiment.

【図3】従来の太陽電池の斜視図。FIG. 3 is a perspective view of a conventional solar cell.

【図4】従来の太陽電池の断面図。FIG. 4 is a cross-sectional view of a conventional solar cell.

【図5】従来の太陽電池の構造をモデル的に記載した構
造概念図。
FIG. 5 is a structural conceptual diagram that describes the structure of a conventional solar cell as a model.

【図6】従来の太陽電池のエネルギーバンド図。FIG. 6 is an energy band diagram of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1 n型単結晶シリコン基板 2 p+アモルファスシリコン層 5 障壁層 6 裏面電極1 n-type single crystal silicon substrate 2 p + amorphous silicon layer 5 barrier layer 6 backside electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】n型半導体基板と、この半導体基板の光入
射側とは反対面に設けられホールのみに対するポテンシ
ャルバリアとして機能する障壁層と、この障壁層の裏面
側に設けられた裏面電極を備える太陽電池において、 上記障壁層が、エレクトロンに対する選択透過輸送機能
を有する薄膜の半絶縁性材料により構成されていること
を特徴とする太陽電池。
1. An n-type semiconductor substrate, a barrier layer provided on the surface opposite to the light incident side of the semiconductor substrate and functioning as a potential barrier for only holes, and a back surface electrode provided on the back surface side of the barrier layer. A solar cell comprising, wherein the barrier layer is composed of a thin film semi-insulating material having a selective permeation transport function for electrons.
JP6041110A 1994-03-11 1994-03-11 Solar cell Pending JPH07249788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6041110A JPH07249788A (en) 1994-03-11 1994-03-11 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6041110A JPH07249788A (en) 1994-03-11 1994-03-11 Solar cell

Publications (1)

Publication Number Publication Date
JPH07249788A true JPH07249788A (en) 1995-09-26

Family

ID=12599346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6041110A Pending JPH07249788A (en) 1994-03-11 1994-03-11 Solar cell

Country Status (1)

Country Link
JP (1) JPH07249788A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781669B2 (en) 2005-02-25 2010-08-24 Sanyo Electric Co., Ltd. Photovoltaic cell
WO2010104726A2 (en) * 2009-03-10 2010-09-16 Sierra Solar Power, Inc. Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
JP2012069538A (en) 2010-05-11 2012-04-05 Tokyo Univ Of Agriculture & Technology Semiconductor solar cell and manufacturing method therefor
US9214576B2 (en) 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
US9281436B2 (en) 2012-12-28 2016-03-08 Solarcity Corporation Radio-frequency sputtering system with rotary target for fabricating solar cells
US9461189B2 (en) 2012-10-04 2016-10-04 Solarcity Corporation Photovoltaic devices with electroplated metal grids
US9496427B2 (en) 2013-01-11 2016-11-15 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
US9496429B1 (en) 2015-12-30 2016-11-15 Solarcity Corporation System and method for tin plating metal electrodes
US9624595B2 (en) 2013-05-24 2017-04-18 Solarcity Corporation Electroplating apparatus with improved throughput
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
US9887306B2 (en) 2011-06-02 2018-02-06 Tesla, Inc. Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US10084099B2 (en) 2009-11-12 2018-09-25 Tesla, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
US10115839B2 (en) 2013-01-11 2018-10-30 Tesla, Inc. Module fabrication of solar cells with low resistivity electrodes
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45872E1 (en) 2005-02-25 2016-01-26 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic cell
US7781669B2 (en) 2005-02-25 2010-08-24 Sanyo Electric Co., Ltd. Photovoltaic cell
WO2010104726A2 (en) * 2009-03-10 2010-09-16 Sierra Solar Power, Inc. Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
WO2010104726A3 (en) * 2009-03-10 2011-01-06 Sierra Solar Power, Inc. Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
US10084099B2 (en) 2009-11-12 2018-09-25 Tesla, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
JP2012069538A (en) 2010-05-11 2012-04-05 Tokyo Univ Of Agriculture & Technology Semiconductor solar cell and manufacturing method therefor
US9214576B2 (en) 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
US10084107B2 (en) 2010-06-09 2018-09-25 Tesla, Inc. Transparent conducting oxide for photovoltaic devices
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
US9887306B2 (en) 2011-06-02 2018-02-06 Tesla, Inc. Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
US9502590B2 (en) 2012-10-04 2016-11-22 Solarcity Corporation Photovoltaic devices with electroplated metal grids
US9461189B2 (en) 2012-10-04 2016-10-04 Solarcity Corporation Photovoltaic devices with electroplated metal grids
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
US9281436B2 (en) 2012-12-28 2016-03-08 Solarcity Corporation Radio-frequency sputtering system with rotary target for fabricating solar cells
US10115839B2 (en) 2013-01-11 2018-10-30 Tesla, Inc. Module fabrication of solar cells with low resistivity electrodes
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US9496427B2 (en) 2013-01-11 2016-11-15 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
US10164127B2 (en) 2013-01-11 2018-12-25 Tesla, Inc. Module fabrication of solar cells with low resistivity electrodes
US9624595B2 (en) 2013-05-24 2017-04-18 Solarcity Corporation Electroplating apparatus with improved throughput
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US10181536B2 (en) 2015-10-22 2019-01-15 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
US9496429B1 (en) 2015-12-30 2016-11-15 Solarcity Corporation System and method for tin plating metal electrodes
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules

Similar Documents

Publication Publication Date Title
JPH07249788A (en) Solar cell
JP6980079B2 (en) Solar cell
US10050166B2 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
US8872020B2 (en) Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
JP4064592B2 (en) Photoelectric conversion device
KR20080002657A (en) Photovoltaic device which includes all-back-contact configuration and related processes
US4781765A (en) Photovoltaic device
JP6473220B2 (en) Solar cell with delta doping layer
US8987738B2 (en) Photoelectric conversion device
JP4945916B2 (en) Photoelectric conversion element
AU2019283886A1 (en) Passivation of light-receiving surfaces of solar cells
US20150122329A1 (en) Silicon heterojunction photovoltaic device with non-crystalline wide band gap emitter
JPH11163380A (en) High efficiency block-layer solar battery and its forming method
JP2675754B2 (en) Solar cell
JPH0340515B2 (en)
CN111864014A (en) Solar cell and manufacturing method thereof
JPH0955522A (en) Tunnel diode
JPH07249787A (en) Solar cell
CN113066887B (en) Solar cell and manufacturing method thereof
JP2997363B2 (en) Solar cell element
JP4185246B2 (en) Laminated solar cell and method for manufacturing the same
JP7336569B1 (en) SOLAR CELL AND MANUFACTURING METHOD THEREOF, PHOTOVOLTAIC MODULE
JP2997366B2 (en) Solar cell element
JPH08111537A (en) Solar battery
JPH0554272B2 (en)