JPH07247908A - Coupled propulsion device possible to commonly use atmosphere or space - Google Patents

Coupled propulsion device possible to commonly use atmosphere or space

Info

Publication number
JPH07247908A
JPH07247908A JP6562694A JP6562694A JPH07247908A JP H07247908 A JPH07247908 A JP H07247908A JP 6562694 A JP6562694 A JP 6562694A JP 6562694 A JP6562694 A JP 6562694A JP H07247908 A JPH07247908 A JP H07247908A
Authority
JP
Japan
Prior art keywords
combustion chamber
rocket
engine
nozzle
propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6562694A
Other languages
Japanese (ja)
Inventor
Toshiaki Kezuka
利昭 毛塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6562694A priority Critical patent/JPH07247908A/en
Publication of JPH07247908A publication Critical patent/JPH07247908A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a propellant engine capable of freely, simultaneously or selectively driving each propulsion mode out of a turbo, a ram and a rocket. CONSTITUTION:A variable nozzle 12 is build up between a taper forming part 27 and an outside case 4 by feely setting the axiial position of a thin-tip wide-rot nozzle 16 integrally formed with a combustion chamber fitted into a fuel injector 18 by a movable means 17, an annular combustion chamber 6 whose head an tail parts are provided with an air intake device 2 and an exhaust nozzle 13 respectively is formed by extending the taper forming part 27 to the outside case 4 so as to divide the outside case 4 from a center body 7, and a turbo pump 11 for supplying fuel is also provided. Hereby, each propulsion mode of a turbo, a ram and a rocket can be individually or simultaneously driven by retaining the singularity of a rocket combustion chamber so that the minimum single structural body for forming a stepless neck cross section in fuel gas for an atmospheric engine is realized by the most simple way of axial movement only.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大気圏又は宇宙圏に共
通に利用可能な結合推進機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joint propulsion engine that can be commonly used in the atmosphere or the universe.

【0002】[0002]

【従来の技術】ターボ、ラム、ロケット等、推進方式の
違い及び外部の動作状態に適合する燃焼ガスの流れに対
する各種の首部断面に対応するため、先細末広ノズルの
各部分を解体、移行させる等、操作の繁雑なことから、
超高速飛行中での安定性、確実性に問題があり、又各部
分の解体、移動なしに先細末広ノズル全体を移動させ、
首部断面を変化させる方法は、ロケット燃焼室の単一性
を失わせ、環状噴射口等複雑な構成を余儀なくされる
(特開平4−101053、特開昭52−5620
9)。これは、この移動によって、大気エンジンの燃焼
ガス通路をロケット燃焼ガスの方向量(ベクトル)に適
応させるために起る不可避的なものである。安価で安
定、確実な装置を得るためには、軸上のみの前後移動に
留めることが望ましい。
2. Description of the Related Art In order to cope with various neck cross-sections for a combustion gas flow suitable for a difference in propulsion system such as turbo, ram, rocket, etc. and external operating conditions, dismantle and transfer each part of a tapered divergent nozzle, etc. Because of the complicated operation,
There is a problem with stability and reliability during ultra-high speed flight, and the entire tapered divergent nozzle is moved without disassembling or moving each part,
The method of changing the cross-section of the neck portion loses the unity of the rocket combustion chamber and obliges a complicated structure such as an annular injection port (Japanese Patent Laid-Open No. 1051053 / 52-5620).
9). This is inevitable because of this movement to adapt the combustion gas passage of the atmospheric engine to the directional quantity (vector) of the rocket combustion gas. In order to obtain an inexpensive, stable and reliable device, it is desirable to limit the forward / backward movement only on the shaft.

【0003】[0003]

【発明が解決しようとする課題】ロケット燃焼室の単一
性を保ち、かつ大気エンジンの燃焼ガスに無段階の首部
断面を構成するのに最少限の単一構造体を最もシンプル
な軸上移行のみで実現すると共にターボ、ラム、ロケッ
トの各推進方式が可逆可能で、複数の推進方式を同時に
又は個別に駆動を可能とし、かつラム推進方式が離陸発
進時から使用可能な結合推進機関を提供せんとするもの
である。
The simplest on-axis transition of the smallest unitary structure to maintain the unity of the rocket combustion chamber and to provide a stepless neck cross-section for the combustion gases of the atmospheric engine. Providing a combined propulsion engine that can be realized only by itself and that each propulsion method of turbo, ram, rocket is reversible, multiple propulsion methods can be driven simultaneously or individually, and that the ram propulsion method can be used from takeoff start It is something to do.

【0004】[0004]

【課題を解決するための手段】そこで本発明は、大気圏
又は宇宙圏を共通に利用可能な結合推進機関であって、
大気中の酸化剤で動作する大気エンジンと、液体又は、
気体の推進剤で動作するロケットエンジンを備え、前記
大気エンジンは、中央胴体(7)と外側ケース(4)に
よって区画形成する環状燃焼室(6)を有し、この環状
燃焼室(6)に空気を送るための空気取り入れ装置
(2)を備え、前記環状燃焼室(6)の燃焼ガスを排出
する排気ノズル(13)を中央胴体(7)の軸上後部に
設け、前記ロケットエンジンはロケット燃焼室(10)
と推進剤をロケット燃焼室(10)に供給するためのタ
ーボポンプ(11)とを具備する大気圏又は宇宙圏を共
通に利用可能な結合推進機関に於て、その軸を中央胴体
に一致させて配置されたロケットエンジンの燃焼室(1
0)を一定長さの先細末広ノズル(16)と一体に形成
し、かつ固定した燃料噴射器(18)の外周又は内周に
同心状に略気密に嵌入させ、可動手段(17)によっ
て、軸方向の位置を調節可能とし、かつロケットエンジ
ンの先細末広ノズル(16)の末広後縁端部(21)と
前記排気ノズル(13)の首部周縁端部(19)がロケ
ットエンジンの燃焼ガスの流れの連続性を保証する寸法
とし、一方環状燃焼室(6)からの燃焼ガスの流れ断面
をエンジンの異なる内部及び外部の動作状態へ適合させ
るために、前記ロケットエンジンの燃焼室(10)と一
体に形成した先細末広ノズル(16)の末広後縁端部
(21)と前記排気ノズル(13)の首部周縁端部(1
9)との間隔を前記可動手段(17)によって、調節自
在とすることにより、前記環状燃焼室(6)からの燃焼
ガスに最適な首部断面を形成する可変ノズル(12)を
構成することで解決せんとするものである。
Therefore, the present invention is a combined propulsion engine that can commonly use the atmosphere or space,
Atmospheric engines that operate with atmospheric oxidants and liquids, or
The atmospheric engine comprises a rocket engine operated by a gaseous propellant, the atmospheric engine having an annular combustion chamber (6) defined by a central body (7) and an outer case (4). The rocket engine is equipped with an air intake device (2) for sending air, and an exhaust nozzle (13) for discharging combustion gas of the annular combustion chamber (6) is provided at an axial rear portion of the central body (7). Combustion chamber (10)
And a turbopump (11) for supplying a propellant to the rocket combustion chamber (10), in a joint propulsion engine commonly usable in the atmosphere or space, with its axis aligned with the central fuselage. The rocket engine combustion chamber (1
0) is integrally formed with the tapered divergent nozzle (16) of a constant length, and is fitted concentrically and substantially airtightly on the outer or inner circumference of the fixed fuel injector (18), and by the movable means (17), The axial position is adjustable, and the divergent trailing edge (21) of the tapered divergent nozzle (16) of the rocket engine and the neck peripheral edge (19) of the exhaust nozzle (13) of the combustion gas of the rocket engine A combustion chamber (10) of the rocket engine in order to ensure flow continuity, while adapting the flow cross section of the combustion gas from the annular combustion chamber (6) to different internal and external operating conditions of the engine; The divergent trailing edge portion (21) of the tapered divergent nozzle (16) integrally formed with the neck peripheral edge portion (1) of the exhaust nozzle (13).
The variable nozzle (12) that forms the optimum neck cross section for the combustion gas from the annular combustion chamber (6) is configured by making the distance from the annular combustion chamber (6) adjustable by the movable means (17). It is a solution.

【0005】[0005]

【作用】本発明の本質的利点は、軸上の機械的な位置の
調節により無段階の首部断面を得ると共に、ロケット燃
焼室からの燃焼ガス又は、非燃焼ガスの圧力を自在に調
節して排気ノズルに流入する首部断面を通過した環状燃
焼室からの燃焼ガスを、ロケット燃焼室からのガス噴流
圧が、排気ノズルの固定した外側ケースに対して変動可
能な内壁を構成し、環状燃焼室からの燃焼ガスが所定の
首部断面を形成する可変ノズルを通過後、最少限の乱れ
で各種の適正な噴流ベクトルに誘導することが出来、推
進ガスのエネルギー効率を高度なものとする。
The essential advantage of the present invention is to obtain a stepless neck cross section by adjusting the mechanical position on the shaft and to freely adjust the pressure of combustion gas or non-combustion gas from the rocket combustion chamber. The combustion gas from the annular combustion chamber, which has passed through the neck section flowing into the exhaust nozzle, forms an inner wall in which the gas jet pressure from the rocket combustion chamber can fluctuate with respect to the outer case to which the exhaust nozzle is fixed. After passing through the variable nozzle that forms a predetermined neck cross section, the combustion gas from can be guided to various appropriate jet vectors with minimum turbulence, and the energy efficiency of the propelling gas can be enhanced.

【0006】[0006]

【実施例】次に実施例に基づき、図面を参照しながら、
本発明を詳細に説明する。図1は大気圏又は宇宙圏に共
通に利用可能な結合推進機関であって、この結合推進機
関(1)は空気取り入れ装置(2)から供給される空気
を圧縮する空気圧縮機(3)を有する外側ケース(4)
と空気圧縮機(3)によって圧縮された空気が供給され
また燃料噴射装置(5)を有する環状燃焼室(6)を外
側ケース(4)と共に区画形成する中央胴体(7)とを
備える。
EXAMPLES Next, based on examples, referring to the drawings,
The present invention will be described in detail. FIG. 1 shows a combined propulsion engine that can be commonly used in the atmosphere or space, and this combined propulsion engine (1) has an air compressor (3) for compressing air supplied from an air intake device (2). Outer case (4)
And a central body (7) which is supplied with air compressed by an air compressor (3) and which defines an annular combustion chamber (6) with a fuel injector (5) with the outer case (4).

【0007】空気圧縮機(3)はタービン(8)によっ
て駆動される。これは大気を酸化剤とする場合とガス発
生器(9)によって行なわれる選択を可能とする。図1
は推進剤(40)と酸化剤(28)をガス発生器(9)
とロケット燃焼室(10)及び環状燃焼室(6)へ供給
するためのターボポンプ(11)と、その流路系統が示
されている。環状燃焼室(6)で発生する燃焼ガスは外
側ケース(4)が後方に延在してテーパ形状部(27)
を形成して構成した可変ノズル(12)を介して加速さ
れ排気ノズル(13)へ噴出する。
The air compressor (3) is driven by the turbine (8). This allows the choice to be made with atmospheric oxidant and with the gas generator (9). Figure 1
Supplies propellant (40) and oxidizer (28) to gas generator (9)
A turbo pump (11) for supplying the rocket combustion chamber (10) and the annular combustion chamber (6) and its flow path system are shown. The combustion gas generated in the annular combustion chamber (6) has a taper-shaped portion (27) with the outer case (4) extending rearward.
Is ejected to the exhaust nozzle (13) by being accelerated through the variable nozzle (12) formed by forming

【0008】空気圧縮機(3)及びその関連装置は、ラ
ムジェット推進方式では省かれ空気圧縮機(3)は自由
回転しつつ、空気を圧縮比1の状態に置く。この空気
は、環状燃焼室(6)に供給されると共に、フラップ開
閉装置(14)が開のときはこの入口(29)から中心
ガス管(15)にも供給される。前記フラップ開閉装置
(14)は、図示しない作動空気圧タービンで後方へ移
動し、移動部(14−1)と格子板(14−2)及び閉
め切りドア(14−3)と閉め切りドア棒(14−4)
から成る。中心ガス管(15)は、タービン(8)を駆
動するための駆動ガス(30)を前記フラップ開閉装置
(14)の開閉調節によって、環状燃焼室(6)と分け
合うことが出来る。閉め切りドア(14−3)が閉のと
きは全量が環状燃焼室(6)に格子板(14−2)から
排出され移動部(14−1)が閉のときは全量が中心管
(15)へ閉め切り棒(14−4)の合間から流入す
る。これらの排出ガスの量的配分は末広後縁端部(2
1)からの排出圧力が排気ノズル(13)に排出される
環状燃焼室(6)の燃焼ガスが可変ノズル(12)から
排出した後の適正な噴流ベクトル(31)を形成するた
めの排気ノズル(13)の外側ケース(32)に対する
内側ケース(33)として機能する。可変ノズル(1
2)は異なる推進方式(ターボ、ラム)に適合する首部
断面を構成するためにロケット燃焼室(10)と一体に
形成された先細末広ノズル(16)をアクチュエーター
(17)によって、燃料噴射器(18)に嵌入されたま
ゝその軸上の位置を後方へ移動することによって、排気
ノズル(13)の首部断面周縁端部(19)とロケット
燃焼室と一体に形成された先細末広ノズル(16)の末
広後縁端部(21)との間隔が自在に調節でき、環状燃
焼室(6)からの燃焼ガスの排出に最適の可変ノズル
(12)が与えられる。
The air compressor (3) and its related devices are omitted in the ramjet propulsion system, and the air compressor (3) keeps air at a compression ratio of 1 while freely rotating. This air is supplied to the annular combustion chamber (6) and also from the inlet (29) to the central gas pipe (15) when the flap opening / closing device (14) is open. The flap opening / closing device (14) is moved rearward by an operating pneumatic turbine (not shown) to move the moving part (14-1), the lattice plate (14-2), the closed door (14-3) and the closed door bar (14-). 4)
Consists of. The central gas pipe (15) can share the drive gas (30) for driving the turbine (8) with the annular combustion chamber (6) by adjusting the opening and closing of the flap opening and closing device (14). When the closing door (14-3) is closed, the whole amount is discharged from the lattice plate (14-2) into the annular combustion chamber (6), and when the moving part (14-1) is closed, the whole amount is the central pipe (15). Flows into the space between the shut-off bars (14-4). The quantitative distribution of these exhaust gases is based on the Suehiro trailing edge (2
Exhaust nozzle for forming a proper jet vector (31) after the combustion gas in the annular combustion chamber (6) whose discharge pressure from 1) is discharged to the exhaust nozzle (13) is discharged from the variable nozzle (12) It functions as an inner case (33) with respect to the outer case (32) of (13). Variable nozzle (1
In 2), a tapered divergent nozzle (16) integrally formed with a rocket combustion chamber (10) is formed by an actuator (17) to form a neck cross section adapted to different propulsion systems (turbo, ram) by a fuel injector (17). 18) The tapered divergent nozzle (16) formed integrally with the rocket combustion chamber and the neck cross-section peripheral edge end (19) of the exhaust nozzle (13) by moving the position on its axis rearward while being fitted in 18). The distance from the trailing edge (21) of the divergent end of the nozzle can be adjusted freely, and a variable nozzle (12) optimal for discharging combustion gas from the annular combustion chamber (6) is provided.

【0009】燃料噴射器(18)は、ガス中心管(1
5)がその中心位置を占めその両側に燃料及び酸化剤の
噴射口(20)を有する。そこで燃料が液体又は気体の
いづれにも対応出来る最適のものとして、特公平1−1
7000の「ジェットノズル」(本出願人と同じ)を使
用する。即ち『高圧液体用噴射口と、その外側に同心状
に高圧気体用噴射口とを、その噴射方向が互いに平行と
なるように設け、該高圧液体用噴射口をノズル先端開口
から一定距離後退した位置に開口させ、かつ高圧液体用
噴射口の中心軸線上の後方から噴射口に至る間にさらに
もう一つの小径の高圧気体用噴射口(中心ガス管15−
1)を設けて、高圧気体を導入した』ことを要旨として
いる。
The fuel injector (18) includes a gas central tube (1
5) occupies its central position and has fuel and oxidant injection ports (20) on both sides thereof. Therefore, as an optimal one that can handle either liquid or gas as fuel, Japanese Patent Publication No. 1-1.
A 7000 "jet nozzle" (same as the applicant) is used. That is, "a high-pressure liquid jet port and a high-pressure gas jet port concentrically outside the high-pressure liquid jet port are provided so that their jetting directions are parallel to each other, and the high-pressure liquid jet port is retracted from the nozzle tip opening by a predetermined distance. And another small-diameter high-pressure gas injection port (center gas pipe 15-) between the rear of the central axis of the high-pressure liquid injection port and the injection port.
1) is provided and high-pressure gas is introduced ”.

【0010】燃料噴射器(18)は中央胴体(7)に固
定され、これにロケット燃焼室と一体に形成された先細
末広ノズル(16)が略気密に燃料噴射器(18)の外
周に嵌入され、軸上を後方に限度一杯まで移動すれば、
排気ノズル(13)の首部周縁端部(19)にロケット
燃焼室と一体に形成された先細末広ノズル(16)の末
広後縁端部(21)が、その内部を流通する気体の流れ
の継続性を保証する寸法となっているので、この接合に
よってロケット推進方式への移行が完了する。ロケット
推進方式に於ては、さらに拡張ノズル(22)が可動手
段(23)によって案内レール(24)に保持されつ
つ、後方に移動し、排気ノズル(13)の末広開口断面
(25)にその先細断面(26)が接合する寸法となっ
ている。ロケット推進方式に於ては、フラップ開閉装置
(14)は閉とし、可変ノズル(12)は閉ざされた状
態になっているので、ロケット燃料ガスの逆流は生じな
い。
The fuel injector (18) is fixed to the central body (7), and a tapered divergent nozzle (16) formed integrally with the rocket combustion chamber is fitted into the outer periphery of the fuel injector (18) in a substantially airtight manner. Then, if you move backward on the axis to the limit,
The divergent trailing edge (21) of the tapered divergent nozzle (16) integrally formed with the rocket combustion chamber at the neck peripheral edge (19) of the exhaust nozzle (13) continues the flow of the gas flowing therein. This joining completes the transition to rocket propulsion because the dimensions are guaranteed. In the rocket propulsion system, the expansion nozzle (22) is further held by the movable means (23) on the guide rail (24) and moved rearward, and the expansion nozzle (22) is moved to the divergent opening cross section (25) of the exhaust nozzle (13). The tapered cross section (26) is dimensioned for joining. In the rocket propulsion system, the flap opening / closing device (14) is closed and the variable nozzle (12) is closed, so that no backflow of rocket fuel gas occurs.

【0011】環状燃焼室(6)は室の強度と製作を容易
にするために、複数の部分から作られている。環状燃焼
室(6)は、円形の断面であり、中央胴体(7)の軸線
の回りのリング状に実質的に隣接して配置された複数の
個々の室(6´)によって構成される。(34)はその
噴射口であり、その噴射方向は、燃料噴射器(18)の
燃料噴射口(20)の噴射方向と平行しており、その開
口位置は、燃料噴射口(20)より突出している。中心
ガス管(15)の高圧気体噴射口(15−1)の位置と
相俟って、その意味するところはこゝでも先に触れた特
公平1−17000「ジェットノズル」の別用途の構成
を示している。排気ノズル(13)の末広開口断面(2
5)が『ノズル先端開口』に該当する。
The annular combustion chamber (6) is made up of multiple parts to facilitate chamber strength and fabrication. The annular combustion chamber (6) is of circular cross section and is constituted by a plurality of individual chambers (6 ') arranged substantially adjacent to each other in a ring around the axis of the central body (7). (34) is its injection port, and its injection direction is parallel to the injection direction of the fuel injection port (20) of the fuel injector (18), and its opening position is projected from the fuel injection port (20). ing. In combination with the position of the high-pressure gas injection port (15-1) of the central gas pipe (15), the meaning of this is the configuration of another application of the Japanese Patent Publication No. 1-17000 "jet nozzle" mentioned earlier. Is shown. The divergent opening cross section of the exhaust nozzle (13) (2
5) corresponds to "nozzle tip opening".

【0012】本発明の結合推進機関によって必要な連続
的な推進力に適することが可能であり、大気エンジンを
稼働するターボ推進方式から、ラム推進方式、そして、
ロケット推進方式へ連続的に変化する間、最大の推進力
を得るために、ロケット方式とターボ方式を同時に動作
することが可能である。この場合において、ロケットエ
ンジンからのガスは、大気の希はくから生じる環状燃焼
室(6)からの燃焼ガス(36)の圧力低下を補ぎな
い、かつ、排気ノズル(13)の内壁からのハク離を防
止して、可変ノズル(12)の調節を同時に行うことに
より最適の推進効率が得られる。
The combined propulsion engine of the present invention can be adapted to the required continuous propulsion power, from a turbo propulsion system operating an atmospheric engine to a ram propulsion system, and
It is possible to operate the rocket system and the turbo system at the same time in order to obtain the maximum propulsion power while continuously changing to the rocket propulsion system. In this case, the gas from the rocket engine does not compensate for the pressure drop of the combustion gas (36) from the annular combustion chamber (6) that results from the rare air in the atmosphere, and the gas from the inner wall of the exhaust nozzle (13) Optimal propulsion efficiency is obtained by preventing separation and adjusting the variable nozzle (12) at the same time.

【0013】ラム方式に移行した後においてもロケット
エンジンを稼働すれば、テーパ形成部(27)はエゼク
タ作用を生じ、大気の吸入を一層促進する。このことは
離陸発進時からラム推進方式を稼働させることも可能で
あることを意味する。図2は、ラム推進方式に移行し
て、先細末広ノズル(16)がその軸上の位置を排気ノ
ズル(13)の首部周縁端部(19)により接近させ、
可変ノズル(12)ののど部断面積の減少を得ている。
If the rocket engine is operated even after the transition to the ram system, the taper forming portion (27) causes an ejector action to further promote the intake of the atmosphere. This means that it is possible to operate the ram propulsion system from the start of takeoff. FIG. 2 shows a transition to a ram propulsion system in which the tapered divergent nozzle (16) brings its axial position closer to the neck peripheral edge (19) of the exhaust nozzle (13),
A reduction in the throat cross section of the variable nozzle (12) is obtained.

【0014】図3はロケット推進方式に移行した状態を
示す。ロケット燃焼室と一体に形成された先細末広ノズ
ル(16)の末広後縁端部(21)が排気ノズル(1
3)の首部周縁端部(19)に接合し、かつ拡張ノズル
(22)が後方へ移動して、排気ノズル(13)の末広
開口断面(25)にその先細断面(26)が接合してい
る。
FIG. 3 shows a state of transition to the rocket propulsion system. The divergent trailing edge portion (21) of the tapered divergent nozzle (16) formed integrally with the rocket combustion chamber is the exhaust nozzle (1
3) is joined to the peripheral edge portion (19) of the neck portion, and the expansion nozzle (22) is moved rearward so that the tapered cross section (26) is joined to the divergent opening cross section (25) of the exhaust nozzle (13). There is.

【0015】[0015]

【発明の効果】ロケット燃焼室の単一性を保ち、かつ大
気エンジンの燃焼ガスに無段階の首部断面を構成するの
に最少限の単一構造体を最もシンプルな軸上移行のみで
実現すると共に、ターボ、ラム、ロケットの各推進方式
が可逆可能で、複数の推進方式を同時に又は個別に駆動
を可能とし、かつラム推進方式が離陸発進時から使用可
能となった。
[Effect of the Invention] The minimum unitary structure for maintaining the unity of the rocket combustion chamber and constructing a stepless neck cross-section for the combustion gas of the atmospheric engine is realized by the simplest axial transition. At the same time, the turbo, ram, and rocket propulsion methods are reversible, and multiple propulsion methods can be driven simultaneously or individually, and the ram propulsion method can be used from the time of takeoff and launch.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の結合推進機関の一つの例を示す軸方向
断面図であり、低い高度の飛行状態でかつロケットエン
ジンも若干併用していることを示す。
FIG. 1 is an axial cross-sectional view showing one example of a coupled propulsion engine of the present invention, showing that it is in a low altitude flight state and also uses a rocket engine in some cases.

【図2】可変ノズル(12)ののど部断面が図1より減
少した状態の断面図。
FIG. 2 is a sectional view showing a state in which the throat section of the variable nozzle (12) is smaller than that in FIG.

【図3】ロケット推進方式に移行完了した状態の断面
図。
FIG. 3 is a cross-sectional view of a state in which the transition to the rocket propulsion system is completed.

【符号の説明】[Explanation of symbols]

2 空気取り入れ装置 3 空気圧縮機 4 外側ケース 5 燃料噴射装置 6 環状燃焼室 7 中央胴体 10 ロケット燃焼室 11 ターボポンプ 12 可変ノズル 13 排気ノズル 16 一定長さの先細末広ノズル 17 可動手段 18 燃料噴射器 19 排気ノズルの首部周縁端部 2 Air Intake Device 3 Air Compressor 4 Outer Case 5 Fuel Injector 6 Annular Combustion Chamber 7 Central Fuselage 10 Rocket Combustion Chamber 11 Turbo Pump 12 Variable Nozzle 13 Exhaust Nozzle 16 Tapered Wide-end Nozzle 17 Movable Means 18 Fuel Injector 19 Exhaust nozzle neck peripheral edge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 大気圏又は宇宙圏を共通に利用可能な結
合推進機関であって、大気中の酸化剤で動作する大気エ
ンジンと、液体又は気体の推進剤で動作するロケットエ
ンジンとを備え、前記大気エンジンは、中央胴体(7)
と外側ケース(4)によって区画形成する環状燃焼室
(6)を有し、この環状燃焼室(6)に空気を送るため
の空気取り入れ装置(2)を備え、前記環状燃焼室
(6)の燃焼ガスを排出する排気ノズル(13)を中央
胴体(7)の軸上後部に設け、前記ロケットエンジンは
ロケット燃焼室(10)と推進剤をロケット燃焼室(1
0)に供給するためのターボポンプ(11)とを具備す
る大気圏又は宇宙圏を共通に利用可能な結合推進機関に
於て、その軸を中央胴体の軸に一致させて配置されたロ
ケットエンジンの燃焼室(10)を一定長さの先細末広
ノズル(16)と一体に形成し、かつ固定した燃料噴射
器(18)の外周又は内周に同心状に略気密に嵌入さ
せ、可動手段(17)によって軸方向の位置を調節可能
とし、かつロケットエンジンの先細末広ノズル(16)
の末広後縁端部(21)と前記排気ノズル(13)の首
部周縁端部(19)がロケットエンジンの燃焼ガスの流
れの連続性を保証する寸法とし、一方環状燃焼櫃(6)
からの燃焼ガスの流れ断面をエンジンの異なる内部及び
外部の動作状態へ適合させるために、前記ロケットエン
ジンの燃焼室(10)と一体に形成した先細末広ノズル
(16)の末広後縁端部(21)と前記排気ノズル(1
3)の首部周縁端部(19)との間隔を前記可動手段
(17)によって調節自在とすることにより、前記環状
燃焼室(6)からの燃焼ガスに最適な首部断面を形成す
る可変ノズル(12)を構成することを特徴とする結合
推進機関。
1. A coupled propulsion engine that can be commonly used in the atmosphere or the universe, comprising an atmospheric engine that operates with an oxidizing agent in the atmosphere and a rocket engine that operates with a liquid or gaseous propellant, Atmospheric engine, central fuselage (7)
And an outer case (4) to define an annular combustion chamber (6) and an air intake device (2) for sending air to the annular combustion chamber (6). An exhaust nozzle (13) for discharging combustion gas is provided at an axial rear part of the central body (7), and the rocket engine includes a rocket combustion chamber (10) and a propellant for the rocket combustion chamber (1).
In a joint propulsion engine which can be commonly used in the atmosphere or the universe, and which is equipped with a turbo pump (11) for supplying 0), a rocket engine arranged with its axis aligned with the axis of the central fuselage The combustion chamber (10) is integrally formed with a tapered divergent nozzle (16) having a fixed length, and is fitted concentrically and substantially airtightly on the outer or inner periphery of a fixed fuel injector (18), and a movable means (17). ) Allows the axial position to be adjusted, and the tapered divergent nozzle of the rocket engine (16)
The suehiro trailing edge (21) and the neck peripheral edge (19) of the exhaust nozzle (13) are dimensioned to ensure continuity of the flow of combustion gas of the rocket engine, while the annular combustion box (6)
A divergent trailing edge of a tapered divergent nozzle (16) formed integrally with the combustion chamber (10) of the rocket engine to adapt the flow cross section of combustion gas from the engine to different internal and external operating conditions of the engine ( 21) and the exhaust nozzle (1
The variable nozzle (3) that forms an optimum neck cross section for the combustion gas from the annular combustion chamber (6) by making the distance between the neck peripheral edge (19) and the movable means (17) adjustable. 12) A combined propulsion engine, characterized in that
JP6562694A 1994-03-07 1994-03-07 Coupled propulsion device possible to commonly use atmosphere or space Pending JPH07247908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6562694A JPH07247908A (en) 1994-03-07 1994-03-07 Coupled propulsion device possible to commonly use atmosphere or space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6562694A JPH07247908A (en) 1994-03-07 1994-03-07 Coupled propulsion device possible to commonly use atmosphere or space

Publications (1)

Publication Number Publication Date
JPH07247908A true JPH07247908A (en) 1995-09-26

Family

ID=13292427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6562694A Pending JPH07247908A (en) 1994-03-07 1994-03-07 Coupled propulsion device possible to commonly use atmosphere or space

Country Status (1)

Country Link
JP (1) JPH07247908A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278412A (en) * 2015-10-30 2016-01-27 青岛海尔科技有限公司 Gas stove stepless fire adjustment control method, device and gas stove
CN109441663A (en) * 2018-12-12 2019-03-08 清华大学 Combined cycle engine
CN114017205A (en) * 2021-12-21 2022-02-08 北京星际荣耀科技有限责任公司 Rocket power device and rocket
CN114439646A (en) * 2022-01-27 2022-05-06 西北工业大学 Air turbine rocket stamping combined propulsion system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278412A (en) * 2015-10-30 2016-01-27 青岛海尔科技有限公司 Gas stove stepless fire adjustment control method, device and gas stove
CN109441663A (en) * 2018-12-12 2019-03-08 清华大学 Combined cycle engine
CN114017205A (en) * 2021-12-21 2022-02-08 北京星际荣耀科技有限责任公司 Rocket power device and rocket
CN114439646A (en) * 2022-01-27 2022-05-06 西北工业大学 Air turbine rocket stamping combined propulsion system

Similar Documents

Publication Publication Date Title
USRE43731E1 (en) Integrated air inlet system for multi-propulsion aircraft engines
US6758032B2 (en) System of pulsed detonation injection for fluid flow control of inlets, nozzles, and lift fans
JP2767186B2 (en) Jet engine
US6584764B2 (en) Propulsion module
JPH0599071A (en) Propelling nozzle for hypersonic engine
JPH04101053A (en) Coupling propulsive engine high utilizable for aircraft or space aircraft
JP2006322395A (en) Fluidic thrust deflection nozzle including two stage expansion nozzle
CN108915894B (en) RBCC variable geometry full flow passage working in wide range
GB2274881A (en) Jet propulsion engine
CN106499543A (en) The apparatus and method that a kind of ejector exhaust pipe thruster vector control is adjusted with area
US6629416B1 (en) Afterburning aerospike rocket nozzle
US11898757B2 (en) Rotating detonation propulsion system
JPH07247908A (en) Coupled propulsion device possible to commonly use atmosphere or space
JPH06159137A (en) Exhaust system lowering noise level, exhaust nozzle system, method of lowering noise level and noise suppressing chute assembly
US6883304B2 (en) Pulsejet ejector thrust augmentor
CN110700963B (en) Compact layout type solid rocket gas scramjet engine based on axial symmetry
US20230193856A1 (en) Multi-mode propulsion system
US5105615A (en) Turbojet engine with at least one axially movable arranged sliding valve
JPH1182173A (en) Ejector rocket
CN113153580B (en) Combined spray pipe of solid rocket engine
JPH02130249A (en) Gas injector for propulsive engine of turbo ram rocket coupling
US20200408171A1 (en) Aerospike/bell hybrid rocket engine with combined bell nozzle within an aerospike nozzle
CN113153577A (en) Multistage rotary detonation rocket stamping combined engine
RU2278986C1 (en) Combination air-jet engine
US20230279827A1 (en) Thrust chamber device and method for operating a thrust chamber device