JPH0724499A - Treatment of sludge - Google Patents

Treatment of sludge

Info

Publication number
JPH0724499A
JPH0724499A JP5196755A JP19675593A JPH0724499A JP H0724499 A JPH0724499 A JP H0724499A JP 5196755 A JP5196755 A JP 5196755A JP 19675593 A JP19675593 A JP 19675593A JP H0724499 A JPH0724499 A JP H0724499A
Authority
JP
Japan
Prior art keywords
sludge
treatment
toc
excess
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5196755A
Other languages
Japanese (ja)
Other versions
JP3489856B2 (en
Inventor
Osamu Koyama
修 小山
Toyoichi Yokomaku
豊一 横幕
Yoshinari Sugaya
能成 菅家
Ichiro Yamamoto
一郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Engineering Co Ltd
Original Assignee
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Engineering Co Ltd filed Critical Kankyo Engineering Co Ltd
Priority to JP19675593A priority Critical patent/JP3489856B2/en
Publication of JPH0724499A publication Critical patent/JPH0724499A/en
Application granted granted Critical
Publication of JP3489856B2 publication Critical patent/JP3489856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To efficiently reduce the volume of the org. sludge, such as excess sludge or anaerobically digested sludge, etc., generated by an activated sludge method by subjecting the org. sludge to oxidation decomposition by an oxidizing agent with metal ions as a catalyst in a narrow space and at a short period of time. CONSTITUTION:The excess sludge is introduced into an oxidizing vessel where the excess sludge is subjected to the oxidation decomposition by adjusting the sludge to required pH (about 2 to 8) and adding the oxidizing agent and catalyst thereto at the time of subjecting the excess sludge or anaerobically digested sludge, etc. (hereafter, excess sludge) generated by an activated sludge treatment to a volume reduction treatment. More preferably, the sludge prior to the oxidation treatment is sufficiently previously deflocculated by an ultrasonic treatment so that the oxidation decomposition reaction of the sludge is sufficiently executed. The sludge after the oxidation decomposition is introduced through a neutralizing vessel into a settling basin where the liquid component is desorbed from the sludge component. This liquid is discharged. The metal ions which are preferably iron ions are used as the catalyst and hydrogen peroxide is used as the oxidizing agent, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機性汚泥の処理方法に
関し、更に詳しくは排水を活性汚泥方式で処理して発生
する汚泥の余剰部分或は余剰汚泥の嫌気性硝化で発生す
る嫌気性硝化汚泥等の有機性汚泥を処理して、該汚泥を
減量化する有機性汚泥の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating organic sludge, and more specifically, an excess portion of sludge generated by treating wastewater with an activated sludge system or anaerobic nitrification caused by anaerobic nitrification of excess sludge. The present invention relates to a method for treating organic sludge such as sludge to reduce the amount of the sludge.

【0002】[0002]

【従来の技術】従来、BODで示される排水中の有機汚
濁成分の除去においては、現在実用化されている活性汚
泥方式等の生物学的処理方法によって、比較的低いコス
トで満足し得る結果が得られている。上記活性汚泥方式
では、図1に示す様に、処理対象排水を最初沈澱池に導
き、比重の重いものを沈澱させ、次いで曝気槽におい
て、活性汚泥によって排水中の有機物を分解させる。こ
の活性汚泥処理では、分解したBODのうちの50〜7
0重量%は微生物の生活エネルギーに消費され、残りの
30〜70重量%は菌体の増殖に使用される為、余剰汚
泥が発生することになる。
2. Description of the Related Art Conventionally, in the removal of organic pollutants in wastewater indicated by BOD, a biological treatment method such as an activated sludge system which has been put into practical use has been satisfactory at a relatively low cost. Has been obtained. In the activated sludge system, as shown in FIG. 1, the wastewater to be treated is first introduced into a settling tank to precipitate the one having a large specific gravity, and then the organic matter in the wastewater is decomposed by the activated sludge in the aeration tank. In this activated sludge treatment, 50 to 7 out of the decomposed BOD
Since 0% by weight is consumed for living energy of microorganisms and the remaining 30 to 70% by weight is used for the growth of bacterial cells, excess sludge is generated.

【0003】活性汚泥処理で発生した余剰汚泥は、生物
難分解性であり且つ粘性が高いので、活性汚泥処理方式
では発生する余剰汚泥の処理が大きな問題となる。現
在、余剰汚泥の処理方法は、図2に示す様に、嫌気性硝
化により、余剰汚泥をメタンガス、二酸化炭素、水素、
硫化水素等に分解して減量化し、その後分解されなかっ
た余剰汚泥及びその他の固形物は脱水機等により分離さ
れ、焼却されるか或は産業廃棄物として処分される。
又、場合によっては余剰汚泥は嫌気性処理を行わずに直
接脱水機等により分離され、同様に焼却されるか或は産
業廃棄物として処分される。
Excess sludge generated by the activated sludge treatment is biodegradable and has a high viscosity, so that the treatment of the excess sludge generated in the activated sludge treatment system is a serious problem. At present, as shown in FIG. 2, the method for treating excess sludge is to remove excess sludge from methane gas, carbon dioxide, hydrogen, by anaerobic nitrification.
Excess sludge and other solids that are not decomposed after being decomposed into hydrogen sulfide and the like to reduce the amount are separated by a dehydrator or the like and incinerated or disposed as industrial waste.
In some cases, excess sludge is directly separated by a dehydrator or the like without performing anaerobic treatment, and similarly incinerated or disposed of as industrial waste.

【0004】[0004]

【発明が解決しようとしている問題点】上記嫌気性硝化
による余剰汚泥の従来の減量化においては、エネルギー
がメタンガスとして回収される等の利点があるが、硝化
に要する日数が20〜40日間と長く、そのうえ余剰汚
泥の分解率が60%程度と低い為、広い敷地面積が要求
され、未分解余剰汚泥及びその他の固形物は脱水機等に
より分離され、焼却されるか或は産業廃棄物として処分
せねばならず、非効率で処理コストが大きくかかるとい
う問題がある。又、余剰汚泥を嫌気性硝化を行わずに脱
水機等により直接濃縮し、焼却或は産業廃棄物として処
分する場合には、余剰汚泥は減量化されていない為に、
更に処理コストが高くなるという問題がある。現在の汚
泥の処分費用は2〜3万円/m3 と高く、更にこの処分
費は今後一層高騰する傾向にある。従って本発明の目的
は、活性汚泥方式で発生する余剰汚泥又は嫌気性硝化汚
泥等の有機性汚泥を効率良く減量化することが出来る方
法を提供することである。
[Problems to be Solved by the Invention] The conventional reduction of excess sludge by anaerobic nitrification has the advantage that energy is recovered as methane gas, but the number of days required for nitrification is as long as 20 to 40 days. In addition, the decomposition rate of excess sludge is as low as about 60%, so a large site area is required, and undecomposed excess sludge and other solid matter are separated by a dehydrator, etc. and incinerated or disposed of as industrial waste. However, there is a problem that it is inefficient and the processing cost is high. Further, when the excess sludge is directly concentrated by a dehydrator or the like without performing anaerobic nitrification and incinerated or disposed of as industrial waste, the excess sludge is not reduced,
Further, there is a problem that the processing cost becomes high. The current sludge disposal cost is as high as 20,000 yen / m 3, and this disposal cost tends to rise further in the future. Therefore, an object of the present invention is to provide a method capable of efficiently reducing the amount of excess sludge generated by an activated sludge system or organic sludge such as anaerobic nitrifying sludge.

【0005】[0005]

【問題点を解決する為の手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、活性汚泥方式で
発生する汚泥の余剰部分或は嫌気性硝化汚泥等の有機性
汚泥を、金属イオンを触媒として酸化剤で酸化分解する
ことを特徴とする有機性汚泥の処理方法である。
The above object can be achieved by the present invention described below. That is, the present invention is a treatment of an organic sludge characterized by oxidatively decomposing an excess sludge generated in an activated sludge system or an organic sludge such as an anaerobic nitrifying sludge with an oxidizing agent using a metal ion as a catalyst. Is the way.

【0006】[0006]

【作用】排水を活性汚泥方式で処理して発生する汚泥の
余剰部分或は嫌気性硝化汚泥を、金属イオンを触媒とし
て酸化剤で酸化分解することにより、狭いスペースで短
時間で効率良く減量化することが出来る。
[Function] The excess amount of sludge generated by treating wastewater by the activated sludge system or anaerobic nitrifying sludge is efficiently decomposed in a narrow space in a short time by oxidizing and decomposing it with an oxidizing agent using metal ions as a catalyst. You can do it.

【0007】[0007]

【好ましい実施態様】次に好ましい実施態様を挙げて本
発明を更に詳細に説明する。本発明の好ましい1実施態
様は、図1又は図2に示す如き従来公知の排水処理方式
で発生する余剰汚泥又は嫌気性硝化汚泥を、図3に示す
如き酸化槽に移し、ここで該汚泥を必要なpHに調整し
て酸化剤及び触媒を添加し、余剰汚泥又は嫌気性硝化汚
泥を酸化分解する。尚、本発明の方法においては、酸化
処理前の汚泥を超音波処理して十分に解膠しておくこと
により、汚泥の酸化分解反応を著しく効率化することが
出来る。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to preferred embodiments. One preferred embodiment of the present invention is to transfer excess sludge or anaerobic nitrification sludge generated by a conventionally known wastewater treatment system as shown in FIG. 1 or FIG. 2 to an oxidation tank as shown in FIG. The required pH is adjusted and an oxidizing agent and a catalyst are added to oxidize and decompose excess sludge or anaerobic nitrifying sludge. In the method of the present invention, the oxidative decomposition reaction of sludge can be remarkably made efficient by subjecting the sludge before oxidization treatment to ultrasonic treatment to sufficiently deflocculate it.

【0008】本発明において使用する酸化剤は、従来公
知の化学酸化方法において使用されている酸化剤、例え
ば、過酸化水素、過酸化カルシウム、過硫酸アンモニウ
ム、アルキルヒドロペルオキシド、過酸エステル、過酸
化ジアルキル又はジアシル等が使用されるが、コストや
副生成物等の点からみて過酸化水素が最も好ましい。以
下過酸化水素を代表例として説明する。過酸化水素の使
用量は、特に限定されず、余剰汚泥又は嫌気性硝化汚泥
の内容によって変化するが、好ましい使用量は余剰汚泥
又は嫌気性硝化汚泥100重量部(固形分)に対して約
10〜500重量部(酸素として)となる範囲である。
The oxidant used in the present invention is an oxidant used in a conventionally known chemical oxidation method, for example, hydrogen peroxide, calcium peroxide, ammonium persulfate, alkyl hydroperoxide, perester, dialkyl peroxide. Alternatively, diacyl or the like is used, but hydrogen peroxide is most preferable in terms of cost and by-products. Hereinafter, hydrogen peroxide will be described as a typical example. The amount of hydrogen peroxide used is not particularly limited and varies depending on the content of the excess sludge or the anaerobic nitrifying sludge, but the preferred amount is about 10 parts by weight per 100 parts by weight (solid content) of the excess sludge or the anaerobic nitrifying sludge. ˜500 parts by weight (as oxygen).

【0009】本発明において使用する金属イオンとして
は、鉄、チタン、セリウム、銅、マンガン、コバルト、
バナジウム、クロム、鉛のイオン等が使用され、これら
の金属、金属酸化物、金属塩、錯体等いずれの形態でも
よい。本発明において特に好ましいものは鉄イオンであ
るので、以下鉄イオンを代表例として説明する。使用す
る鉄イオンは、従来技術においては第一鉄イオンが使用
されたが、本発明においては第一鉄イオンは勿論、第二
鉄イオンも有効であり、更に鉄屑等の如き金属鉄や鉄イ
オンをイオン交換樹脂等で固定した固定鉄イオンも使用
することが出来る。この触媒としての鉄イオンの使用量
は、過酸化水素1モル当たり約10-3〜0.1モルで十
分な処理効果を挙げることが出来る。
The metal ions used in the present invention include iron, titanium, cerium, copper, manganese, cobalt,
Ions of vanadium, chromium, lead, and the like are used, and any of these metals, metal oxides, metal salts, complexes, and the like may be used. Since iron ions are particularly preferable in the present invention, iron ions will be described below as a representative example. As the iron ion to be used, ferrous iron was used in the prior art, but ferrous ion as well as ferric ion is effective in the present invention, and further, metallic iron such as iron scrap or iron It is also possible to use fixed iron ions in which ions are fixed with an ion exchange resin or the like. The amount of iron ion used as the catalyst is about 10 −3 to 0.1 mol per mol of hydrogen peroxide, and sufficient treatment effect can be obtained.

【0010】本発明方法では、余剰汚泥又は嫌気性硝化
汚泥の酸化は、反応液のpHを約2〜8に調節して行な
うことが好ましい。酸化反応は常温でもよいが、好まし
い範囲は40℃〜100℃、更に好ましくは50℃〜8
0℃の範囲である。余剰汚泥又は嫌気性硝化汚泥の加熱
は、水蒸気等の吹込み、工場における他の温水等による
熱交換等、任意の加温手段を利用することが出来、加温
の方法は特に限定されない。
In the method of the present invention, it is preferable to oxidize excess sludge or anaerobic nitrifying sludge by adjusting the pH of the reaction solution to about 2-8. The oxidation reaction may be carried out at room temperature, but the preferred range is 40 ° C to 100 ° C, more preferably 50 ° C to 8 ° C.
It is in the range of 0 ° C. The excess sludge or the anaerobic nitrifying sludge can be heated by using any heating means such as blowing in steam or heat exchange with other hot water in the factory, and the heating method is not particularly limited.

【0011】処理温度が40℃未満である場合には、酸
化に時間がかかり、酸化効率が不十分で且つ過酸化水素
の利用効率が不十分である。又、100℃を越える温度
はそれ以上の処理効果を期待することが出来ず、又、過
酸化水素の自己分解が大きく、利用効率が低下すると共
に、加熱エネルギー消費が大になるだけで特別の利点は
ない。酸化反応時間は、酸化槽のサイズ、撹拌機の性
能、温度等によって異なるが、例えば、余剰汚泥又は嫌
気性硝化汚泥(固形分約1重量%)の量が10m3 で酸
化温度が50℃で充分な撹拌が行われる場合には、約1
〜3時間の反応温度で充分であり、余剰汚泥又は嫌気性
硝化汚泥の約70〜80重量%を分解することが出来
る。
When the treatment temperature is lower than 40 ° C., it takes time to oxidize, the oxidation efficiency is insufficient, and the utilization efficiency of hydrogen peroxide is insufficient. Further, if the temperature exceeds 100 ° C., no further treatment effect can be expected, and the self-decomposition of hydrogen peroxide is large, so that the utilization efficiency is lowered and the consumption of heating energy is large. There is no advantage. The oxidation reaction time varies depending on the size of the oxidation tank, the performance of the stirrer, the temperature, etc. For example, the amount of excess sludge or anaerobic nitrification sludge (solid content: about 1% by weight) is 10 m 3 , and the oxidation temperature is 50 ° C. Approximately 1 if sufficient agitation is provided
Reaction temperatures of up to 3 hours are sufficient and can decompose about 70-80% by weight of excess sludge or anaerobic nitrifying sludge.

【0012】[0012]

【実施例】次に実施例を挙げて本発明を更に具体的に説
明する。 実施例1 食品工場の排水を処理している排水処理施設の活性汚泥
(汚泥濃度11,000mg/リットル)を300ml
のビーカーに100ml取り、pH3に調整後、第一鉄
イオン250mg/リットル及び過酸化水素10,00
0mg/リットルになる様に、夫々鉄分と過酸化水素水
を添加した。その後振とうしながら70℃で1時間反応
させ、反応後の溶解性TOC(Totalorganic carbon)と
残渣(不溶性TOC)を測定したところ、処理前の溶解
性TOCは約200mg/リットルで、不溶解性TOC
の量は約6,000mg/リットルであったが、処理後
の溶解性TOCは約4000mg/リットルで、不溶解
性TOCの量は約1,800mg/リットルであった。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. Example 1 300 ml of activated sludge (sludge concentration: 11,000 mg / liter) in a wastewater treatment facility that treats the wastewater of a food factory
Take 100 ml in a beaker and adjust to pH 3, ferrous ion 250 mg / liter and hydrogen peroxide 10,000
Iron content and hydrogen peroxide solution were added so that the amount became 0 mg / liter. After that, the mixture was reacted with shaking at 70 ° C for 1 hour, and the soluble TOC (Total organic carbon) and the residue (insoluble TOC) after the reaction were measured. The soluble TOC before the treatment was about 200 mg / liter, and the insoluble TOC
Was about 6,000 mg / liter, the soluble TOC after treatment was about 4000 mg / liter, and the amount of insoluble TOC was about 1,800 mg / liter.

【0013】上記結果からして活性汚泥は、酸化により
全TOCの70%が無機化或は可溶化することが明らか
である。この可溶化したTOCは、曝気槽に戻して活性
汚泥により容易に生物分解することが出来るので、酸化
槽からの脱離液(上澄液)及び脱水機等からの濾過水を
曝気槽に戻すことにより、容易に生物分解が可能であ
る。不溶性TOCは、処理前のTOCの約30%程度と
なっており、脱水機等により脱水処理されて廃棄処分さ
れる。上記実験で得られた処理前の活性汚泥と処理後の
活性汚泥のBODとTOCを測定したところ、下記表1
の通りであった。
From the above results, it is clear that 70% of the total TOC in the activated sludge is mineralized or solubilized by oxidation. Since this solubilized TOC can be returned to the aeration tank and easily biodegraded by the activated sludge, the desorbed liquid (supernatant liquid) from the oxidation tank and the filtered water from the dehydrator etc. are returned to the aeration tank. Therefore, biodegradation can be easily performed. The insoluble TOC is about 30% of the TOC before the treatment, and it is dehydrated by a dehydrator or the like and discarded. The BOD and TOC of the activated sludge before treatment and the activated sludge after treatment obtained in the above experiment were measured, and the results are shown in Table 1 below.
It was the street.

【0014】[0014]

【表1】 上記第1表からして、処理前のBOD/TOCは0.3
であり、処理後のBOD/TOCは1.3となり、本発
明方法によって発生したBOD分は曝気槽に戻して生物
分解可能であるので、最終的に処分される活性汚泥の量
は著しく減量化されている。
[Table 1] From Table 1 above, BOD / TOC before treatment is 0.3.
The BOD / TOC after treatment is 1.3, and the BOD generated by the method of the present invention can be returned to the aeration tank and biodegraded, so that the amount of activated sludge finally disposed is significantly reduced. Has been done.

【0015】実施例2 実施例1で使用したと同じ活性汚泥をSTR30日で高
温硝化を行っている嫌気性硝化汚泥(汚泥濃度18,0
00mg/リットル)300mlのビーカーに100m
l取り、pH3に調整後、第一鉄イオン250mg/リ
ットル及び過酸化水素20,000mg/リットルにな
る様に、夫々鉄分と過酸化水素水を添加した。その後、
振とうしながら50℃で1時間反応させ、反応後の溶解
性TOCと不溶性TOCを測定したところ、処理前の溶
解性TOCは約2,000mg/リットルで、不溶解性
TOCの量は約8,000mg/リットルであったが、
処理後の溶解性TOCは約3,000mg/リットル
で、不溶解性TOCの量は約4,000mg/リットル
であった。
Example 2 The same activated sludge as used in Example 1 was subjected to high temperature nitrification for 30 days in STR, and anaerobic nitrification sludge (sludge concentration: 18,0).
00mg / l) 100m in a 300ml beaker
After adjusting the pH to 3, the iron content and hydrogen peroxide solution were added so that the ferrous ion was 250 mg / liter and the hydrogen peroxide was 20,000 mg / liter. afterwards,
After reacting at 50 ° C for 1 hour with shaking, the soluble TOC and insoluble TOC after the reaction were measured. The soluble TOC before the treatment was about 2,000 mg / liter, and the amount of insoluble TOC was about 8 It was 1,000 mg / liter,
The soluble TOC after the treatment was about 3,000 mg / liter, and the amount of insoluble TOC was about 4,000 mg / liter.

【0016】実施例3 実施例1で使用したと同じ活性汚泥をSTR30日で高
温硝化を行っている嫌気性硝化汚泥(汚泥濃度18,0
00mg/リットル)300mlのビーカーに100m
l取り、超音波発生器(出力200W)にて10分間解
膠処理後、pH3に調整し、第一鉄イオン250mg/
リットル及び過酸化水素20,000mg/リットルに
なる様に、夫々鉄分と過酸化水素水を添加した。その
後、振とうしながら50℃で1時間反応させ、反応後の
溶解性TOCと不溶性TOCを測定したところ、処理前
の溶解性TOCは約2,000mg/リットルで、不溶
解性TOCの量は約8,000mg/リットルであった
が、処理後の溶解性TOCは約3,000mg/リット
ルで、不溶解性TOCの量は約2,000mg/リット
ルであった。上記の結果からして嫌気性硝化汚泥は、酸
化により不溶性TOCの50重量%が無機化或は可溶化
することが明らかになった。又、前処理として嫌気性硝
化汚泥を超音波処理することにより、酸化により不溶性
TOCの75重量%が無機化或は可溶化することが明ら
かになった。
Example 3 The same activated sludge used in Example 1 was subjected to high temperature nitrification at STR 30 days for anaerobic nitrification sludge (sludge concentration 18,0).
00mg / l) 100m in a 300ml beaker
l, deflocculate with an ultrasonic generator (output 200W) for 10 minutes, adjust to pH 3, ferrous ion 250 mg /
Iron and hydrogen peroxide solution were added so that liter and hydrogen peroxide were 20,000 mg / liter, respectively. After that, the mixture was reacted with shaking at 50 ° C. for 1 hour, and the soluble TOC and insoluble TOC after the reaction were measured. The soluble TOC before the treatment was about 2,000 mg / liter, and the amount of insoluble TOC was Although it was about 8,000 mg / liter, the soluble TOC after the treatment was about 3,000 mg / liter, and the amount of insoluble TOC was about 2,000 mg / liter. From the above results, it was revealed that in the anaerobic nitrifying sludge, 50% by weight of insoluble TOC is mineralized or solubilized by oxidation. Further, it was revealed that 75% by weight of insoluble TOC was mineralized or solubilized by oxidation by ultrasonic treatment of anaerobic nitrification sludge as a pretreatment.

【0017】[0017]

【効果】以上の如き本発明によれば、数時間の反応で高
い効率で余剰汚泥或は嫌気性硝化汚泥等の有機性汚泥を
減量化することが可能であり、従来技術における長時間
の硝化及び広いスペースを要し且つ減量化効率が低いと
いう問題が十分に解決された。
[Effects] According to the present invention as described above, it is possible to highly efficiently reduce the amount of organic sludge such as excess sludge or anaerobic nitrification sludge by a reaction of several hours, and to perform nitrification for a long time in the conventional technique. In addition, the problems of requiring a large space and having a low weight reduction efficiency have been sufficiently solved.

【0018】[0018]

【図面の簡単な説明】[Brief description of drawings]

【図1】活性汚泥法の標準的処理工程を図解的に説明す
る図
FIG. 1 is a diagram schematically illustrating a standard treatment process of the activated sludge method.

【図2】嫌気性硝化処理工程を図解的に説明する図FIG. 2 is a diagram schematically illustrating an anaerobic nitrification treatment process.

【図3】本発明の方法を図解的に説明する図FIG. 3 is a diagram schematically illustrating the method of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年12月1日[Submission date] December 1, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 有機性汚泥の処理方法[Title of Invention] Method for treating organic sludge

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機性汚泥の処理方法に
関し、更に詳しくは排水を活性汚泥方式で処理して発生
する汚泥の余剰部分或は余剰汚泥の嫌気性消化で発生す
る嫌気性消化汚泥等の有機性汚泥を処理して、該汚泥を
減量化する有機性汚泥の処理方法に関する。
BACKGROUND OF THE INVENTION This invention relates to method of treating organic sludge, more particularly anaerobic occurs in anaerobic digestion of the excess portion or excess sludge sludge produced by treating the waste water with activated sludge method digestion The present invention relates to a method for treating organic sludge such as sludge to reduce the amount of the sludge.

【0002】[0002]

【従来の技術】従来、BODで示される排水中の有機汚
濁成分の除去においては、現在実用化されている活性汚
泥方式等の生物学的処理方法によって、比較的低いコス
トで満足し得る結果が得られている。上記活性汚泥方式
では、図1に示す様に、処理対象排水を最初沈澱池に導
き、比重の重いものを沈澱させ、次いで曝気槽におい
て、活性汚泥によって排水中の有機物を分解させる。こ
の活性汚泥処理では、分解したBODのうちの50〜7
0重量%は微生物の生活エネルギーに消費され、残りの
30〜70重量%は菌体の増殖に使用される為、余剰汚
泥が発生することになる。
2. Description of the Related Art Conventionally, in the removal of organic pollutants in wastewater indicated by BOD, a biological treatment method such as an activated sludge system which has been put into practical use has been satisfactory at a relatively low cost. Has been obtained. In the activated sludge system, as shown in FIG. 1, the wastewater to be treated is first introduced into a settling tank to precipitate the one having a large specific gravity, and then the organic matter in the wastewater is decomposed by the activated sludge in the aeration tank. In this activated sludge treatment, 50 to 7 out of the decomposed BOD
Since 0% by weight is consumed for living energy of microorganisms and the remaining 30 to 70% by weight is used for the growth of bacterial cells, excess sludge is generated.

【0003】活性汚泥処理で発生した余剰汚泥は、生物
難分解性であり且つ粘性が高いので、活性汚泥処理方式
では発生する余剰汚泥の処理が大きな問題となる。現
在、余剰汚泥の処理方法は、図2に示す様に、嫌気性
により、余剰汚泥をメタンガス、二酸化炭素、水素、
硫化水素等に分解して減量化し、その後分解されなかっ
た余剰汚泥及びその他の固形物は脱水機等により分離さ
れ、焼却されるか或は産業廃棄物として処分される。
又、場合によっては余剰汚泥は嫌気性処理を行わずに直
接脱水機等により分離され、同様に焼却されるか或は産
業廃棄物として処分される。
Excess sludge generated by the activated sludge treatment is biodegradable and has a high viscosity, so that the treatment of the excess sludge generated in the activated sludge treatment system is a serious problem. Currently, the treatment methods of the excess sludge is, as shown in FIG. 2, anaerobic consumption
By the excess sludge methane gas, carbon dioxide, hydrogen,
Excess sludge and other solids that are not decomposed after being decomposed into hydrogen sulfide and the like to reduce the amount are separated by a dehydrator or the like and incinerated or disposed as industrial waste.
In some cases, excess sludge is directly separated by a dehydrator or the like without performing anaerobic treatment, and similarly incinerated or disposed of as industrial waste.

【0004】[0004]

【発明が解決しようとしている問題点】上記嫌気性消化
による余剰汚泥の従来の減量化においては、エネルギー
がメタンガスとして回収される等の利点があるが、消化
に要する日数が20〜40日間と長く、そのうえ余剰汚
泥の分解率が60%程度と低い為、広い敷地面積が要求
され、未分解余剰汚泥及びその他の固形物は脱水機等に
より分離され、焼却されるか或は産業廃棄物として処分
せねばならず、非効率で処理コストが大きくかかるとい
う問題がある。又、余剰汚泥を嫌気性消化を行わずに脱
水機等により直接濃縮し、焼却或は産業廃棄物として処
分する場合には、余剰汚泥は減量化されていない為に、
更に処理コストが高くなるという問題がある。現在の汚
泥の処分費用は2〜3万円/mと高く、更にこの処分
費は今後一層高騰する傾向にある。従って本発明の目的
は、活性汚泥方式で発生する余剰汚泥又は嫌気性消化
泥等の有機性汚泥を効率良く減量化することが出来る方
法を提供することである。
Problems to be Solved by the Invention In the conventional reduction of excess sludge by anaerobic digestion, there is an advantage that energy is recovered as methane gas, but it is required for digestion. The number of days is as long as 20 to 40 days, and the decomposition rate of excess sludge is as low as about 60%, so a large site area is required, and undecomposed excess sludge and other solid matter are separated by a dehydrator and incinerated. Alternatively, it must be disposed of as industrial waste, which is inefficient and requires a large treatment cost. Also, when the excess sludge is directly concentrated by a dehydrator or the like without performing anaerobic digestion and incinerated or disposed of as industrial waste, the excess sludge is not reduced,
Further, there is a problem that the processing cost becomes high. The current sludge disposal cost is as high as 20,000 yen / m 3, and this disposal cost tends to rise further in the future. Therefore, an object of the present invention is to provide a method capable of efficiently reducing the amount of organic sludge such as surplus sludge or anaerobic digestion sludge generated by an activated sludge system.

【0005】[0005]

【問題点を解決する為の手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、活性汚泥方式で
発生する汚泥の余剰部分或は嫌気性消化汚泥等の有機性
汚泥を、金属イオンを触媒として酸化剤で酸化分解する
ことを特徴とする有機性汚泥の処理方法である。
The above object can be achieved by the present invention described below. That is, the present invention is a treatment of an organic sludge characterized by oxidatively decomposing an excess sludge generated in an activated sludge system or an organic sludge such as an anaerobic digestion sludge with an oxidizing agent using a metal ion as a catalyst. Is the way.

【0006】[0006]

【作用】排水を活性汚泥方式で処理して発生する汚泥の
余剰部分或は嫌気性消化汚泥を、金属イオンを触媒とし
て酸化剤で酸化分解することにより、狭いスペースで短
時間で効率良く減量化することが出来る。
[Function] Efficient reduction in a narrow space in a short time by oxidizing and decomposing excess part of sludge or anaerobic digestion sludge generated by treating wastewater by activated sludge system with an oxidizing agent using a metal ion as a catalyst. You can do it.

【0007】[0007]

【好ましい実施態様】次に好ましい実施態様を挙げて本
発明を更に詳細に説明する。本発明の好ましい1実施態
様は、図1又は図2に示す如き従来公知の排水処理方式
で発生する余剰汚泥又は嫌気性消化汚泥を、図3に示す
如き酸化槽に移し、ここで該汚泥を必要なpHに調整し
て酸化剤及び触媒を添加し、余剰汚泥又は嫌気性消化
泥を酸化分解する。尚、本発明の方法においては、酸化
処理前の汚泥を超音波処理して十分に解膠しておくこと
により、汚泥の酸化分解反応を著しく効率化することが
出来る。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to preferred embodiments. In a preferred embodiment of the present invention, excess sludge or anaerobic digested sludge generated by a conventionally known wastewater treatment system as shown in FIG. 1 or 2 is transferred to an oxidation tank as shown in FIG. The required pH is adjusted and an oxidizing agent and a catalyst are added to oxidize and decompose excess sludge or anaerobic digestion sludge. In the method of the present invention, the oxidative decomposition reaction of sludge can be remarkably made efficient by subjecting the sludge before oxidization treatment to ultrasonic treatment to sufficiently deflocculate it.

【0008】本発明において使用する酸化剤は、従来公
知の化学酸化方法において使用されている酸化剤、例え
ば、過酸化水素、過酸化カルシウム、過硫酸アンモニウ
ム、アルキルヒドロペルオキシド、過酸エステル、過酸
化ジアルキル又はジアシル等が使用されるが、コストや
副生成物等の点からみて過酸化水素が最も好ましい。以
下過酸化水素を代表例として説明する。過酸化水素の使
用量は、特に限定されず、余剰汚泥又は嫌気性消化汚泥
の内容によって変化するが、好ましい使用量は余剰汚泥
又は嫌気性消化汚泥100重量部(固形分)に対して約
10〜500重量部(酸素として)となる範囲である。
The oxidant used in the present invention is an oxidant used in a conventionally known chemical oxidation method, for example, hydrogen peroxide, calcium peroxide, ammonium persulfate, alkyl hydroperoxide, perester, dialkyl peroxide. Alternatively, diacyl or the like is used, but hydrogen peroxide is most preferable in terms of cost and by-products. Hereinafter, hydrogen peroxide will be described as a typical example. The amount of hydrogen peroxide used is not particularly limited and varies depending on the content of the excess sludge or the anaerobic digested sludge, but the preferred amount of hydrogen peroxide is about 10 parts by weight per 100 parts by weight (solid content) of the excess sludge or the anaerobic digested sludge. ˜500 parts by weight (as oxygen).

【0009】本発明において使用する金属イオンとして
は、鉄、チタン、セリウム、銅、マンガン、コバルト、
バナジウム、クロム、鉛のイオン等が使用され、これら
の金属、金属酸化物、金属塩、錯体等いずれの形態でも
よい。本発明において特に好ましいものは鉄イオンであ
るので、以下鉄イオンを代表例として説明する。使用す
る鉄イオンは、従来技術においては第一鉄イオンが使用
されたが、本発明においては第一鉄イオンは勿論、第二
鉄イオンも有効であり、更に鉄屑等の如き金属鉄や鉄イ
オンをイオン交換樹脂等で固定した固定鉄イオンも使用
することが出来る。この触媒としての鉄イオンの使用量
は、過酸化水素1モル当たり約10-3〜0.1モルで十
分な処理効果を挙げることが出来る。
The metal ions used in the present invention include iron, titanium, cerium, copper, manganese, cobalt,
Ions of vanadium, chromium, lead, and the like are used, and any of these metals, metal oxides, metal salts, complexes, and the like may be used. Since iron ions are particularly preferable in the present invention, iron ions will be described below as a representative example. As the iron ion to be used, ferrous iron was used in the prior art, but ferrous ion as well as ferric ion is effective in the present invention, and further, metallic iron such as iron scrap or iron It is also possible to use fixed iron ions in which ions are fixed with an ion exchange resin or the like. The amount of iron ion used as the catalyst is about 10 −3 to 0.1 mol per mol of hydrogen peroxide, and sufficient treatment effect can be obtained.

【0010】本発明方法では、余剰汚泥又は嫌気性消化
汚泥の酸化は、反応液のpHを約2〜8に調節して行な
うことが好ましい。酸化反応は常温でもよいが、好まし
い範囲は40℃〜100℃、更に好ましくは50℃〜8
0℃の範囲である。余剰汚泥又は嫌気性消化汚泥の加熱
は、水蒸気等の吹込み、工場における他の温水等による
熱交換等、任意の加温手段を利用することが出来、加温
の方法は特に限定されない。
In the method of the present invention, it is preferable to oxidize excess sludge or anaerobic digestion sludge by adjusting the pH of the reaction solution to about 2-8. The oxidation reaction may be carried out at room temperature, but the preferred range is 40 ° C to 100 ° C, more preferably 50 ° C to 8 ° C.
It is in the range of 0 ° C. For heating the excess sludge or the anaerobic digested sludge, any heating means such as blowing of steam or heat exchange with other hot water in the factory can be used, and the heating method is not particularly limited.

【0011】処理温度が40℃未満である場合には、酸
化に時間がかかり、酸化効率が不十分で且つ過酸化水素
の利用効率が不十分である。又、100℃を越える温度
はそれ以上の処理効果を期待することが出来ず、又、過
酸化水素の自己分解が大きく、利用効率が低下すると共
に、加熱エネルギー消費が大になるだけで特別の利点は
ない。酸化反応時間は、酸化槽のサイズ、撹拌機の性
能、温度等によって異なるが、例えば、余剰汚泥又は嫌
気性消化汚泥(固形分約1重量%)の量が10m3 で酸
化温度が50℃で充分な撹拌が行われる場合には、約1
〜3時間の反応温度で充分であり、余剰汚泥又は嫌気性
消化汚泥の約70〜80重量%を分解することが出来
る。
When the treatment temperature is lower than 40 ° C., it takes time to oxidize, the oxidation efficiency is insufficient, and the utilization efficiency of hydrogen peroxide is insufficient. Further, if the temperature exceeds 100 ° C., no further treatment effect can be expected, and the self-decomposition of hydrogen peroxide is large, so that the utilization efficiency is lowered and the consumption of heating energy is large. There is no advantage. Although the oxidation reaction time varies depending on the size of the oxidation tank, the performance of the stirrer, the temperature, etc., for example, the amount of excess sludge or anaerobic digestion sludge (solid content: about 1% by weight) is 10 m 3 , and the oxidation temperature is 50 ° C. Approximately 1 if sufficient agitation is provided
~ 3 hours reaction temperature is sufficient, excess sludge or anaerobic
About 70 to 80% by weight of digested sludge can be decomposed.

【0012】[0012]

【実施例】次に実施例を挙げて本発明を更に具体的に説
明する。 実施例1 食品工場の排水を処理している排水処理施設の活性汚泥
(汚泥濃度11,000mg/リットル)を300ml
のビーカーに100ml取り、pH3に調整後、第一鉄
イオン250mg/リットル及び過酸化水素10,00
0mg/リットルになる様に、夫々鉄分と過酸化水素水
を添加した。その後振とうしながら70℃で1時間反応
させ、反応後の溶解性TOC(Total organ
ic carbon)と残渣(不溶性TOC)を測定し
たところ、処理前の溶解性TOCは約200mg/リッ
トルで、不溶解性TOCの量は約6,000mg/リッ
トルであったが、処理後の溶解性TOCは約4000m
g/リットルで、不溶解性TOCの量は約1,800m
g/リットルであった。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. Example 1 300 ml of activated sludge (sludge concentration: 11,000 mg / liter) in a wastewater treatment facility that treats the wastewater of a food factory
Take 100 ml in a beaker and adjust to pH 3, ferrous ion 250 mg / liter and hydrogen peroxide 10,000
Iron content and hydrogen peroxide solution were added so that the amount became 0 mg / liter. After that, the mixture was reacted with shaking at 70 ° C. for 1 hour, and the soluble TOC (Total organo
ic carbon) and the residue (insoluble TOC) were measured, the soluble TOC before treatment was about 200 mg / liter and the amount of insoluble TOC was about 6,000 mg / liter, but the solubility after treatment was TOC is about 4000m
The amount of insoluble TOC is about 1,800 m in g / liter
It was g / liter.

【0013】上記結果からして活性汚泥は、酸化により
全TOCの70%が無機化或は可溶化することが明らか
である。この可溶化したTOCは、曝気槽に戻して活性
汚泥により容易に生物分解することが出来るので、酸化
槽からの脱離液(上澄液)及び脱水機等からの濾過水を
曝気槽に戻すことにより、容易に生物分解が可能であ
る。不溶性TOCは、処理前のTOCの約30%程度と
なっており、脱水機等により脱水処理されて廃棄処分さ
れる。上記実験で得られた処理前の活性汚泥と処理後の
活性汚泥のBODとTOCを測定したところ、下記表1
の通りであった。
From the above results, it is clear that 70% of the total TOC in the activated sludge is mineralized or solubilized by oxidation. Since this solubilized TOC can be returned to the aeration tank and easily biodegraded by the activated sludge, the desorbed liquid (supernatant liquid) from the oxidation tank and the filtered water from the dehydrator etc. are returned to the aeration tank. Therefore, biodegradation can be easily performed. The insoluble TOC is about 30% of the TOC before the treatment, and it is dehydrated by a dehydrator or the like and discarded. The BOD and TOC of the activated sludge before treatment and the activated sludge after treatment obtained in the above experiment were measured, and the results are shown in Table 1 below.
It was the street.

【0014】[0014]

【表1】 上記第1表からして、処理前のBOD/TOCは0.3
であり、処理後のBOD/TOCは1.3となり、本発
明方法によって発生したBOD分は曝気槽に戻して生物
分解可能であるので、最終的に処分される活性汚泥の量
は著しく減量化されている。
[Table 1] From Table 1 above, BOD / TOC before treatment is 0.3.
The BOD / TOC after treatment is 1.3, and the BOD generated by the method of the present invention can be returned to the aeration tank and biodegraded, so that the amount of activated sludge finally disposed is significantly reduced. Has been done.

【0015】実施例2 実施例1で使用したと同じ活性汚泥をSTR30日で高
消化を行っている嫌気性消化汚泥(汚泥濃度18,0
00mg/リットル)300mlのビーカーに100
ml取り、pH3に調整後、第一鉄イオン250mg/
リットル及び過酸化水素20,000mg/リットルに
なる様に、夫々鉄分と過酸化水素水を添加した。その
後、振とうしながら50℃で1時間反応させ、反応後の
溶解性TOCと不溶性TOCを測定したところ、処理前
の溶解性TOCは約2,000mg/リットルで、不溶
解性TOCの量は約8,000mg/リットルであった
が、処理後の溶解性TOCは約3,000mg/リット
ルで、不溶解性TOCの量は約4,000mg/リット
ルであった。
[0015] Example 2 The same activated sludge as used in Example 1 is carried out STR30_nichidekoon digestion anaerobic digestion sludge (sludge concentration 18,0
00mg / l) 100 in a 300ml beaker
After taking up ml and adjusting to pH 3, ferrous ion 250 mg /
Iron and hydrogen peroxide solution were added so that liter and hydrogen peroxide were 20,000 mg / liter, respectively. After that, the mixture was reacted with shaking at 50 ° C. for 1 hour, and the soluble TOC and insoluble TOC after the reaction were measured. The soluble TOC before the treatment was about 2,000 mg / liter, and the amount of insoluble TOC was Although it was about 8,000 mg / liter, the soluble TOC after the treatment was about 3,000 mg / liter and the amount of insoluble TOC was about 4,000 mg / liter.

【0016】実施例3 実施例1で使用したと同じ活性汚泥をSTR30日で高
消化を行っている嫌気性消化汚泥(汚泥濃度18,0
00mg/リットル)300mlのビーカーに100
ml取り、超音波発生器(出力200W)にて10分間
解膠処理後、pH3に調整し、第一鉄イオン250mg
/リットル及び過酸化水素20,000mg/リットル
になる様に、夫々鉄分と過酸化水素水を添加した。その
後、振とうしながら50℃で1時間反応させ、反応後の
溶解性TOCと不溶性TOCを測定したところ、処理前
の溶解性TOCは約2,000mg/リットルで、不溶
解性TOCの量は約8,000mg/リットルであった
が、処理後の溶解性TOCは約3,000mg/リット
ルで、不溶解性TOCの量は約2,000mg/リット
ルであった。上記の結果からして嫌気性消化汚泥は、酸
化により不溶性TOCの50重量%が無機化或は可溶化
することが明らかになった。又、前処理として嫌気性
汚泥を超音波処理することにより、酸化により不溶性
TOCの75重量%が無機化或は可溶化することが明ら
かになった。
[0016] Example 3 The same activated sludge as used in Example 1 is carried out STR30_nichidekoon digestion anaerobic digestion sludge (sludge concentration 18,0
00mg / l) 100 in a 300ml beaker
Take ml and deflocculate for 10 minutes with an ultrasonic generator (output 200W), adjust to pH 3 and ferrous ion 250mg
/ Liter and hydrogen peroxide of 20,000 mg / liter were added with iron and hydrogen peroxide water, respectively. After that, the mixture was reacted with shaking at 50 ° C. for 1 hour, and the soluble TOC and insoluble TOC after the reaction were measured. The soluble TOC before the treatment was about 2,000 mg / liter, and the amount of insoluble TOC was Although it was about 8,000 mg / liter, the soluble TOC after the treatment was about 3,000 mg / liter, and the amount of insoluble TOC was about 2,000 mg / liter. From the above results, it was revealed that in the anaerobic digested sludge, 50% by weight of insoluble TOC is mineralized or solubilized by oxidation. Also, as pretreatment, anaerobic elimination
It was clarified that 75% by weight of insoluble TOC was mineralized or solubilized by oxidation by subjecting the activated sludge to ultrasonic treatment.

【0017】[0017]

【効果】以上の如き本発明によれば、数時間の反応で高
い効率で余剰汚泥或は嫌気性消化汚泥等の有機性汚泥を
減量化することが可能であり、従来技術における長時間
消化及び広いスペースを要し且つ減量化効率が低いと
いう問題が十分に解決された。
[Effect] According to the present invention as described above, it is possible to reduce the amount of organic sludge such as excess sludge or anaerobic digestion sludge with a high efficiency in a reaction of several hours, and to digest for a long time in the conventional technique. In addition, the problems of requiring a large space and having a low weight reduction efficiency have been sufficiently solved.

【0018】[0018]

【図面の簡単な説明】[Brief description of drawings]

【図1】活性汚泥法の標準的処理工程を図解的に説明す
る図
FIG. 1 is a diagram schematically illustrating a standard treatment process of the activated sludge method.

【図2】嫌気性消化処理工程を図解的に説明する図FIG. 2 is a diagram schematically illustrating an anaerobic digestion treatment process.

【図3】本発明の方法を図解的に説明する図FIG. 3 is a diagram schematically illustrating the method of the present invention.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 一郎 東京都千代田区鍛冶町1−5−7 環境エ ンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Yamamoto 1-5-7 Kajimachi, Chiyoda-ku, Tokyo Inside Environmental Engineering Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 活性汚泥方式で発生する汚泥の余剰部分
或は嫌気性硝化汚泥等の有機性汚泥を、金属イオンを触
媒として酸化剤で酸化分解することを特徴とする有機性
汚泥の処理方法。
1. A method for treating organic sludge, which comprises oxidatively decomposing an excess portion of sludge generated by an activated sludge system or an organic sludge such as anaerobic nitrifying sludge with an oxidizing agent using a metal ion as a catalyst. .
【請求項2】 金属イオンが鉄イオンであり、且つ酸化
剤が過酸化水素である請求項1に記載の有機性汚泥の処
理方法。
2. The method for treating organic sludge according to claim 1, wherein the metal ions are iron ions and the oxidizing agent is hydrogen peroxide.
【請求項3】 酸化処理を、反応液のpHを2〜8の範
囲に調整して加熱下に行う請求項1又は2に記載の有機
性汚泥の処理方法。
3. The method for treating organic sludge according to claim 1 or 2, wherein the oxidation treatment is carried out under heating by adjusting the pH of the reaction solution within a range of 2 to 8.
【請求項4】 酸化処理前に有機性汚泥を超音波処理す
る請求項1〜3に記載の有機性汚泥の処理方法。
4. The method for treating organic sludge according to claim 1, wherein the organic sludge is subjected to ultrasonic treatment before the oxidation treatment.
JP19675593A 1993-07-15 1993-07-15 Organic sludge treatment method Expired - Lifetime JP3489856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19675593A JP3489856B2 (en) 1993-07-15 1993-07-15 Organic sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19675593A JP3489856B2 (en) 1993-07-15 1993-07-15 Organic sludge treatment method

Publications (2)

Publication Number Publication Date
JPH0724499A true JPH0724499A (en) 1995-01-27
JP3489856B2 JP3489856B2 (en) 2004-01-26

Family

ID=16363079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19675593A Expired - Lifetime JP3489856B2 (en) 1993-07-15 1993-07-15 Organic sludge treatment method

Country Status (1)

Country Link
JP (1) JP3489856B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19639716A1 (en) * 1996-09-26 1998-04-02 Ciba Geigy Ag Process for treating sludge in biological wastewater treatment
KR100324473B1 (en) * 1999-03-31 2002-02-27 박형재 A method making use of ultrasonic wave for treating waste water
JP2005334886A (en) * 2005-08-23 2005-12-08 Kobelco Eco-Solutions Co Ltd Activated sludge treatment method and activated sludge treatment apparatus therefor
JP2005334713A (en) * 2004-05-24 2005-12-08 Mitsui Eng & Shipbuild Co Ltd Treatment method and treatment system for treating fermentation residue liquid and other anaerobic organic compound-containing liquid
JP2013220378A (en) * 2012-04-16 2013-10-28 Shikoku Chem Corp Volume reduction method for excess sludge
CN105712601A (en) * 2014-12-04 2016-06-29 中国石油化工股份有限公司 Method for treating residual activated sludge by catalyzing ozone
CN106277660A (en) * 2015-05-18 2017-01-04 中国石油化工股份有限公司 A kind of heterogeneous catalysis ozone processes the method for residual active sludge
CN117447038A (en) * 2023-12-22 2024-01-26 南京大学 Method for promoting anaerobic methane production of excess sludge by using iron-calcium combined pretreatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977936B (en) * 2020-07-15 2022-04-22 华南理工大学 Method for grading, upgrading and recycling comprehensive utilization of oily sludge

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19639716A1 (en) * 1996-09-26 1998-04-02 Ciba Geigy Ag Process for treating sludge in biological wastewater treatment
EP0832853A3 (en) * 1996-09-26 1998-05-27 Ciba SC Holding AG Process for the treatment of sludges from biological waste water treatment
KR100324473B1 (en) * 1999-03-31 2002-02-27 박형재 A method making use of ultrasonic wave for treating waste water
JP2005334713A (en) * 2004-05-24 2005-12-08 Mitsui Eng & Shipbuild Co Ltd Treatment method and treatment system for treating fermentation residue liquid and other anaerobic organic compound-containing liquid
JP4488794B2 (en) * 2004-05-24 2010-06-23 三井造船株式会社 Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid
JP2005334886A (en) * 2005-08-23 2005-12-08 Kobelco Eco-Solutions Co Ltd Activated sludge treatment method and activated sludge treatment apparatus therefor
JP2013220378A (en) * 2012-04-16 2013-10-28 Shikoku Chem Corp Volume reduction method for excess sludge
CN105712601A (en) * 2014-12-04 2016-06-29 中国石油化工股份有限公司 Method for treating residual activated sludge by catalyzing ozone
CN105712601B (en) * 2014-12-04 2019-05-21 中国石油化工股份有限公司 A kind of method of catalysis ozone processing residual active sludge
CN106277660A (en) * 2015-05-18 2017-01-04 中国石油化工股份有限公司 A kind of heterogeneous catalysis ozone processes the method for residual active sludge
CN117447038A (en) * 2023-12-22 2024-01-26 南京大学 Method for promoting anaerobic methane production of excess sludge by using iron-calcium combined pretreatment
CN117447038B (en) * 2023-12-22 2024-04-09 南京大学 Method for promoting anaerobic methane production of excess sludge by using iron-calcium combined pretreatment

Also Published As

Publication number Publication date
JP3489856B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
US5492624A (en) Waste treatment process employing oxidation
JP3754979B2 (en) Sludge reduction method and apparatus
WO2007139264A1 (en) Apparatus and method for treatment of food waste
JP2003200199A (en) Sewage treatment method
Benmoussa et al. Simultaneous sewage sludge digestion and metal leaching using an internal loop reactor
JPH0724499A (en) Treatment of sludge
JP2005066381A (en) Method and apparatus for treating organic waste water
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JPH02273600A (en) Process for purifying water
JPH07148500A (en) Method for treating organic sludge
KR100753906B1 (en) Method of carbon source recovery for biological nutrient treatment from sludge and method of sludge reduction
JP4812261B2 (en) Method for solubilizing solid content in high-concentration organic substance, and method for treating high-concentration organic substance
JP4112549B2 (en) Organic waste treatment methods
JP3223145B2 (en) Organic wastewater treatment method
JPS5929092A (en) Treatment of sewage containing nitrogen component
JP3736397B2 (en) Method for treating organic matter containing nitrogen component
CN113087336A (en) Method for treating sludge based on iron-based catalyst wet oxidation method
JPH0278488A (en) Complete treatment of waste water
JP2003334589A (en) Wastewater treatment method and treatment apparatus therefor
JP2003047928A (en) Method and apparatus for treating organic waste
JPH10128398A (en) Solubilization treatment of biologically treated sludge
JPH06114384A (en) High order treatment of pcb-containing waste water
KR20110082846A (en) The sludge reduction plant and biological treatment process using metal catalyst
JP3697900B2 (en) Wastewater treatment method and apparatus therefor
JPS591119B2 (en) Advanced treatment method for organic wastewater

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031007

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term