JPH07240546A - Piezoelectric ceramic for large displacement and polarization treatment method of piezoelectric ceramic - Google Patents

Piezoelectric ceramic for large displacement and polarization treatment method of piezoelectric ceramic

Info

Publication number
JPH07240546A
JPH07240546A JP5528894A JP5528894A JPH07240546A JP H07240546 A JPH07240546 A JP H07240546A JP 5528894 A JP5528894 A JP 5528894A JP 5528894 A JP5528894 A JP 5528894A JP H07240546 A JPH07240546 A JP H07240546A
Authority
JP
Japan
Prior art keywords
electric field
displacement
polarization treatment
piezoelectric
piezoelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5528894A
Other languages
Japanese (ja)
Inventor
Mitsuru Asai
満 浅井
Nobuo Kamiya
信雄 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP5528894A priority Critical patent/JPH07240546A/en
Publication of JPH07240546A publication Critical patent/JPH07240546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enhance the voltage-to-displacement conversion efficiency of a piezoelectric ceramic by a method wherein the piezoelectric ceramic is domain-oriented ha a direc tion perpendicular to a direction in which an electric field is applied. CONSTITUTION:Silver electrodes, 13 are attached, by a screen printing operation, to both worked surfaces of a ceramic sintered body 12, this assembly is fired in an electric furnace, and a ceramic piezoelectric body 11 is manufactured. The ceramic piezoelectric body 11 is sandwiched between pressurization plates 14, it is immersed in silicone oil at 100 deg.C, compressive stresses 15 are applied via the pressurization plates 14 from both surfaces to which the silver electrodes 13 have been attached, the compressive stresses are held, and, while the compressive stresses are being applied, the ceramic piezoelectric body is then cooled down to room temperature. Thereby, the polarization of a piezoelectric ceramic is oriented a direction perpendicular to a direction in which the compressive stresses have been applied, i.e. to a direction in which an electric field has been applied, and it turns table Consequently, it is possible to obtain the piezoelectric ceramic, for large displacement, whose voltage-to- displacement conversion efficiency is excellent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強誘電体である圧電セ
ラミックスおよび該圧電セラミックスの製造方法に関
し、特に、大変位用圧電セラミックスおよびその製造方
法としての圧電セラミックスの分極処理方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric ceramic which is a ferroelectric substance and a method for manufacturing the piezoelectric ceramic, and more particularly to a piezoelectric ceramic for large displacement and a method for polarization treatment of the piezoelectric ceramic as the manufacturing method. .

【0002】[0002]

【従来の技術】圧電セラミックスに電界を印加すると変
位(電界誘起変位)することは、良く知られている。こ
の変位を利用して、圧電セラミックスをアクチュエー
タ、超音波モータ、ブザー等に応用している。すなわ
ち、圧電セラミックスは、電気的入力エネルギを変位や
力などの機械的エネルギに変換している。この圧電セラ
ミックスの代表的なものとしては、例えば、チタン酸ジ
ルコン酸鉛(PZT:PbZrO3 とPbTiO3 の固
溶体)、チタン酸バリウムなどがある。これらの圧電セ
ラミックスは、通常、原料混合物を、成形、焼結、加
工、電極焼付、分極処理により作製される。
2. Description of the Related Art It is well known that a piezoelectric ceramic is displaced (electric field induced displacement) when an electric field is applied. Utilizing this displacement, piezoelectric ceramics are applied to actuators, ultrasonic motors, buzzers and the like. That is, piezoelectric ceramics convert electrical input energy into mechanical energy such as displacement and force. Typical examples of the piezoelectric ceramics include lead zirconate titanate (PZT: solid solution of PbZrO 3 and PbTiO 3 ) and barium titanate. These piezoelectric ceramics are usually produced by molding, sintering, processing, electrode baking, and polarization treatment of a raw material mixture.

【0003】PZT系セラミックスやチタン酸バリウム
系セラミックスなどの強誘電体である圧電セラミックス
は、単結晶からなる結晶粒の集合体であり、焼成したま
まの状態では、各結晶粒の分極方向が無秩序であるため
に、圧電特性を示さない。そこで、これら焼結体を圧電
体として用いるために、通常、図6に示すように、焼成
後一定方向に直流の電界を印加して、分域を電界の向き
に揃える分極処理を行っている。
Piezoelectric ceramics, which are ferroelectrics such as PZT-based ceramics and barium titanate-based ceramics, are aggregates of crystal grains made of single crystals, and in the as-fired state, the polarization direction of each crystal grain is disordered. Therefore, it does not exhibit piezoelectric characteristics. Therefore, in order to use these sintered bodies as piezoelectric bodies, normally, as shown in FIG. 6, a polarization electric field is applied after firing to apply a DC electric field in a fixed direction to align the domains in the direction of the electric field. .

【0004】[0004]

【発明が解決しようとする課題】強誘電体である圧電セ
ラミックスの電界誘起変位は、圧電性および分域反転の
両者が寄与している。しかしながら、分域反転は、圧電
セラミックスに印加する電界幅が小さいと反転しにくい
性質がある。従って、上記のような分極処理を行った従
来の圧電セラミックスは、主に圧電性による変位を利用
しているので、変位が小さいという問題を有していた。
Both the piezoelectric property and the domain inversion contribute to the electric field-induced displacement of the piezoelectric ceramic, which is a ferroelectric substance. However, domain inversion has a property that it is difficult to invert when the electric field width applied to the piezoelectric ceramic is small. Therefore, the conventional piezoelectric ceramics that have been subjected to the polarization treatment as described above mainly use displacement due to piezoelectricity, and thus have a problem of small displacement.

【0005】従って、上記圧電セラミックスを利用して
アクチュエータを作製する場合には、変位量を確保する
するために、圧電セラミックスを複数積層した積層構造
となっている。ところが、従来の技術において、変位量
をさらに大きくとるためには、印加電界を高くするか、
又は/及び積層枚数をかなり多くする、厚みを増す必要
があるという問題を有していた。
Therefore, in the case of manufacturing an actuator using the above-mentioned piezoelectric ceramics, in order to secure the amount of displacement, it has a laminated structure in which a plurality of piezoelectric ceramics are laminated. However, in the conventional technique, in order to further increase the displacement amount, the applied electric field must be increased or
Or / and there was a problem that it was necessary to considerably increase the number of laminated layers and to increase the thickness.

【0006】そこで、本発明者らは、上述の如き従来技
術の問題点を解決すべく鋭意研究し、各種の系統的実験
を重ねた結果、本発明を成すに至ったものである。
Therefore, the inventors of the present invention have earnestly studied to solve the above-mentioned problems of the prior art, and as a result of various systematic experiments, the present invention has been accomplished.

【0007】(発明の目的)本発明の目的は、電界−変
位(歪み)の変換効率に優れた大変位用圧電セラミック
スおよびその製造方法を提供するにある。
(Object of the Invention) An object of the present invention is to provide a piezoelectric ceramic for large displacement which is excellent in conversion efficiency of electric field-displacement (strain) and a method for manufacturing the same.

【0008】本発明者らは、上述の従来技術の問題に対
して、以下のことに着眼した。すなわち、従来法では、
圧電セラミックスの電界印加方向への変位が小さいため
に、印加電界を高くしたり、圧電セラミックスの積層枚
数を多くしたりして変位量を確保していた。すなわち、
圧電セラミックスそのものの変位特性を向上させるので
はなく、外的な手段で変位量を確保していた。本発明者
らは、このような従来技術に対し、圧電セラミックスそ
のものの変位特性を向上させることに着目した。そし
て、各種の系統的実験を重ねた結果、従来の直流電界を
印加する分極操作時における分域配向方向と駆動時にお
ける電界印加方向(変位取出し方向)が同じ圧電セラミ
ックスでは、分極配向方向と電界印加方向(変位取出し
方向)が一致しているため、電界−変位(歪み)変換効
率が悪いという知見を得た。そして、従来とは異なる分
極操作により分域を予め変位方向に対して垂直に配向さ
せ、駆動時に分域が電界印加によって電界印加方向に反
転することにより電界印加方向の変位量が大きくなるこ
とを見いだし、本発明を成すに至った。
The present inventors have focused on the following points with respect to the above-mentioned problems of the prior art. That is, in the conventional method,
Since the displacement of the piezoelectric ceramics in the electric field application direction is small, the applied electric field is increased or the number of laminated piezoelectric ceramics is increased to secure the displacement amount. That is,
Instead of improving the displacement characteristics of the piezoelectric ceramic itself, the displacement amount was secured by external means. The present inventors have focused on improving the displacement characteristics of the piezoelectric ceramic itself, as compared with such a conventional technique. As a result of repeating various systematic experiments, in the piezoelectric ceramics in which the domain orientation direction during the polarization operation in which a conventional DC electric field is applied and the electric field application direction (displacement extraction direction) during driving are the same, the polarization orientation direction and the electric field It was found that the electric field-displacement (strain) conversion efficiency was poor because the application directions (displacement extraction directions) were the same. Then, the domain is preliminarily oriented perpendicularly to the displacement direction by a polarization operation different from the conventional one, and the domain is inverted in the direction of the electric field application by the application of the electric field during driving. They have found the present invention and completed the present invention.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(第1発明の構成)本第1発明の大変位用圧電セラミッ
クスは、強誘電体である圧電セラミックスと該圧電セラ
ミックスの厚み方向に形成された電極とからなり、厚み
方向に電界を印加して電界印加方向に変位を得る圧電セ
ラミックスにおいて、前記圧電セラミックスが、電界印
加方向に対して垂直方向に分域配向させてなることを特
徴とする。
(Structure of First Invention) The large displacement piezoelectric ceramics of the first invention comprises a piezoelectric ceramics which is a ferroelectric substance and electrodes formed in the thickness direction of the piezoelectric ceramics, and an electric field is applied in the thickness direction. In a piezoelectric ceramic that can be displaced in the direction of applying an electric field, the piezoelectric ceramic is domain-oriented in a direction perpendicular to the direction of applying the electric field.

【0010】本第2発明の圧電セラミックスの分極処理
方法は、圧電セラミックスの分極処理工程において、分
域配向方向が電界印加方向に対して垂直方向になるよう
に、分極処理してなることを特徴とする。
The method for polarization treatment of piezoelectric ceramics according to the second aspect of the present invention is characterized in that, in the polarization treatment step of piezoelectric ceramics, polarization treatment is performed such that the domain orientation direction is perpendicular to the electric field application direction. And

【0011】[0011]

【作用】本発明の大変位用圧電セラミックスおよび圧電
セラミックスの分極処理方法が優れた効果を発揮するメ
カニズムについては、未だ必ずしも明らかではないが、
次のように考えられる。
The mechanism by which the large displacement piezoelectric ceramics of the present invention and the method of polarization treatment of the piezoelectric ceramics exhibit excellent effects is not always clear, but
It can be considered as follows.

【0012】(第1発明の作用)本発明の大変位用圧電
セラミックスは、強誘電体である圧電セラミックスと該
圧電セラミックスの厚み方向に形成された電極とからな
り、厚み方向に電界を印加して電界印加方向に変位を得
る圧電セラミックスにおいて、分域を電界印加方向に対
して垂直方向に配向させてある。この圧電セラミックス
に、電界を印加すると、分域は電界印加方向に配向す
る。このとき、分域の反転量が、従来の分極処理(電界
印加方向に分域を配向)を施した圧電セラミックスの反
転量よりも大きくなるために、変位量が大きくなり、電
界−変位変換効率を向上させることができる。
(Operation of the First Invention) The large displacement piezoelectric ceramics of the present invention comprises a piezoelectric ceramics which is a ferroelectric substance and an electrode formed in the thickness direction of the piezoelectric ceramics, and an electric field is applied in the thickness direction. In the piezoelectric ceramic that obtains displacement in the electric field application direction, the domains are oriented perpendicular to the electric field application direction. When an electric field is applied to this piezoelectric ceramic, the domains are oriented in the direction of the applied electric field. At this time, the inversion amount of the domain becomes larger than the inversion amount of the piezoelectric ceramic that has been subjected to the conventional polarization treatment (orientation of the domain in the direction of applying the electric field), so that the displacement amount becomes large and the electric field-displacement conversion efficiency is increased. Can be improved.

【0013】(第2発明の作用)本発明の圧電セラミッ
クスの分極処理方法は、圧電セラミックスの分極処理工
程において、分域配向方向が電界印加方向に対して垂直
方向となるように、分極処理してなる。これにより、電
界印加方向に対して垂直方向に分域配向させた圧電セラ
ミックスを作製することができる。この圧電セラミック
スに、電界を印加すると、分域は電界印加方向に配向す
る。このとき、分域の反転量が、従来の分極処理(電界
印加方向に分域を配向)を施した圧電セラミックスの反
転量よりも大きくなるために、変位量が大きくなり、電
界−変位変換効率を向上させることができる。
(Operation of the Second Invention) In the polarization treatment method for piezoelectric ceramics of the present invention, in the polarization treatment step for the piezoelectric ceramics, the polarization treatment is performed so that the domain orientation direction is perpendicular to the electric field application direction. It becomes. As a result, it is possible to manufacture a piezoelectric ceramic that is domain-oriented in a direction perpendicular to the direction of applying an electric field. When an electric field is applied to this piezoelectric ceramic, the domains are oriented in the direction of the applied electric field. At this time, the inversion amount of the domain becomes larger than the inversion amount of the piezoelectric ceramic that has been subjected to the conventional polarization treatment (orientation of the domain in the direction of applying the electric field), so that the displacement amount becomes large and the electric field-displacement conversion efficiency is increased. Can be improved.

【0014】[0014]

【発明の効果】【The invention's effect】

(第1発明の効果)本発明の大変位用圧電セラミックス
は、電界−変位(歪み)の変換効率に優れている。
(Effect of the first invention) The large displacement piezoelectric ceramics of the present invention is excellent in electric field-displacement (strain) conversion efficiency.

【0015】(第2発明の効果)本発明の圧電セラミッ
クスの分極処理方法により、電界−変位(歪み)の変換
効率に優れた圧電セラミックスを製造することができ
る。
(Effect of the Second Invention) By the method of polarization treatment of piezoelectric ceramics of the present invention, piezoelectric ceramics excellent in electric field-displacement (strain) conversion efficiency can be manufactured.

【0016】[0016]

【実施例】以下に、前記本発明の大変位用圧電セラミッ
クスおよび圧電セラミックスの分極処理方法をさらに具
体的にした具体例(その他の発明)について、説明す
る。
EXAMPLES Specific examples (other inventions) of the piezoelectric ceramic for large displacement and the method of polarization treatment of piezoelectric ceramics of the present invention will be described below.

【0017】本発明(具体例)は、強誘電体である圧電
セラミックスとよばれるもの総てに適用することができ
る。具体的には、PZT(チタン酸ジルコン酸鉛)やP
LZT(ランタン置換チタン酸ジルコン酸鉛)などのP
ZT系セラミックスや、チタン酸バリウム系セラミック
ス、その他三成分以上の他成分系セラミックスなどがあ
る。
The present invention (specific examples) can be applied to all of what are called piezoelectric ceramics which are ferroelectrics. Specifically, PZT (lead zirconate titanate) and P
P such as LZT (lanthanum-substituted lead zirconate titanate)
Examples include ZT-based ceramics, barium titanate-based ceramics, and other component-based ceramics of three or more components.

【0018】電極は、圧電セラミックスの電界印加方向
に形成した電極であり、一般に圧電セラミックスの電極
として用いられている物質を総て適用することができ
る。具体的には、Ag,Cu,Au,Alなどの金属や
それらの合金、In,Sn,Pb,Niまたはそれらの
合金が挙げられる。該電極の形成方法としては、焼付け
法、蒸着法、メッキ法などの周知の方法が適用できる。
The electrode is an electrode formed in the direction in which the electric field of the piezoelectric ceramic is applied, and all substances generally used as the electrode of the piezoelectric ceramic can be applied. Specific examples thereof include metals such as Ag, Cu, Au, and Al, alloys thereof, In, Sn, Pb, Ni, and alloys thereof. As a method of forming the electrode, a known method such as a baking method, a vapor deposition method, a plating method or the like can be applied.

【0019】本発明の大変位用圧電セラミックスは、圧
電セラミックスの分極処理工程において、分域配向方向
が電界印加方向に対して垂直方向となるように分極処理
することにより作製する。
The piezoelectric ceramic for large displacement of the present invention is manufactured by performing polarization treatment in the polarization treatment step of the piezoelectric ceramic so that the domain orientation direction is perpendicular to the electric field application direction.

【0020】上記分極処理工程において、分極処理温度
がキュリー温度(TC )〜(TC −300℃)の範囲内
でかつ電極間へ付加する圧縮応力が10〜100MPa
の範囲内の状態で所定時間保持し、その後前記圧縮応力
を加えた状態でまたは除荷した状態で室温まで冷却して
なる分極処理方法であることが好適である。
[0020] In the polarization step, the compressive stress polarization temperature is added to the inter-range a and the electrode of the Curie temperature (T C) ~ (T C -300 ℃) is 10~100MPa
It is preferable that the method is a polarization treatment method in which the temperature is maintained for a predetermined time within the range of (4) and then cooled to room temperature with the compressive stress applied or unloaded.

【0021】この分極処理方法において、圧電セラミッ
クスに対して分域が反転し易いキュリー温度より低い温
度にて変位方向(電界印加方向)の両面(電極の両面)
から圧縮応力を加えることにより、その圧縮応力によっ
て分域が圧縮応力印加方向、すなわち電界印加方向)に
対して垂直方向に配向する。その状態から室温まで冷却
することにより、分域は圧縮応力印加方向、すなわち電
界印加方向に対して垂直方向に配向し安定な状態とな
る。これにより、電界印加方向に対して垂直方向に分極
配向されてなる大変位用圧電セラミックスを得ることが
できる。
In this polarization treatment method, both sides (both sides of the electrode) in the displacement direction (electric field application direction) at a temperature lower than the Curie temperature at which the domain is easily inverted with respect to the piezoelectric ceramics.
By applying a compressive stress to the domain, the domain is oriented by the compressive stress in a direction perpendicular to the compressive stress applying direction, that is, the electric field applying direction. By cooling from that state to room temperature, the domains are oriented in the compressive stress application direction, that is, perpendicular to the electric field application direction, and become stable. As a result, it is possible to obtain a piezoelectric ceramic for large displacement that is polarized and oriented in a direction perpendicular to the direction of applying an electric field.

【0022】この分極処理方法により、分域が電界印加
方向に対して垂直に配向するため、電界を印加して駆動
すると分域が電界印加方向に反転し大きな変位量が得ら
れる。
According to this polarization treatment method, the domains are oriented perpendicular to the direction of the electric field application. Therefore, when an electric field is applied to drive the domains, the domains are inverted in the direction of the electric field application and a large amount of displacement is obtained.

【0023】なお、上記分極処理工程において、分極処
理温度をキュリー温度(Tc )〜(Tc −300℃)の
範囲内としたのは、該温度が(Tc −300℃)未満の
場合は分域が圧縮応力を付加しても反転しにくいという
問題があり、またキュリー温度を超えると常誘電体に相
転移して分域が消滅し、変位に寄与する分域反転の効果
が無くなるという問題があるからである。また、電極間
へ付加する圧縮応力を10〜100MPaとしたのは、
該応力が10MPa未満の場合は分域を配向させること
ができないという問題があり、また該応力が100MP
aを超えると圧電セラミックスにクラックが発生すると
いう問題があるからである。
In the above polarization treatment step, the polarization treatment temperature is set within the range of Curie temperature ( Tc ) to ( Tc- 300 ° C) when the temperature is lower than ( Tc- 300 ° C). Has a problem that the domain is difficult to invert even if a compressive stress is applied, and when the Curie temperature is exceeded, the domain disappears due to the phase transition to the paraelectric material, and the effect of domain inversion that contributes to displacement disappears. Because there is a problem. Further, the reason why the compressive stress applied between the electrodes is 10 to 100 MPa is
If the stress is less than 10 MPa, there is a problem that the domains cannot be oriented, and the stress is 100 MPa.
This is because if a is exceeded, there is a problem that cracks will occur in the piezoelectric ceramics.

【0024】また、保持時間は、1秒〜60分であるこ
とが好適である。その理由は、保持時間が1秒未満では
分域が充分に配向せず、また、60分を超えてもそれ以
上配向しないばかりか作業効率が悪くなる。
The holding time is preferably 1 second to 60 minutes. The reason is that if the holding time is less than 1 second, the domains are not sufficiently oriented, and if the holding time is more than 60 minutes, the domains are not further oriented and the working efficiency is deteriorated.

【0025】また、冷却速度は、0.1℃/sec 〜5℃/
sec であることが好適である。その理由は、冷却速度が
速い場合には、熱衝撃で圧電セラミックスにクラックが
生ずるためであり、冷却速度が遅い場合は、作業効率が
悪いためである。
The cooling rate is 0.1 ° C./sec to 5 ° C. /
It is preferably sec. The reason is that when the cooling rate is high, thermal shock causes cracks in the piezoelectric ceramics, and when the cooling rate is low, work efficiency is poor.

【0026】なお、上記圧縮応力による分極処理は、圧
電セラミックスに対してのみではなく、圧電セラミック
スと電極からなるペレットと金属電極を交互に複数積層
したアクチュエータに対しても有効である。すなわち、
スタックを所定温度に保持した後、所定の圧縮応力を付
加することにより、アクチュエータを構成する各々のペ
レットの分域は圧縮応力の付加方向に対して垂直方向に
配向する。これにより、優れた電界−変位特性を有する
アクチュエータを得ることができる。
The polarization treatment by the compressive stress is effective not only for piezoelectric ceramics but also for an actuator in which a plurality of pellets composed of piezoelectric ceramics and electrodes and metal electrodes are alternately laminated. That is,
By holding the stack at a predetermined temperature and then applying a predetermined compressive stress, the domains of each pellet constituting the actuator are oriented in the direction perpendicular to the direction of applying the compressive stress. This makes it possible to obtain an actuator having excellent electric field-displacement characteristics.

【0027】一方、分極処理を圧縮応力ではなく電界に
より行う場合には、分極処理温度がキュリー温度
(Tc )〜(Tc −300℃)の範囲内でかつ駆動電界
方向(変位方向)に対して垂直方向に配設した分極用電
極間に1〜4kV/mmの電界を印加した状態で所定時
間保持し、その後前記電界を印加した状態または電界を
除いた状態で室温まで冷却してなる分極処理方法である
ことが好適である。
On the other hand, when the polarization treatment is performed by an electric field instead of compressive stress, the polarization treatment temperature is in the range of Curie temperature ( Tc ) to ( Tc- 300 ° C.) and in the driving electric field direction (displacement direction). On the other hand, an electric field of 1 to 4 kV / mm is applied between the vertically arranged polarization electrodes for a predetermined time, and then cooled to room temperature with the electric field applied or with the electric field removed. A polarization treatment method is suitable.

【0028】この分極処理方法において、圧電セラミッ
クスに対して、分域が動きやすいキュリー温度に近い温
度域で、変位方向(駆動電界印加方向)に対して垂直方
向に分域を配向させるための高電界を印加する。この高
電界によって分域が高電界印加方向に配向する。その状
態から室温まで冷却することにより分域は、変位方向
(駆動電界印加方向)に対して垂直方向に配向し固定す
る。これにより、駆動電界印加方向(変位方向)に対し
て垂直方向に分域が配向されてなる大変位用圧電セラミ
ックスを得ることができる。
In this polarization treatment method, the piezoelectric ceramic has a high temperature for orienting the domains in a direction close to the Curie temperature at which the domains easily move and in a direction perpendicular to the displacement direction (driving electric field application direction). Apply an electric field. Due to this high electric field, the domains are oriented in the direction of applying the high electric field. By cooling from that state to room temperature, the domains are oriented and fixed in the direction perpendicular to the displacement direction (driving electric field application direction). As a result, it is possible to obtain a piezoelectric ceramic for large displacement in which domains are oriented in a direction perpendicular to the driving electric field application direction (displacement direction).

【0029】この分極処理方法により、分域が変位方向
(駆動電界印加方向)に対して垂直に配向するため、変
位方向(駆動電界印加方向)に電界を印加すると、分域
が電界印加方向に反転し、大きな変位量が得られる。
By this polarization treatment method, the domains are oriented perpendicularly to the displacement direction (driving electric field applying direction). Therefore, when an electric field is applied in the displacement direction (driving electric field applying direction), the domains are oriented in the electric field applying direction. It reverses and a large displacement is obtained.

【0030】なお、上記分極処理工程において、分極処
理温度をキュリー温度(Tc )〜(Tc −300℃)の
範囲内としたのは、該温度が(Tc −300℃)未満の
場合は分域が動きにくいという問題があり、またキュリ
ー温度を超えると分域が消滅し、変位に寄与する分域反
転の効果が無くなるという問題があるからである。ま
た、印加電界を1〜4kV/mmとしたのは、該電界が
1kV/mm未満の場合は分域を反転できないという問
題があり、また該電界が4kV/mmを超えると圧電セ
ラミックスが絶縁破壊するという問題があるからであ
る。
In the above polarization treatment step, the polarization treatment temperature is set within the range of Curie temperature ( Tc ) to ( Tc- 300 ° C) when the temperature is lower than ( Tc- 300 ° C). This is because the domain has a problem that it is difficult to move, and when the Curie temperature is exceeded, the domain disappears and the effect of domain inversion that contributes to displacement disappears. The applied electric field of 1 to 4 kV / mm has a problem that the domain cannot be inverted when the electric field is less than 1 kV / mm, and the dielectric breakdown of the piezoelectric ceramics occurs when the electric field exceeds 4 kV / mm. Because there is a problem of doing.

【0031】また、保持時間は、1秒〜60分であるこ
とが好適である。その理由は、保持時間が1秒未満では
分域が充分に配向せず、また、60分を超えてもそれ以
上配向しないばかりか作業効率が悪くなる。
The holding time is preferably 1 second to 60 minutes. The reason is that if the holding time is less than 1 second, the domains are not sufficiently oriented, and if the holding time is more than 60 minutes, the domains are not further oriented and the working efficiency is deteriorated.

【0032】また、冷却速度は、0.1℃/sec 〜5℃/
sec であることが好適である。その理由は、冷却速度が
速い場合には、熱衝撃で圧電セラミックスにクラックが
生ずるためであり、冷却速度が遅い場合は、作業効率が
悪いためである。
The cooling rate is 0.1 ° C./sec to 5 ° C. /
It is preferably sec. The reason is that when the cooling rate is high, thermal shock causes cracks in the piezoelectric ceramics, and when the cooling rate is low, work efficiency is poor.

【0033】本発明の大変位用圧電セラミックスは、電
界−変位(歪み)の変換効率が優れている。すなわち、
従来の圧電セラミックスに比べて、同じ印加電界で大き
な変位量を取り出すことができるので、変位量を一定と
すると印加する電界を小さくすることができ、割れ等の
不具合を無くすことができる。また、積層する枚数を少
なくすることができ、圧電セラミックスを適用した装置
をコンパクトにすることができる。
The large displacement piezoelectric ceramics of the present invention have excellent electric field-displacement (strain) conversion efficiency. That is,
Compared with the conventional piezoelectric ceramics, a large amount of displacement can be taken out with the same applied electric field, so that if the amount of displacement is constant, the applied electric field can be made small and defects such as cracks can be eliminated. Also, the number of layers to be laminated can be reduced, and the device to which the piezoelectric ceramic is applied can be made compact.

【0034】本発明の大変位用圧電セラミックスは、従
来の圧電セラミックスが適用されている用途の総てに適
用することができる。具体的には、各種のアクチュエー
タ、微動装置、モータ、ポンプ等が挙げられる。その中
でも、特に、油圧制御弁、燃料噴射弁などの応答性が要
求されるアクチュエータ等の大変位が要求される用途に
は好適である。
The large displacement piezoelectric ceramics of the present invention can be applied to all uses to which conventional piezoelectric ceramics are applied. Specifically, various actuators, fine movement devices, motors, pumps and the like can be mentioned. Among them, it is particularly suitable for applications in which large displacement is required such as actuators that require responsiveness such as hydraulic control valves and fuel injection valves.

【0035】第1実施例 圧電体セラミックスの原料としてチタン酸ジルコン酸鉛
(PZT)の微粉末を用意し、プレス成形、CIP(冷
間静水圧プレス)、脱脂を行い、さらに電気炉で120
0℃、4時間焼成してセラミックス焼結体を得た。次い
で、この焼結体を、外径12mm、厚さ0.5mmに加工し、
表面を#600の砥石で仕上げた。次いで、このセラミ
ックス焼結体12の加工両表面に銀電極13をスクリー
ン印刷により取付け、その後電気炉で焼成して、セラミ
ックス圧電体11を作製した。なお、このPZTのキュ
リー温度は、170℃である。
First Example A fine powder of lead zirconate titanate (PZT) was prepared as a raw material for piezoelectric ceramics, subjected to press molding, CIP (cold isostatic pressing), degreasing, and further 120 in an electric furnace.
A ceramic sintered body was obtained by firing at 0 ° C. for 4 hours. Next, this sintered body is processed into an outer diameter of 12 mm and a thickness of 0.5 mm,
The surface was finished with a # 600 grindstone. Next, silver electrodes 13 were attached to both processed surfaces of the ceramic sintered body 12 by screen printing and then fired in an electric furnace to produce a ceramic piezoelectric body 11. The Curie temperature of this PZT is 170 ° C.

【0036】次に、得られたセラミックス圧電体の分極
処理を行った。すなわち、図1の分極処理方法の概略説
明図に示すように、セラミックス圧電体11を加圧プレ
ート14に挟み、100℃のシリコンオイルに浸漬し、
銀電極13が取り付けてある両表面から油圧シリンダ等
(図示せず)により加圧プレート14を介して60MP
aの圧縮応力15を加え、その状態で20分間保持し、
その後、圧縮応力を加えたまま室温まで徐冷し、本発明
にかかる本実施例の圧電セラミックスを得た。
Next, the obtained ceramic piezoelectric material was polarized. That is, as shown in the schematic explanatory view of the polarization treatment method of FIG. 1, the ceramic piezoelectric body 11 is sandwiched between the pressure plates 14 and immersed in silicon oil at 100 ° C.
60MP via a pressure plate 14 from both surfaces to which the silver electrodes 13 are attached by a hydraulic cylinder or the like (not shown)
A compressive stress 15 of a is applied, and the state is maintained for 20 minutes,
Then, the piezoelectric ceramics of this example according to the present invention was obtained by gradually cooling to room temperature while applying compressive stress.

【0037】(比較例1)分極処理を施さない他は上記
第1実施例と同様にして、比較用圧電セラミックスを得
た。
(Comparative Example 1) A comparative piezoelectric ceramic was obtained in the same manner as in the first example except that the polarization treatment was not performed.

【0038】(性能評価試験)本実施例により得られた
圧電セラミックスの性能評価試験を、電界−変位特性測
定試験により行った。図2の電界−変位特性測定試験の
概略説明図に示すように、電界0〜1200V/mmをサ
イン波で厚み方向に印加して、レーザ光を用いた変位計
(図示せず)により圧縮応力下で厚み方向(電界印加方
向)変位量を測定した。得られた結果のうち、印加電
界:0〜1200V/mm、圧縮応力:20MPa、温
度:室温の条件で行った結果を、図3に示す。なお、図
2は、第1実施例により得られた圧電セラミックスの使
用例の一例を示す図でもある。
(Performance Evaluation Test) The performance evaluation test of the piezoelectric ceramics obtained in this example was conducted by an electric field-displacement characteristic measurement test. As shown in the schematic diagram of the electric field-displacement characteristic measurement test of FIG. 2, an electric field of 0 to 1200 V / mm is applied in the thickness direction by a sine wave, and a compressive stress is applied by a displacement meter (not shown) using laser light. The amount of displacement in the thickness direction (electric field application direction) was measured below. Among the obtained results, the results obtained under the conditions of applied electric field: 0 to 1200 V / mm, compressive stress: 20 MPa, temperature: room temperature are shown in FIG. It should be noted that FIG. 2 is also a diagram showing an example of use of the piezoelectric ceramics obtained in the first embodiment.

【0039】また、比較用圧電セラミックスの性能評価
試験を、同様にして行った結果を、図3に併せて示す。
なお、該試験の概略説明図を図6に示す。
The results of the performance evaluation test of the comparative piezoelectric ceramics performed in the same manner are also shown in FIG.
A schematic explanatory view of the test is shown in FIG.

【0040】図3より明らかのように、圧縮応力20M
Paでの変位量は、本実施例の場合は0.51μmであ
り、比較例の変位量0.34μmに比べて約50%向上
したことが分かる。また、他の圧縮応力範囲内でも、本
実施例の圧電セラミックスは同様な効果が得られたこと
が確認され、優れた電界−変位特性を有することが分か
った。
As is apparent from FIG. 3, the compressive stress is 20M.
The displacement amount at Pa is 0.51 μm in the case of the present embodiment, and it can be seen that the displacement amount is improved by about 50% compared to the displacement amount of 0.34 μm in the comparative example. Further, it was confirmed that the same effect was obtained in the piezoelectric ceramics of the present example even within the other compressive stress range, and it was found that the piezoelectric ceramic had excellent electric field-displacement characteristics.

【0041】また、分極処理におけるシリコンオイルの
温度は、圧電セラミックスのキュリー温度(Tc )〜
(Tc −300℃)の範囲内であればどのような温度で
も良く、圧縮応力は10〜100MPaの間、保持時間
は1秒〜60分の間であれば良く、室温までの冷却速度
は、0.1℃/sec 〜5℃/sec の間であれば、同様な
効果が得られることが確認された。
Further, the temperature of the silicone oil in the polarization treatment is from the Curie temperature (T c ) of the piezoelectric ceramics to
Any temperature may be used within the range of (T c −300 ° C.), the compressive stress may be 10 to 100 MPa, the holding time may be 1 second to 60 minutes, and the cooling rate to room temperature may be It was confirmed that a similar effect could be obtained at 0.1 ° C / sec to 5 ° C / sec.

【0042】第2実施例 先ず、前記第1実施例と同様な方法で作製したセラミッ
クス焼結体を用意した。該セラミックス焼結体を、長さ
5mm、幅5mm、厚さ2mmに加工し、表面を#600の砥
石で仕上げ、その加工両表面A、A’およびB、B’面
に銀電極をスクリーン印刷により取付け、その後電気炉
で焼成して、セラミックス圧電体を作製した。ここで、
A−A’面とB−B’面の銀電極が接触しないようにB
−B’面の電極は、A−A’面より少し小さめに取り付
けた。
Second Example First, a ceramic sintered body prepared by the same method as in the first example was prepared. The ceramics sintered body is processed into a length of 5 mm, a width of 5 mm and a thickness of 2 mm, the surface is finished with a # 600 grindstone, and silver electrodes are screen-printed on both processed surfaces A, A'and B, B '. And then fired in an electric furnace to produce a ceramics piezoelectric body. here,
Make sure that the silver electrodes on the AA 'side and the BB' side do not touch B
The electrode on the −B ′ surface was attached to be slightly smaller than the AA ′ surface.

【0043】次に、得られた圧電セラミックスの分極処
理を行った。すなわち、先ず圧電セラミックスを100
℃のシリコンオイルに浸漬し、図4の分極処理方法の概
略説明図に示すように、B、B’面に2kV/mmの電界
を20分間印加し、その後電界を印加した状態で室温ま
で徐冷し、本発明にかかる本実施例の圧電セラミックス
を得た。このように分極処理した圧電セラミックスのB
−B’面の銀電極を加工により除去した後、A、A’面
に第1実施例と同様に電界を印加して電界印加方向の変
位量を測定した。図5に、該性能評価試験の概略説明図
を示す。測定条件は、第1実施例と同様である。なお、
図5は、第2実施例により得られた圧電セラミックスの
使用例の一例を示す図でもある。
Next, the obtained piezoelectric ceramic was subjected to polarization treatment. That is, first 100
Immerse in silicon oil at ℃, apply an electric field of 2 kV / mm to B and B'sides for 20 minutes as shown in the schematic explanatory view of the polarization treatment method in FIG. 4, and then gradually increase to room temperature with the electric field applied. After cooling, the piezoelectric ceramic of this example according to the present invention was obtained. B of the piezoelectric ceramics polarized in this way
After the silver electrode on the −B ′ surface was removed by processing, an electric field was applied to the A and A ′ surfaces in the same manner as in the first example, and the displacement amount in the electric field application direction was measured. FIG. 5 shows a schematic explanatory diagram of the performance evaluation test. The measurement conditions are the same as in the first embodiment. In addition,
FIG. 5 is also a diagram showing an example of use of the piezoelectric ceramics obtained in the second embodiment.

【0044】得られた結果を、図3に示す。圧縮応力は
20MPaでの変位量は0.50μmであり、比較例
(従来技術)の0.34μmに比べ47%向上した。ま
た、他の圧縮応力範囲内でも同様の効果が確認された。
また、本実施例において分極処理におけるシリコンオイ
ルの温度は、圧電セラミックスのキュリー温度(Tc
〜(Tc −300℃)、印加電界は2.0〜4kV/m
m、保持時間は1秒〜60分、冷却速度は0.1℃/sec
〜5℃/sec の間であれば、同様な効果が得られるこ
とが確認された。
The obtained results are shown in FIG. The amount of displacement of the compressive stress at 20 MPa was 0.50 μm, which was improved by 47% compared to 0.34 μm of the comparative example (prior art). Also, the same effect was confirmed within other compressive stress ranges.
Also, in the present embodiment, the temperature of the silicone oil in the polarization treatment is the Curie temperature (T c ) of the piezoelectric ceramics.
~ ( Tc- 300 ° C), applied electric field is 2.0 to 4 kV / m
m, holding time 1 second to 60 minutes, cooling rate 0.1 ° C / sec
It was confirmed that a similar effect can be obtained at a temperature of up to 5 ° C / sec.

【0045】第3実施例 先ず、前記第1実施例と同様な方法で作製したセラミッ
クス圧電体を、20枚用意した。次いで、厚み20μm
のSUS製電極を21枚用意し、該電極と前記セラミッ
クス圧電体とを交互に積層して、スタックを作製した
(最上面と最下面は電極となる)。
Third Example First, 20 ceramic piezoelectric bodies prepared by the same method as in the first example were prepared. Next, thickness 20 μm
21 sheets of SUS electrodes were prepared, and the electrodes and the ceramic piezoelectric material were alternately laminated to prepare a stack (the uppermost surface and the lowermost surface serve as electrodes).

【0046】次に、得られたスタックの分極処理を行っ
た。すなわち、先ず、スタックを150℃のシリコンオ
イルに浸漬し、スタックの上面と下面の両表面から油圧
シリンダ等(図示せず)により、加圧プレートを介して
30MPaの圧縮応力を加え、その状態で30分間保持
し、その後、圧縮応力を加えたまま室温まで徐冷して、
本発明にかかる本実施例のスタックを得た。
Next, the obtained stack was polarized. That is, first, the stack is immersed in silicon oil at 150 ° C., and a compressive stress of 30 MPa is applied from both upper and lower surfaces of the stack by a hydraulic cylinder (not shown) via a pressure plate, and in that state. Hold for 30 minutes, then slowly cool to room temperature with compressive stress applied,
The stack of this example according to the present invention was obtained.

【0047】このように分極処理したスタックの電界−
変位特性測定試験を行った。該試験は、前記第1実施例
と同様の方法および条件で行った。得られた結果のう
ち、印加電界:0〜1200V/mm、圧縮応力:20M
Pa、温度:室温の条件で行った結果を、図7に示す。
Electric field of stack polarized in this way
A displacement characteristic measurement test was performed. The test was carried out by the same method and conditions as in the first embodiment. Of the results obtained, applied electric field: 0 to 1200 V / mm, compressive stress: 20 M
The results obtained under the conditions of Pa and temperature: room temperature are shown in FIG. 7.

【0048】(比較例2)前記比較例1と同様にして得
られた比較用圧電セラミックスを20枚用意し、該比較
用圧電セラミックスを積層して比較用スタックを作製し
た。この比較用スタックの性能評価試験を、前記第3実
施例と同様にして行った結果を、図7に併せて示す。
Comparative Example 2 Twenty comparative piezoelectric ceramics obtained in the same manner as in Comparative Example 1 were prepared, and the comparative piezoelectric ceramics were laminated to form a comparative stack. The results of the performance evaluation test of this comparative stack performed in the same manner as in the third embodiment are also shown in FIG.

【0049】図7から明らかのように、圧縮応力20M
Paでの変位量は、本実施例の場合は11μmであり、
比較例の変位量7.0μmに比べて約57%向上したこ
とが分かる。また、他の圧縮応力範囲内でも、本実施例
のスタックは同様な効果が得られたことが確認され、優
れた電界−変位特性を有することが分かった。
As is apparent from FIG. 7, the compressive stress is 20M.
The displacement amount at Pa is 11 μm in the case of the present embodiment,
It can be seen that the displacement amount is improved by about 57% as compared with the displacement amount of 7.0 μm of the comparative example. Further, it was confirmed that the same effect was obtained in the stack of this example even within the other compressive stress range, and it was found that the stack had excellent electric field-displacement characteristics.

【0050】また、分極処理におけるシリコンオイルの
温度は、スタックを構成するセラミックス圧電体のキュ
リー温度(Tc )〜(Tc −300℃)の範囲内であれ
ばどのような温度でも良く、圧縮応力は10〜100M
Paの間、保持時間は1秒〜60分の間であれば良く、
室温までの冷却速度は、0.1℃/sec 〜5℃/secの
間であれば、同様な効果が得られることが確認された。
Further, the temperature of the silicone oil in the polarization treatment may be any temperature within the range of Curie temperature ( Tc ) to ( Tc- 300 ° C.) of the ceramic piezoelectric material forming the stack, and the compression is performed. Stress is 10-100M
During Pa, the holding time may be between 1 second and 60 minutes,
It was confirmed that the same effect could be obtained if the cooling rate to room temperature was between 0.1 ° C / sec and 5 ° C / sec.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例における圧電セラミックス
の分極処理工程の概略説明図である。
FIG. 1 is a schematic explanatory view of a polarization treatment process of piezoelectric ceramics in a first embodiment of the present invention.

【図2】本発明の第1実施例において得られた圧電セラ
ミックスの性能評価試験を示す概略説明図である。
FIG. 2 is a schematic explanatory view showing a performance evaluation test of the piezoelectric ceramics obtained in the first example of the present invention.

【図3】本発明の第1実施例、第2実施例、および比較
例1により得られた圧電セラミックスの性能評価試験結
果を示す図である。
FIG. 3 is a diagram showing performance evaluation test results of the piezoelectric ceramics obtained in the first example, the second example, and the comparative example 1 of the present invention.

【図4】本発明の第2実施例における圧電セラミックス
の分極処理工程の概略説明図である。
FIG. 4 is a schematic explanatory diagram of a polarization treatment process of the piezoelectric ceramics in the second embodiment of the present invention.

【図5】本発明の第2実施例において得られた圧電セラ
ミックスの性能評価試験を示す概略説明図である。
FIG. 5 is a schematic explanatory view showing a performance evaluation test of the piezoelectric ceramics obtained in the second embodiment of the present invention.

【図6】比較例において得られた圧電セラミックスの性
能評価試験を示す概略説明図である。
FIG. 6 is a schematic explanatory diagram showing a performance evaluation test of the piezoelectric ceramics obtained in a comparative example.

【図7】本発明の第3実施例および比較例2により得ら
れた圧電セラミックスの性能評価試験結果を示す図であ
る。
FIG. 7 is a diagram showing performance evaluation test results of piezoelectric ceramics obtained in a third example of the present invention and a comparative example 2.

【符号の説明】[Explanation of symbols]

11,21 ・・・ 圧電セラミックス 12,22 ・・・ セラミックス焼結体 13,23 ・・・ 電極 14,24 ・・・ 加圧プレート 15,25 ・・・ 圧縮応力 16,26 ・・・ 分極方向 11, 21 ・ ・ ・ Piezoelectric ceramics 12, 22 ・ ・ ・ Ceramics sintered body 13, 23 ・ ・ ・ Electrodes 14, 24 ・ ・ ・ Pressurizing plate 15, 25 ・ ・ ・ Compressive stress 16, 26 ・ ・ ・ Polarization direction

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体である圧電セラミックスと該圧
電セラミックスの厚み方向に形成された電極とからな
り、厚み方向に電界を印加して電界印加方向に変位を得
る圧電セラミックスにおいて、 前記圧電セラミックスが、電界印加方向に対して垂直方
向に分極配向されてなることを特徴とする大変位用圧電
セラミックス。
1. A piezoelectric ceramic comprising a piezoelectric ceramic which is a ferroelectric substance and an electrode formed in the thickness direction of the piezoelectric ceramic, wherein an electric field is applied in the thickness direction to cause displacement in the electric field application direction. Is a piezoelectric ceramic for large displacement characterized by being polarized and oriented in a direction perpendicular to an electric field application direction.
【請求項2】 圧電セラミックスの分極処理工程におい
て、分極配向方向が電界印加方向に対して垂直方向とな
るように、分極処理してなることを特徴とする圧電セラ
ミックスの分極処理方法。
2. A method for polarization treatment of piezoelectric ceramics, characterized in that in the polarization treatment step of piezoelectric ceramics, polarization treatment is carried out so that the polarization orientation direction is perpendicular to the electric field application direction.
【請求項3】 前記分極処理工程は、分極処理温度がキ
ュリー温度(TC )〜(Tc −300℃)の範囲内でか
つ電極間へ付加する圧縮応力が10〜100MPaの範
囲内の状態で所定時間保持し、その後前記圧縮応力を加
えた状態または除荷した状態で室温まで冷却してなるこ
とを特徴とする請求項2記載の圧電セラミックスの分極
処理方法。
3. The polarization treatment step, wherein the polarization treatment temperature is in the range of Curie temperature (T C ) to (T c -300 ° C.) and the compressive stress applied between the electrodes is in the range of 10 to 100 MPa. 3. The method for polarization treatment of piezoelectric ceramics according to claim 2, wherein the polarization treatment is performed for a predetermined time and then cooled to room temperature in a state where the compressive stress is applied or a state where the load is unloaded.
【請求項4】 前記分極処理工程は、分極処理温度がキ
ュリー温度(TC )〜(Tc −300℃)の範囲内でか
つ電界印加方向(変位方向)に対して垂直方向に配設し
た分極処理用の電極に1〜4kV/mmの電界を印加し
た状態で所定時間保持し、その後前記電界を印加した状
態または電界を除いた状態で室温まで冷却してなること
を特徴とする請求項2記載の圧電セラミックスの分極処
理方法。
4. The polarization treatment step is arranged such that the polarization treatment temperature is in the range of Curie temperature (T C ) to (T c −300 ° C.) and is perpendicular to the electric field application direction (displacement direction). An electric field of 1 to 4 kV / mm is applied to the polarization electrode for a predetermined period of time, and then cooled to room temperature with or without the electric field applied. 3. The method for polarization treatment of piezoelectric ceramic according to 2.
JP5528894A 1994-02-28 1994-02-28 Piezoelectric ceramic for large displacement and polarization treatment method of piezoelectric ceramic Pending JPH07240546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5528894A JPH07240546A (en) 1994-02-28 1994-02-28 Piezoelectric ceramic for large displacement and polarization treatment method of piezoelectric ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5528894A JPH07240546A (en) 1994-02-28 1994-02-28 Piezoelectric ceramic for large displacement and polarization treatment method of piezoelectric ceramic

Publications (1)

Publication Number Publication Date
JPH07240546A true JPH07240546A (en) 1995-09-12

Family

ID=12994404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5528894A Pending JPH07240546A (en) 1994-02-28 1994-02-28 Piezoelectric ceramic for large displacement and polarization treatment method of piezoelectric ceramic

Country Status (1)

Country Link
JP (1) JPH07240546A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031739A1 (en) * 1997-12-17 1999-06-24 Siemens Aktiengesellschaft Method for polarising piezoelectric components, and corresponding piezoelectric component
KR100373838B1 (en) * 1999-05-24 2003-02-26 가부시키가이샤 무라타 세이사쿠쇼 Piezoelectric Device
KR100921301B1 (en) * 2002-03-25 2009-10-09 오가와 도시오 Domain Controlled Piezoelectric Single Crystal
JP2009302445A (en) * 2008-06-17 2009-12-24 Fujifilm Corp Polarization method of piezoelectric substance film, and method of manufacturing piezoelectric element structure
CN102832335A (en) * 2012-08-27 2012-12-19 宁波凯普电子有限公司 Polarization clamp and polarization method of piezoelectric ceramic feedback type buzzer silver sheets
CN104197714A (en) * 2014-08-27 2014-12-10 中国石油大学(华东) Piezoelectric ceramic sintering furnace with polarization function and sintering polarization method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031739A1 (en) * 1997-12-17 1999-06-24 Siemens Aktiengesellschaft Method for polarising piezoelectric components, and corresponding piezoelectric component
KR100373838B1 (en) * 1999-05-24 2003-02-26 가부시키가이샤 무라타 세이사쿠쇼 Piezoelectric Device
KR100921301B1 (en) * 2002-03-25 2009-10-09 오가와 도시오 Domain Controlled Piezoelectric Single Crystal
JP2009302445A (en) * 2008-06-17 2009-12-24 Fujifilm Corp Polarization method of piezoelectric substance film, and method of manufacturing piezoelectric element structure
CN102832335A (en) * 2012-08-27 2012-12-19 宁波凯普电子有限公司 Polarization clamp and polarization method of piezoelectric ceramic feedback type buzzer silver sheets
CN102832335B (en) * 2012-08-27 2015-02-18 宁波凯普电子有限公司 Polarization clamp and polarization method of piezoelectric ceramic feedback type buzzer silver sheets
CN104197714A (en) * 2014-08-27 2014-12-10 中国石油大学(华东) Piezoelectric ceramic sintering furnace with polarization function and sintering polarization method thereof
CN104197714B (en) * 2014-08-27 2015-12-09 中国石油大学(华东) There is the piezoelectric ceramics sintering furnace of function of polarization and the method for sintering polarization thereof

Similar Documents

Publication Publication Date Title
CN101053089B (en) Piezoelectric actuator
JP4039029B2 (en) Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element
JP5021452B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
KR101779899B1 (en) Piezoelectric multilayer actuator with piezoelectric single crystal
JP4987815B2 (en) Method for producing piezoelectric / electrostrictive porcelain composition
JP5876974B2 (en) Method for producing piezoelectric / electrostrictive porcelain composition
JP2006295418A (en) Resonator
JPH07240546A (en) Piezoelectric ceramic for large displacement and polarization treatment method of piezoelectric ceramic
CN100583480C (en) Multi-layer piezoelectric component
KR100481226B1 (en) Piezoelectric ceramic composition for ceramic actuators and Method of fabricating the piezoelectric ceramics
JP2007223840A (en) Lead zirconate titanate-based composition, method of manufacturing the same, piezoelectric body and piezoelectrd element
JP4803956B2 (en) Piezoelectric ceramics, laminated piezoelectric element using the same, and jetting apparatus
JP2009078964A (en) Method for producing piezoelectric ceramic
JP4404217B2 (en) Piezoelectric element
JP2011251866A (en) Piezoelectricity/electrostriction ceramic sintered compact, and piezoelectricity/electrostrictive element
JP2008260674A (en) Method for producing piezoelectric/electrostrictive ceramic composition
Yoshikawa et al. Multilayer Piezoelectric Actuators--Structures and Reliability
JP2008078267A (en) Piezoelectric ceramic, its manufacturing method, and piezoelectric/electrostrictive element
CN103896586A (en) Piezoelectric ceramic and preparation method thereof
JP2007284278A (en) Piezoelectric element material and production method therefor
JP2011037697A (en) Piezoelectric/electrostrictive ceramic composition
JP4889200B2 (en) Multilayer piezoelectric element and injection device
JPH06224486A (en) Polarizing method for piezoelectric ceramics
JPH0891928A (en) Piezoelectric ceramic and its production
JP4822664B2 (en) Multilayer piezoelectric element, manufacturing method thereof, and injection apparatus