JPH07237599A - Shape memory alloy actuator for space equipment - Google Patents

Shape memory alloy actuator for space equipment

Info

Publication number
JPH07237599A
JPH07237599A JP6032337A JP3233794A JPH07237599A JP H07237599 A JPH07237599 A JP H07237599A JP 6032337 A JP6032337 A JP 6032337A JP 3233794 A JP3233794 A JP 3233794A JP H07237599 A JPH07237599 A JP H07237599A
Authority
JP
Japan
Prior art keywords
memory alloy
shape memory
alloy spring
cover
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6032337A
Other languages
Japanese (ja)
Inventor
Yasuro Kanamori
康郎 金森
Masabumi Ikeda
正文 池田
Jun Nakagawa
潤 中川
Shunichi Kawamura
俊一 川村
Yasushi Mori
康 森
Masayuki Tomita
雅行 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Mitsubishi Electric Corp
Original Assignee
National Space Development Agency of Japan
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan, Mitsubishi Electric Corp filed Critical National Space Development Agency of Japan
Priority to JP6032337A priority Critical patent/JPH07237599A/en
Publication of JPH07237599A publication Critical patent/JPH07237599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PURPOSE:To provide a shape memory alloy actuator having large generating power by decreasing an internal temperature difference of a shape memory alloy spring at the time of heating operation, so that a minimum temperature in a spring inside is generated as high as possible while suppressing a temperature in the spring inside to the temperature of decreasing deterioration in the generating power of the spring, in the shape memory alloy actuator for a space equipment. CONSTITUTION:A cover 5 of metal of aluminum alloy or the like or of thermosetting resin of polyimide film or the like is mounted so as to cover the outside of a shape memory alloy spring 3. Accordingly, by decreasing an internal temperature difference of the shape memory alloy spring 3 at the time of heating operation, a shape memory alloy actuator for a space equipment, having reliability against deterioration of resistance force at operating time and a generating power characteristic, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば人工衛星に用
いられるソーラーセイルのような、電機的なON−OF
F信号によって展開、収納動作をさせる宇宙用機器のた
めの、形状記憶合金アクチュエータに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric ON-OF such as a solar sail used for an artificial satellite.
The present invention relates to a shape memory alloy actuator for space equipment that is expanded and stored by an F signal.

【0002】[0002]

【従来の技術】図5、6は例えば従来の宇宙機器用形状
記憶合金アクチュエータを示す図であり、図において、
1は中空のパイプ、2は上記パイプ1の内部に配置され
たヒータ、3は上記パイプ1の外側に配置され一端を上
記パイプ1に取付けられた形状記憶合金ばね、4は上記
形状記憶合金ばね3の他端に取付けられ上記パイプ1に
スライド可能な状態に組込まれたスライダである。
2. Description of the Related Art FIGS. 5 and 6 are views showing a conventional shape memory alloy actuator for space equipment.
Reference numeral 1 is a hollow pipe, 2 is a heater arranged inside the pipe 1, 3 is a shape memory alloy spring having an outer end of the pipe 1 and one end attached to the pipe 1, and 4 is a shape memory alloy spring. 3 is a slider attached to the other end of the slider 3 and incorporated in the pipe 1 in a slidable state.

【0003】次に動作について説明する。形状記憶合金
ばね3は高温状態においてたとえばばねが縮む状態に変
態するようあらかじめ熱処理されており、常温あるいは
低温状態では図には示していない外部ばね等により、図
5に示すように引き伸ばされた状態に保持されている。
この状態から、図には示されていない電源装置によりヒ
ータ2を通電加熱し、その熱によりヒータ2を支持して
いるパイプ1を通して形状記憶合金ばね3をオーステナ
イト変態完了温度(Af点)以上に加熱することによ
り、形状記憶合金ばね3は縮み側に力を発生し、図には
示していない外部ばね等の保持力に打ち勝ってスライダ
4を図中左方向に変位させ、図6に示す状態に移行す
る。ヒータ2の通電加熱をやめると、形状記憶合金ばね
3は外部との熱交換によりマルテンサイト変態完了温度
(Mf点)以下に冷却され縮み側の発生力を失い、外部
ばね等の力により引き延ばされ元の図5の状態に戻る。
Next, the operation will be described. The shape memory alloy spring 3 is preheated in a high temperature state so as to be transformed into a contracted state, and is stretched as shown in FIG. 5 by an external spring or the like not shown in the figure at room temperature or low temperature. Held in.
From this state, the heater 2 is energized and heated by a power supply device (not shown), and the heat causes the shape memory alloy spring 3 to rise above the austenite transformation completion temperature (Af point) through the pipe 1 supporting the heater 2. By heating, the shape memory alloy spring 3 generates a force on the contraction side, overcoming the holding force of an external spring or the like not shown in the drawing to displace the slider 4 leftward in the drawing, and the state shown in FIG. Move to. When the electric heating of the heater 2 is stopped, the shape memory alloy spring 3 is cooled to a temperature below the martensite transformation completion temperature (Mf point) by heat exchange with the outside and loses the force generated on the contraction side and is expanded by the force of the external spring or the like. It returns to the original state shown in FIG.

【0004】次に熱の流れについて説明する。冷却時
は、図には示していないが形状記憶合金アクチュエータ
の周辺をとり取り囲む極低温の宇宙空間への熱放射によ
り形状記憶合金ばね3が直接冷却される。加熱時は、ヒ
ータ2を通電加熱することにより主に熱放射によりパイ
プ1が加熱され、更にパイプ1からの熱放射と、わずか
ではあるがパイプ1と形状記憶合金ばね3の接触部から
の熱伝導により宇宙空間への熱放射を上回って形状記憶
合金ばね3が加熱される。
Next, the flow of heat will be described. At the time of cooling, although not shown in the figure, the shape memory alloy spring 3 is directly cooled by heat radiation to the cryogenic space surrounding the shape memory alloy actuator. At the time of heating, the pipe 1 is heated mainly by heat radiation by electrically heating the heater 2, and further the heat radiation from the pipe 1 and the heat from the contact portion between the pipe 1 and the shape memory alloy spring 3 to a small extent. Due to the conduction, the shape memory alloy spring 3 is heated to exceed the heat radiation to outer space.

【0005】[0005]

【発明が解決しようとする課題】従来の宇宙機器用形状
記憶合金アクチュエータは以上のように構成されている
ため、形状記憶合金の熱交換には対流はなく伝導もわず
かであり、放射による加熱・冷却がその大部分を占め
る。形状記憶合金ばね3の加熱はヒータ2により能動的
に行なわれるが、冷却は受動的であるため、冷却効果を
高めることを目的に形状記憶合金ばねと極低温の宇宙空
間との放射結合を多くしている。このため、加熱状態で
のヒータ2、パイプ1、形状記憶合金ばね3、及び宇宙
空間の間の温度差が極端に大きく、各部の放射熱結合状
態のわずかな違いにより、形状記憶合金ばね3の内部に
温度差が発生する。また、パイプ1と形状記憶合金ばね
3の接触状態も場所によってまちまちであり、さらに、
形状記憶合金ばね3の力の発生過程、変位過程におい
て、この接触状態が変化するため、上記形状記憶合金ば
ね3の内部温度差を一層増大させる。この温度差は、状
態によっては約40〜50℃にもなることが各種試験に
より明らかになっている。
Since the conventional shape memory alloy actuator for space equipment is constructed as described above, there is no convection in the heat exchange of the shape memory alloy, and there is little conduction. Cooling accounts for the majority. The shape memory alloy spring 3 is actively heated by the heater 2, but the cooling is passive, so that the shape memory alloy spring is often radiatively coupled to the cryogenic space for the purpose of enhancing the cooling effect. is doing. Therefore, the temperature difference among the heater 2, the pipe 1, the shape memory alloy spring 3 and the outer space in the heated state is extremely large, and due to the slight difference in the radiative heat coupling state of each part, the shape memory alloy spring 3 is A temperature difference occurs inside. Also, the contact state between the pipe 1 and the shape memory alloy spring 3 varies depending on the place, and further,
Since the contact state changes in the process of generating force and the process of displacement of the shape memory alloy spring 3, the internal temperature difference of the shape memory alloy spring 3 is further increased. Various tests have revealed that this temperature difference is as high as about 40 to 50 ° C. depending on the state.

【0006】ここで、形状記憶合金ばね3の加熱時の発
生力は、ばね内部温度のばらつきのうち最も低い温度に
よって支配されることが各種試験により明かになってお
り、一方、形状記憶合金ばね3の発生力の劣化は、ばね
の内部温度がオーステナイト変態完了温度(Af点)に
比較して高すぎる場合に顕著である。たとえば、Ti−
Niの二元系、あるいはTi−Ni−Cuの三元系の形
状記憶合金の場合、この発生力劣化の目安となる温度は
Af+60℃程度である。このため、形状記憶合金ばね
3の内部の温度差が大きい場合は、発生力の劣化を防ぐ
ため形状記憶合金ばね3の平均的加熱温度を高く設定す
ることができず、ばね内部温度の最も低い温度も低く高
い発生力が得られないため、結果として動作抵抗力、劣
化等の観点から動作信頼性が低く、場合によっては真空
低温環境下での設計解が無いという問題点があった。
Here, various tests have revealed that the force generated when the shape memory alloy spring 3 is heated is governed by the lowest temperature among the variations in the temperature inside the spring. The deterioration of the generated force of No. 3 is remarkable when the internal temperature of the spring is too high compared to the austenite transformation completion temperature (Af point). For example, Ti-
In the case of a Ni-based shape memory alloy or a Ti-Ni-Cu ternary shape memory alloy, the temperature that is a guideline for deterioration of the generated force is about Af + 60 ° C. Therefore, when the temperature difference inside the shape memory alloy spring 3 is large, the average heating temperature of the shape memory alloy spring 3 cannot be set high in order to prevent the generation force from deteriorating, and the spring internal temperature is the lowest. Since the temperature is low and a high generative force cannot be obtained, as a result, there is a problem that the operation reliability is low from the viewpoint of operation resistance and deterioration, and in some cases, there is no design solution in a vacuum low temperature environment.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、形状記憶合金ばね3の加熱時の
ばね内部の温度のばらつきを小さく抑えることにより、
形状記憶合金ばね3の加熱時発生力を高めかつ発生力劣
化の少ない、動作信頼性の高い宇宙機器用形状記憶合金
アクチュエータを得ることを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and suppresses the temperature variation inside the shape memory alloy spring 3 when the shape memory alloy spring 3 is heated.
An object of the present invention is to obtain a shape memory alloy actuator for space equipment, which has a high generated force at the time of heating the shape memory alloy spring 3 and has little deterioration in the generated force and has high operation reliability.

【0008】[0008]

【課題を解決するための手段】この発明に係る宇宙機器
用形状記憶合金アクチュエータは、形状記憶合金ばねの
外側を覆うカバーをパイプあるいはスライダーに取付け
たものである。
In the shape memory alloy actuator for space equipment according to the present invention, a cover for covering the outside of the shape memory alloy spring is attached to a pipe or a slider.

【0009】また、この発明に係る宇宙機器用形状記憶
合金アクチュエータは、互いに入り込むように構成され
た第1のカバーと、第2のカバーとをパイプ及びスライ
ダーに取付けたものである。
Further, the shape memory alloy actuator for space equipment according to the present invention has a first cover and a second cover, which are configured to enter each other, attached to a pipe and a slider.

【0010】また、上記第1のカバーと第2のカバーに
よりスライド動作を支持する構成とし、上記パイプをな
くすることにより、上記ヒータが上記形状記憶合金ばね
を直接覗くように取付ける。
Further, the first cover and the second cover are configured to support the sliding motion, and the pipe is eliminated, so that the heater is mounted so as to directly look into the shape memory alloy spring.

【0011】また、上記ヒータを上記形状記憶合金ばね
が伸びた時の長さとほぼ同じ長さとして、動作時に上記
ヒータが上記形状記憶合金ばねをほぼ同じ割合で覗くよ
うな構成とする。
Further, the heater has substantially the same length as the length of the shape memory alloy spring when it is extended, and the heater looks into the shape memory alloy spring at substantially the same ratio during operation.

【0012】[0012]

【作用】この発明における宇宙機器用形状記憶合金アク
チュエータは、上記のように構成されているので、ヒー
タで加熱されたパイプからの熱伝導及び熱放射にてカバ
ーが加熱されるため、形状記憶合金ばねが放射熱結合し
ている周辺部の温度差が緩和され、加熱時の形状記憶合
金ばね内部の温度差を小さくすることができるため、形
状記憶合金ばね内部の温度を形状記憶合金ばねの発生力
劣化の生じない温度に保ちつつ、形状記憶合金ばね内部
の最低温度を高くその発生力を高くすることができ、高
い動作信頼性が得られる。
Since the shape memory alloy actuator for space equipment according to the present invention is configured as described above, since the cover is heated by heat conduction and heat radiation from the pipe heated by the heater, the shape memory alloy actuator. The temperature difference in the peripheral portion where the spring is radiatively coupled is relaxed, and the temperature difference inside the shape memory alloy spring during heating can be reduced, so the temperature inside the shape memory alloy spring is generated by the shape memory alloy spring. It is possible to increase the minimum temperature inside the shape memory alloy spring and increase the generated force while maintaining the temperature at which force deterioration does not occur, and to obtain high operational reliability.

【0013】また、互いに入り込むように構成された第
1、第2のカバーにより、アクチュエータの直動ストロ
ークを確保したまま、上記形状記憶合金ばねをほぼ完全
に覆うことができるため、上記加熱時の形状記憶合金ば
ね内部の温度差をいっそう小さくすることができる。
Further, the shape memory alloy spring can be almost completely covered with the linear stroke of the actuator being secured by the first and second covers which are configured to enter each other. The temperature difference inside the shape memory alloy spring can be further reduced.

【0014】また、上記第1、第2のカバーによりスラ
イド動作を支持する構成とすることにより、上記パイプ
をなくし上記ヒータが直接上記形状記憶合金ばねを覗く
ように構成することによって、パイプと形状記憶合金ば
ねの接触部が無くなるため熱伝導の差によるばね内部の
温度差が緩和され、上記と同様な作用が期待できる。
Further, by adopting a structure in which the sliding action is supported by the first and second covers, the pipe is eliminated, and the heater is configured to directly look into the shape memory alloy spring. Since the contact portion of the memory alloy spring is eliminated, the temperature difference inside the spring due to the difference in heat conduction is alleviated, and the same effect as above can be expected.

【0015】また、上記ヒータを上記形状記憶合金ばね
が伸びた時とほぼ同じ長さにすることにより、アクチュ
エータの直動ストロークの全範囲においてヒータが形状
記憶合金を覗く割合を同様に保つことができるため、上
記と同様な作用が期待できる。
Further, by making the heater have substantially the same length as when the shape memory alloy spring is stretched, it is possible to maintain the same proportion of the heater looking into the shape memory alloy in the entire range of the linear motion stroke of the actuator. Therefore, the same effect as above can be expected.

【0016】[0016]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1はこの発明の実施例1を示す断面図、図2は
その加熱時動作状態を示す図であり、1〜4は上記従来
の宇宙機器用形状記憶合金アクチュエータと全く同一の
ものである。5は形状記憶合金ばね3の外側を覆うよう
に配置されたアルミ合金などの金属もしくはポリイミド
フィルムなどの熱硬化性樹脂等でできたカバーであり、
図ではカバー5がパイプ1に取付けられた場合を示して
いる。図には、冷却時図2の状態から図1の状態に復帰
させるための外部ばね、およびヒータ2を加熱するため
の外部電源装置、及び周辺の宇宙空間は示していない。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. 1 is a cross-sectional view showing a first embodiment of the present invention, and FIG. 2 is a view showing an operating state thereof during heating, and 1 to 4 are exactly the same as the conventional shape memory alloy actuator for space equipment. Reference numeral 5 is a cover made of a metal such as an aluminum alloy or a thermosetting resin such as a polyimide film arranged so as to cover the outside of the shape memory alloy spring 3.
The figure shows a case where the cover 5 is attached to the pipe 1. The figure does not show the external spring for returning the state of FIG. 2 to the state of FIG. 1 during cooling, the external power supply device for heating the heater 2, and the outer space around it.

【0017】前述のように構成された宇宙機器用形状記
憶合金アクチュエータにおいては、その加熱動作時、ヒ
ータ2で加熱されたパイプ1からの熱伝導及び熱放射に
よりカバー5が加熱されるため、形状記憶合金ばね3が
放射熱結合している周辺部の温度差が緩和され、形状記
憶合金ばね3の内部の温度差を小さくできるため、高い
動作信頼性を有する宇宙機器用形状記憶合金アクチュエ
ータが得られる。
In the shape memory alloy actuator for space equipment constructed as described above, during the heating operation, the cover 5 is heated by heat conduction and heat radiation from the pipe 1 heated by the heater 2, so that the shape is Since the temperature difference in the peripheral portion where the memory alloy spring 3 is radiatively thermally coupled is relaxed and the temperature difference inside the shape memory alloy spring 3 can be reduced, a shape memory alloy actuator for space equipment having high operational reliability is obtained. To be

【0018】実施例2.図3は、この発明の実施例2を
示す断面図であり、上記実施例1のカバー5に加えてさ
らにカバー5と重なるように構成されスライダー4に取
付けられた第2のカバー6を備えたものであり、形状記
憶合金ばね3をほぼ完全に覆っているため、上記実施例
1と同様もしくはそれ以上の効果が達成出来る。
Example 2. FIG. 3 is a cross-sectional view showing a second embodiment of the present invention. In addition to the cover 5 of the first embodiment, a second cover 6 attached to the slider 4 is further provided so as to overlap the cover 5. Since the shape memory alloy spring 3 is almost completely covered, it is possible to achieve the same effect as that of the first embodiment or more.

【0019】実施例3.図4はこの発明の実施例3を示
す断面図であり、上記実施例1のパイプ1をなくしヒー
タ2を固定部7で支持することにより、ヒータ2と形状
記憶合金ばね3の間の遮蔽物をなくしヒータ2が直接形
状記憶合金ばね3を直接覗くように取付け、スライダ4
の動作支持をパイプ1ではなく上記実施例2の第1のカ
バー5と第2のカバー6に持たせるように構成したもの
であり、パイプ1と形状記憶合金ばね3の接触部が無く
なるためこの部分からの熱伝導の差による形状記憶合金
ばね3の内部温度差が緩和される。さらに上記ヒータ2
の長さを形状記憶合金ばね3が伸びた時の長さとほぼ同
じ長さにすることにより、直動ストロークの全範囲にお
いてヒータ2と形状記憶合金ばね3の放射熱結合をほぼ
均一に維持することができ、形状記憶合金ばね3の内部
温度差がさらに緩和され、上記実施例1及び2と同様も
しくはそれ以上の効果が期待出来る。
Example 3. FIG. 4 is a cross-sectional view showing a third embodiment of the present invention, in which the pipe 1 of the first embodiment is eliminated and the heater 2 is supported by the fixing portion 7, whereby a shield between the heater 2 and the shape memory alloy spring 3 is provided. The heater 2 is attached so that the shape memory alloy spring 3 is directly seen, and the slider 4
In this embodiment, the first support 5 and the second cover 6 of the second embodiment are provided with the above-mentioned operation support instead of the pipe 1, and the contact portion between the pipe 1 and the shape memory alloy spring 3 is eliminated. The difference in internal temperature of the shape memory alloy spring 3 due to the difference in heat conduction from the portion is reduced. Furthermore, the heater 2
Is set to be substantially the same as the length when the shape memory alloy spring 3 is extended, so that the radiant heat coupling between the heater 2 and the shape memory alloy spring 3 is maintained substantially uniform in the entire range of the linear motion stroke. Therefore, the internal temperature difference of the shape memory alloy spring 3 is further alleviated, and the same effect as or more than those of the first and second embodiments can be expected.

【0020】また、上記実施例1から3においては、低
温状態に復帰させるための外部ばねは図示していない
が、アクチュエータ内部に形状記憶合金ばね3と一緒に
組込まれていても所期の目的を達成することはいうまで
もない。
In the first to third embodiments described above, the external spring for returning to the low temperature state is not shown, but even if the external memory is incorporated into the actuator together with the shape memory alloy spring 3, the intended purpose is obtained. Needless to say,

【0021】また、上記実施例1から3においては、形
状記憶合金ばね3が高温状態においてばねが縮む状態に
変態するよう設定されている場合を示したが、逆にばね
が伸びる状態に変化するよう設定されている場合でも所
期の目的を達成することはいうまでもない。
Further, in the above-mentioned first to third embodiments, the case where the shape memory alloy spring 3 is set so as to transform into a state in which the spring contracts at a high temperature is shown. However, conversely, the spring expands. It goes without saying that the intended purpose will be achieved even if such settings are made.

【0022】ところで上記説明では、この発明を例えば
人工衛星に用いられるソーラーセイルのような、電気的
ON−OFF信号によって機器の展開、収納動作をさせ
る宇宙機器用形状記憶合金アクチュエータに利用する場
合について述べたが、その他地上用などの形状記憶合金
アクチュエータにも利用できることはいうまでもない。
By the way, in the above description, the present invention is applied to a shape memory alloy actuator for space equipment, such as a solar sail used for artificial satellites, which develops and stores the equipment by electrical ON-OFF signals. As mentioned above, it goes without saying that it can be applied to other shape memory alloy actuators for ground use.

【0023】[0023]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に記載されるような効果を有する。
Since the present invention is constructed as described above, it has the following effects.

【0024】形状記憶合金ばねの外側を覆うカバーを取
付けることにより、形状記憶合金ばねが放射熱結合して
いる周辺部の温度差を緩和し、形状記憶合金ばね内部の
温度差を小さく押さえ、形状記憶合金ばね内部の温度を
形状記憶合金ばねの発生力劣化の生じない温度に保ちつ
つ、形状記憶合金ばね内部の最低温度を高くその発生力
を高くすることができるため、動作時抵抗力や特性劣化
に対して高い信頼性を有した宇宙機器用形状記憶合金ア
クチュエータが得られる。
By attaching a cover that covers the outside of the shape memory alloy spring, the temperature difference in the peripheral portion where the shape memory alloy spring is radiatively coupled is relaxed, and the temperature difference inside the shape memory alloy spring is suppressed to a small value. It is possible to increase the minimum temperature inside the shape memory alloy spring and raise the generated force while maintaining the temperature inside the memory alloy spring at a temperature at which the generated force of the shape memory alloy spring does not deteriorate, so that the resistance force during operation and characteristics A shape memory alloy actuator for space equipment having high reliability against deterioration can be obtained.

【0025】また、第1のカバーと第2のカバーを重ね
る構成とすることにより、加熱時、形状記憶合金ばねの
全動作範囲にわたって形状記憶合金ばねの外側を完全に
覆うことができるため、形状記憶合金ばね内部の温度差
をさらに小さくすることができ、上記と同様もしくはそ
れ以上の高い信頼性を有した宇宙機器用形状記憶合金ア
クチュエータが得られる。
Further, by arranging the first cover and the second cover so as to overlap with each other, the outer shape of the shape memory alloy spring can be completely covered over the entire operating range of the shape memory alloy spring during heating. The temperature difference inside the memory alloy spring can be further reduced, and a shape memory alloy actuator for space equipment having high reliability equal to or higher than the above can be obtained.

【0026】また、パイプをなくしヒータが形状記憶合
金ばねを直接覗く構成とすることにより、パイプと形状
記憶合金ばねの部分的なばらつきの大きい接触伝導をな
くすることができるため、形状記憶合金ばね内部の温度
差をさらに小さくすることができ、上記と同様もしくは
それ以上の高い信頼性を有した宇宙機器用形状記憶合金
アクチュエータが得られる。
Further, by eliminating the pipe and by making the heater directly look into the shape memory alloy spring, it is possible to eliminate the contact conduction which has a large variation locally between the pipe and the shape memory alloy spring. The internal temperature difference can be further reduced, and a shape memory alloy actuator for space equipment having a high reliability equal to or higher than the above can be obtained.

【0027】また、ヒータの長さを形状記憶合金ばねが
伸びた時の長さとほぼ同じ長さとすることにより、形状
記憶合金ばねの全動作範囲にわたって形状記憶合金ばね
の各部分とヒータとの放射熱結合をほぼ均一に維持する
ことができるため、形状記憶合金ばね内部の温度差をさ
らに小さくすることができ、上記と同様もしくはそれ以
上の高い信頼性を有した宇宙機器用形状記憶合金アクチ
ュエータが得られる。
Further, by making the length of the heater substantially the same as the length when the shape memory alloy spring is extended, the radiation of each part of the shape memory alloy spring and the heater over the entire operating range of the shape memory alloy spring. Since the thermal coupling can be maintained substantially evenly, the temperature difference inside the shape memory alloy spring can be further reduced, and a shape memory alloy actuator for space equipment having high reliability equal to or higher than the above can be provided. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1の低温通常状態を示す断面
図である。
FIG. 1 is a cross-sectional view showing a low temperature normal state of Embodiment 1 of the present invention.

【図2】この発明の実施例1の高温動作状態を示す断面
図である。
FIG. 2 is a cross-sectional view showing a high temperature operating state of Embodiment 1 of the present invention.

【図3】この発明の実施例2を示す断面図である。FIG. 3 is a sectional view showing a second embodiment of the present invention.

【図4】この発明の実施例3を示す断面図である。FIG. 4 is a sectional view showing Embodiment 3 of the present invention.

【図5】従来の宇宙用形状記憶合金アクチュエータの低
温通常状態を示す断面図である。
FIG. 5 is a cross-sectional view showing a low temperature normal state of a conventional space shape memory alloy actuator.

【図6】従来の宇宙用形状記憶合金アクチュエータの高
温動作状態を示す断面図である。
FIG. 6 is a cross-sectional view showing a high temperature operating state of a conventional space shape memory alloy actuator.

【符号の説明】[Explanation of symbols]

1 パイプ 2 ヒータ 3 形状記憶合金ばね 4 スライダ 5 カバーもしくは第1のカバー 6 第2のカバー 7 固定部 1 Pipe 2 Heater 3 Shape Memory Alloy Spring 4 Slider 5 Cover or First Cover 6 Second Cover 7 Fixed Part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 潤 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内 (72)発明者 川村 俊一 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内 (72)発明者 森 康 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内 (72)発明者 冨田 雅行 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Jun Nakagawa 325 Kamimachiya, Kamakura City Mitsubishi Electric Corporation Kamakura Plant (72) Inventor Shunichi Kawamura 325 Kamimachiya Kamakura City Mitsubishi Electric Corporation Kamakura Plant (72) Inventor Yasushi Mori 325 Kamimachiya, Kamakura City Mitsubishi Electric Co., Ltd. Kamakura Factory (72) Inventor Masayuki Tomita 325 Kamimachiya, Kamakura City Mitsubishi Electric Corporation Kamakura Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中空のパイプと、上記パイプ内部に配置
されたヒータと、上記パイプの外側に配置され一端を上
記パイプに取付けられた形状記憶合金ばねと、上記形状
記憶合金ばねの他端にとりつけられ上記パイプにスライ
ド可能な状態に組込まれたスライダと、上記パイプある
いは上記スライドに一端を固定され上記形状記憶合金ば
ねの外側を覆うように取付けられたカバーとを有するこ
とを特徴とする形状記憶合金アクチュエータ。
1. A hollow pipe, a heater arranged inside the pipe, a shape memory alloy spring arranged outside the pipe and having one end attached to the pipe, and the other end of the shape memory alloy spring. A shape comprising: a slider attached to the pipe so as to be slidable therein; and a cover having one end fixed to the pipe or the slide and attached to cover the outside of the shape memory alloy spring. Memory alloy actuator.
【請求項2】 上記カバーとして、上記パイプに取付け
られた第1のカバーと、上記スライダに固定され上記第
1のカバーの内側あるいは外側に入りこむように取付け
られた第2のカバーとを備えたことを特徴とする請求項
1記載の形状記憶合金アクチュエータ。
2. The cover includes a first cover attached to the pipe and a second cover fixed to the slider so as to enter the inside or the outside of the first cover. The shape memory alloy actuator according to claim 1, wherein:
【請求項3】 ヒータと、上記ヒータの端部を支持する
固定部と、上記ヒータの外側に配置され一端を上記固定
部に取付けられた形状記憶合金ばねと、上記固定部に一
端を固定され上記形状記憶合金ばねの外側を覆うように
取付けられた第1のカバーと、上記第1のカバーの内側
あるいは外側に入り込むようにしてスライド可能な状態
に組込まれた第2のカバーと、上記第2のカバーの他端
に取付けられた上記形状記憶合金ばねの他端を固定する
スライダとを有することを特徴とする形状記憶合金アク
チュエータ。
3. A heater, a fixing portion for supporting an end portion of the heater, a shape memory alloy spring arranged outside the heater and having one end attached to the fixing portion, and one end fixed to the fixing portion. A first cover attached so as to cover the outer side of the shape memory alloy spring; a second cover slidably incorporated into the inner side or the outer side of the first cover; 2. A shape memory alloy actuator comprising: a slider for fixing the other end of the shape memory alloy spring attached to the other end of the second cover.
【請求項4】 上記ヒータを上記形状記憶合金ばねが伸
びているときの長さとほぼ同じ長さとしたことを特徴と
する請求項1〜3いずれか記載の形状記憶合金アクチュ
エータ。
4. The shape memory alloy actuator according to claim 1, wherein the heater has substantially the same length as the length of the shape memory alloy spring when the heater is extended.
JP6032337A 1994-03-02 1994-03-02 Shape memory alloy actuator for space equipment Pending JPH07237599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6032337A JPH07237599A (en) 1994-03-02 1994-03-02 Shape memory alloy actuator for space equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6032337A JPH07237599A (en) 1994-03-02 1994-03-02 Shape memory alloy actuator for space equipment

Publications (1)

Publication Number Publication Date
JPH07237599A true JPH07237599A (en) 1995-09-12

Family

ID=12356143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6032337A Pending JPH07237599A (en) 1994-03-02 1994-03-02 Shape memory alloy actuator for space equipment

Country Status (1)

Country Link
JP (1) JPH07237599A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1130243A2 (en) * 2000-03-03 2001-09-05 United Technologies Corporation A variable area nozzle for gas turbine engines driven by shape memory alloy actuators
EP1331392A2 (en) * 2002-01-29 2003-07-30 United Technologies Corporation System and method for controlling shape memory alloy actuators
US7216831B2 (en) 2004-11-12 2007-05-15 The Boeing Company Shape changing structure
US7340883B2 (en) 2004-11-12 2008-03-11 The Boeing Company Morphing structure
US7546727B2 (en) 2004-11-12 2009-06-16 The Boeing Company Reduced noise jet engine
EP3031772A1 (en) * 2014-12-11 2016-06-15 Ipek International GmbH Lifting device, in particular for an inspection system
CN113915090A (en) * 2021-10-13 2022-01-11 燕山大学 Temperature control slide bar based on honeycomb type memory alloy structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1130243A2 (en) * 2000-03-03 2001-09-05 United Technologies Corporation A variable area nozzle for gas turbine engines driven by shape memory alloy actuators
EP1130243A3 (en) * 2000-03-03 2003-10-01 United Technologies Corporation A variable area nozzle for gas turbine engines driven by shape memory alloy actuators
US6735936B2 (en) 2000-03-03 2004-05-18 United Technologies Corporation Variable area nozzle for gas turbine engines driven by shape memory alloy actuators
US7004047B2 (en) 2000-03-03 2006-02-28 United Technologies Corporation Variable area nozzle for gas turbine engines driven by shape memory alloy actuators
EP1331392A2 (en) * 2002-01-29 2003-07-30 United Technologies Corporation System and method for controlling shape memory alloy actuators
EP1331392A3 (en) * 2002-01-29 2005-09-07 United Technologies Corporation System and method for controlling shape memory alloy actuators
US7216831B2 (en) 2004-11-12 2007-05-15 The Boeing Company Shape changing structure
US7340883B2 (en) 2004-11-12 2008-03-11 The Boeing Company Morphing structure
US7546727B2 (en) 2004-11-12 2009-06-16 The Boeing Company Reduced noise jet engine
US7644575B2 (en) 2004-11-12 2010-01-12 The Boeing Company Morphing structure
US8186143B2 (en) 2004-11-12 2012-05-29 The Boeing Company Morphing structure and method
US8397485B2 (en) 2004-11-12 2013-03-19 The Boeing Company Morphing structure and method
EP3031772A1 (en) * 2014-12-11 2016-06-15 Ipek International GmbH Lifting device, in particular for an inspection system
CN113915090A (en) * 2021-10-13 2022-01-11 燕山大学 Temperature control slide bar based on honeycomb type memory alloy structure
CN113915090B (en) * 2021-10-13 2023-03-07 燕山大学 Temperature control slide bar based on honeycomb type memory alloy structure

Similar Documents

Publication Publication Date Title
JPH07237599A (en) Shape memory alloy actuator for space equipment
JPS6094784A (en) Continous current switch for high energy superconductive solenoid
US20050180109A1 (en) Self-excited vibration heat pipe and computer with the heat pipe
JP2020026949A (en) Heat exchange means with elastocaloric element, which surrounds fluid line
CN105346735A (en) Self-adaptive cooling face area adjusting device
US4948221A (en) Athermalized optical head
CN109716226B (en) Method of assembling an SMA actuator assembly
US6276144B1 (en) Cryogenic thermal switch employing materials having differing coefficients of thermal expansion
JP5378407B2 (en) COOLING ROLL FOR ROLL CROWN CONTROL AND ITS CONTROL METHOD
US5317875A (en) Thermally-controlled rotary displacement actuator operable for precise displacement of an optical or mechanical element
US6842567B2 (en) Power efficient assemblies for applying a temperature gradient to a refractive index grating
Dowen Design and implementation of a paraffin-based micropositioning actuator
JPS6012871B2 (en) rotating machine
JPH05259667A (en) Heat radiating structure
JPS5910789A (en) Actuator which comprises shape memorizy alloy
JPH08230797A (en) Heat flow switch of satellite
JP5677267B2 (en) Shape memory alloy actuator
JP4165184B2 (en) Actuator
KR101034500B1 (en) Shape memory alloy actuator
JP2004003807A (en) Self-excited vibration heat pipe
JP2824820B2 (en) Adjustment device for optical members
JPS60261374A (en) Operating device in vacuum
JP2001214851A (en) Actuator and control method therefor
KR101363921B1 (en) Support equipment and method for calibrating the position
JP4000364B2 (en) Energization system using pulse tube refrigerator