JPH07236204A - Method and system for charging electric automobile - Google Patents

Method and system for charging electric automobile

Info

Publication number
JPH07236204A
JPH07236204A JP6024103A JP2410394A JPH07236204A JP H07236204 A JPH07236204 A JP H07236204A JP 6024103 A JP6024103 A JP 6024103A JP 2410394 A JP2410394 A JP 2410394A JP H07236204 A JPH07236204 A JP H07236204A
Authority
JP
Japan
Prior art keywords
energy
electric vehicle
charging
electromagnetic wave
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6024103A
Other languages
Japanese (ja)
Inventor
Taizo Miyazaki
泰三 宮崎
Ryozo Masaki
良三 正木
Nobuyoshi Muto
信義 武藤
Fumio Tajima
文男 田島
Yusuke Takamoto
祐介 高本
Satoru Kaneko
金子  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6024103A priority Critical patent/JPH07236204A/en
Publication of JPH07236204A publication Critical patent/JPH07236204A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Abstract

PURPOSE:To provide method and system for charging an electric automobile by which an operator can charge the battery for an electric automobile conveniently in a short time by oneself using directional electromagnetic wave. CONSTITUTION:Energy fed from an energy supply means 102 is converted a feeding energy converting means 104 in a feeding unit 103 into electromagnetic wave having directivity. The directional electromagnetic wave is fed through the feeding port 105 of the feeding unit 103 toward the power receiving port 105 of a power receiving unit 107 without dissipating the energy. The electromagnetic wave received collectively through the power receiving port 106 is fed through a receiving energy converting means 108 into DC power supply for charging the battery 109 in an electric automobile 101 efficiently. The feeding unit 103 and the regulator 110 for the power receiving unit 107 control the voltage and current to suitable levels.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車の充電シス
テムおよび充電方法に係り、特に、充電作業の省人化ま
たは無人化に好適な電気自動車の充電システムおよび充
電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging system and a charging method for an electric vehicle, and more particularly to a charging system and a charging method for an electric vehicle suitable for labor saving or unmanned charging work.

【0002】[0002]

【従来の技術】電気自動車の充電に関する従来技術とし
ては、充電器と電気自動車とをケーブルで接続し充電す
るケーブル方式が一般的であり、この代表的なものは、
例えば、実開平5−62103号公報に記載されている。
2. Description of the Related Art As a conventional technique for charging an electric vehicle, a cable system in which a charger and an electric vehicle are connected by a cable for charging is generally used.
For example, it is described in Japanese Utility Model Publication No. 5-62103.

【0003】また、ケーブルレス方式の代表的なもの
は、例えば、特開昭63−87136号、特開平4−49483号、特
開平4−285406号公報などに記載されている。それぞれ
電磁場、電磁波、光を利用し充電エネルギを送電する方
式であり、充電器と電気自動車とを接続するケーブルが
不要なものである。
Typical cableless systems are described, for example, in JP-A-63-87136, JP-A-4-49483 and JP-A-4-285406. It is a method of transmitting charging energy by utilizing an electromagnetic field, an electromagnetic wave, and light, respectively, and does not require a cable connecting a charger and an electric vehicle.

【0004】[0004]

【発明が解決しようとする課題】上記ケーブル方式に
は、ケーブルを接続する作業があり、人の手を借りる必
要がある。将来に向かって人件費が更に高騰することを
考えると、ケーブル方式には充電料金の価格的な問題が
ある。
The above-mentioned cable system involves the work of connecting cables and requires the assistance of a person. Considering that the labor cost will rise further in the future, the cable system has a price problem of charging fee.

【0005】そしてまた、ケーブルレス方式には、確か
に接続する作業がなく人の手を借りる必要はなくなる
が、(1)電磁場、電磁波、光の3つに共通して充電エ
ネルギの単位時間当たりの供給量が少なく、充電に時間
が掛かるものであり、(2)人手を省いたり無くしたり
した場合に発生する無銭充電に対し考慮されていないも
のであるなど、問題点が残っている。
In addition, the cableless system does not require the work of connecting and there is no need for human assistance. (1) Common to the three fields of electromagnetic field, electromagnetic wave, and light, per unit time of charging energy However, there are still problems such as (2) the charging is time consuming, and (2) the moneyless charging that occurs when manpower is omitted or eliminated is not taken into consideration.

【0006】従って、本発明の第一の目的は、運転者が
人の手を借りないで、短時間に、便利に、バッテリを充
電することのできる電気自動車の充電システムおよび充
電方法を提供することにある。
Therefore, a first object of the present invention is to provide a charging system and a charging method for an electric vehicle that allows a driver to charge a battery in a short time and conveniently without the help of a driver. Especially.

【0007】そして、第二の目的は、無人充電スタンド
などにおける無銭充電を防止することのできる電気自動
車の充電システムを提供するものである。
A second object of the present invention is to provide a charging system for an electric vehicle, which can prevent an innocent charge in an unmanned charging stand or the like.

【0008】[0008]

【課題を解決するための手段】本発明の第一の目的は、
電気自動車の外部からエネルギを供給し該電気自動車の
バッテリにエネルギを蓄える電気自動車の充電システム
において、電気自動車の外部に配置されエネルギを供給
する給電器と、電気自動車に搭載されエネルギを授受し
バッテリにエネルギを与える受電器とを設け、給電器は
エネルギを指向性電磁波エネルギに変換し受電器に向か
って指向性電磁波エネルギを送出する送出用エネルギ形
態変換手段を備え、受電器は指向性電磁波エネルギを受
入し電気エネルギに変換する受入用エネルギ形態変換手
段を備えることによって達成される。
The first object of the present invention is to:
In a charging system for an electric vehicle that supplies energy from the outside of the electric vehicle and stores the energy in a battery of the electric vehicle, a power supply unit that is arranged outside the electric vehicle and supplies energy, and a battery that is mounted on the electric vehicle to transfer energy A power receiver for supplying energy to the power receiver is provided, and the power feeder is provided with a transmission energy form conversion means for converting the energy into directional electromagnetic wave energy and sending the directional electromagnetic wave energy toward the power receiver. It is achieved by providing a receiving energy form converting means for receiving and converting into energy.

【0009】さらに、電気自動車の外部に配置されエネ
ルギを供給する給電器と、電気自動車に搭載されエネル
ギを授受しバッテリにエネルギを与える受電器と、エネ
ルギの供給と授受のため給電器と受電器間を直接接続す
るマニピュレータを自動結合するマニピュレータ自動結
合手段と、バッテリの充電料金の支払い条件を確認する
支払条件確認手段と、支払い条件を確認した後に給電器
のエネルギの供給を開始させる供給開始手段とを設けて
も達成される。
Further, a power supply unit arranged outside the electric vehicle for supplying energy, a power receiver mounted on the electric vehicle for transferring energy to supply energy to the battery, and a power supply unit and power receiver for supplying and receiving energy. Manipulator automatic coupling means for automatically coupling manipulators that directly connect between each other, payment condition confirmation means for confirming the payment conditions of the charging charge of the battery, and supply starting means for starting the energy supply of the power feeder after confirming the payment conditions It can be achieved by providing and.

【0010】また、第一の目的を達成する電気自動車の
充電方法は、電気自動車の外部でエネルギを指向性電磁
波エネルギに変換し該指向性電磁波エネルギを電気自動
車に向けて送出し、電気自動車で指向性電磁波エネルギ
を受入し電気エネルギに変換し該電気エネルギでバッテ
リを充電するものである。
In addition, a charging method for an electric vehicle that achieves the first object is an electric vehicle that converts energy into directional electromagnetic wave energy outside the electric vehicle and sends the directional electromagnetic wave energy to the electric vehicle. It receives directional electromagnetic wave energy, converts it into electric energy, and charges the battery with the electric energy.

【0011】そして、第二の目的を達成する電気自動車
の充電システムは、電気自動車と、電気自動車に搭載さ
れたバッテリと、電気自動車の外部に配置され電気自動
車にエネルギを供給するエネルギ供給手段とを含みバッ
テリにエネルギを蓄える電気自動車の充電システムにお
いて、バッテリの充電料金の支払い条件を確認する支払
条件確認手段と、支払い条件を確認した後にエネルギ供
給手段のエネルギの供給を開始させる供給開始手段とを
設けたものである。
The charging system for an electric vehicle that achieves the second object includes an electric vehicle, a battery mounted in the electric vehicle, and an energy supply unit that is disposed outside the electric vehicle and supplies energy to the electric vehicle. In a charging system for an electric vehicle that stores energy in a battery including a battery, a payment condition confirmation means for confirming a payment condition of a charge charge of the battery, and a supply start means for starting the energy supply of the energy supply means after confirming the payment condition. Is provided.

【0012】[0012]

【作用】本発明は、指向性を有する電磁波を用いて、給
電器から電気自動車へエネルギを送出し、バッテリを充
電するものである。即ち、電磁波であるので充電の際に
給電器と電気自動車とをケーブルなどで接続する作業が
無く、指向性を有するので送出の際にエネルギの散逸が
無いものである。従って、バッテリの充電は、人の手を
借りずに短時間で行うことができる。
The present invention is to use an electromagnetic wave having directivity to send energy from a power feeder to an electric vehicle to charge a battery. That is, since it is an electromagnetic wave, there is no work of connecting the power feeder and the electric vehicle with a cable or the like at the time of charging, and since it has directivity, energy is not dissipated at the time of transmission. Therefore, the battery can be charged in a short time without human assistance.

【0013】また、無人充電スタンドに電気自動車が駐
車したら、ロボットの腕のようにマニュピレータが、無
線通信により自動制御され、給電器と電気自動車とを電
気的に結合する。給電器と電気自動車との電気的結合は
直接結合しているので、エネルギの単位時間当たりの供
給量は多いものである。従って、この場合も、バッテリ
の充電は、人の手を借りずに短時間で行うことができ
る。
When the electric vehicle is parked on the unmanned charging stand, the manipulator, like a robot arm, is automatically controlled by wireless communication to electrically connect the power feeder and the electric vehicle. Since the electric connection between the power feeder and the electric vehicle is directly connected, the amount of energy supplied per unit time is large. Therefore, also in this case, the battery can be charged in a short time without human assistance.

【0014】一方、無人充電スタンドなどに設置された
給電器においては、バッテリの充電料金の支払い条件を
確認した後に、給電器から電気自動車へのエネルギ送出
が開始される充電システムになっている。ここで言う支
払い条件とは、クレジットカードあるいは現金などによ
る支払いを指している。このようにすれば、無人充電ス
タンドであっても無銭充電を防止することができる。
On the other hand, in a power feeder installed in an unmanned charging stand or the like, a charging system in which energy transmission from the power feeder to the electric vehicle is started after confirming the payment condition of the charge charge of the battery. The term of payment referred to here means payment by credit card or cash. By doing so, even if the charging station is an unmanned charging stand, it is possible to prevent the charging without money.

【0015】[0015]

【実施例】以下本発明による実施例について図面を参照
し説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は、本発明による一実施例の電気自動
車の充電システムの概略を示す図である。
FIG. 1 is a diagram showing an outline of a charging system for an electric vehicle according to an embodiment of the present invention.

【0017】図において、エネルギ供給手段102からの
電力が、給電器103によって電磁波と言うエネルギ形態
に変換され電気自動車101に送出され、次に、受電器107
によって電磁波から電気エネルギにそのエネルギ形態が
再変換され、バッテリ109に充電されることが示されて
いる。この場合のエネルギ供給手段102は、電柱から引
き込まれた商用電源である。
In the figure, the electric power from the energy supply means 102 is converted into an energy form called electromagnetic wave by a power feeder 103 and sent to an electric vehicle 101, and then a power receiver 107.
It is shown that the energy form is reconverted from electromagnetic waves to electric energy and the battery 109 is charged. The energy supply means 102 in this case is a commercial power source drawn from the utility pole.

【0018】詳細について説明すると、給電器103に配
置された送出用エネルギ形態変換手段104は、エネルギ
供給手段102から得られた電力を、指向性を有する電磁
波に変換するものである。即ち、送出用エネルギ形態変
換手段104は、例えば送出用のパラボラアンテナと電磁
波発生回路などから構成されたものであり、エネルギを
散逸すること無く電気自動車101に届ける指向性電磁波
を作り出すものである。尚、カセグレンアンテナでも良
い。
More specifically, the transmission energy form conversion means 104 arranged in the power feeder 103 converts the electric power obtained from the energy supply means 102 into electromagnetic waves having directivity. That is, the transmission energy form conversion means 104 is composed of, for example, a transmission parabolic antenna and an electromagnetic wave generation circuit, and produces directional electromagnetic waves that can be delivered to the electric vehicle 101 without dissipating energy. A Cassegrain antenna may also be used.

【0019】送出用エネルギ形態変換手段104により作
り出された指向性電磁波は、給電口105を経て送出され
る。
The directional electromagnetic wave generated by the energy conversion means 104 for transmission is transmitted through the power supply port 105.

【0020】送出された指向性電磁波は、受電口106を
経て受入用エネルギ形態変換手段108に受入される。そ
して、受入された電磁波のエネルギは、受電器107に配
置された受入用エネルギ形態変換手段108により、電気
エネルギと言うエネルギ形態に再変換される。即ち、受
入用エネルギ形態変換手段108は、例えば受入用のパラ
ボラアンテナと電力変換回路などから構成されたもので
あり、エネルギを集中的に授受し直流電源に変換するも
のである。
The transmitted directional electromagnetic wave is received by the receiving energy form converting means 108 through the power receiving port 106. Then, the energy of the received electromagnetic waves is reconverted into an energy form called electric energy by the receiving energy form converting means 108 arranged in the power receiver 107. That is, the receiving energy form converting means 108 is composed of, for example, a receiving parabolic antenna and a power conversion circuit, and transfers energy in a concentrated manner to convert it into a DC power source.

【0021】この場合、給電口105および受電口106は、
送出用エネルギ形態変換手段104および受入用エネルギ
形態変換手段108の保護カバーであり、それらの設置位
置を外部に知らせるものである。従って、給電口105と
送出用エネルギ形態変換手段104および受電口106と受入
用エネルギ形態変換手段108は、近接し設置されてい
る。
In this case, the power supply port 105 and the power receiving port 106 are
It is a protective cover for the energy form conversion means for sending 104 and the energy form conversion means for reception 108, and informs the outside of their installation positions. Therefore, the power supply port 105 and the energy form conversion means for sending 104 and the power reception port 106 and the energy form conversion means for reception 108 are installed close to each other.

【0022】このように給電器103から受電器107へのエ
ネルギ供給に指向性電磁波が用いられることによって、
大きなエネルギ密度でエネルギが送受されるので、エネ
ルギの単位時間当たりの供給量は多いものである。従っ
て、効率よく短時間にバッテリ109が充電される。
In this way, the directional electromagnetic wave is used to supply energy from the power feeder 103 to the power receiver 107,
Since energy is transmitted and received with a large energy density, the amount of energy supplied per unit time is large. Therefore, the battery 109 is efficiently charged in a short time.

【0023】また、給電器103および受電器107にはレギ
ュレータ110が配置され、これは電圧や電流を利用可能
な量に制御するものである。
A regulator 110 is arranged in each of the power feeder 103 and the power receiver 107, and controls the voltage and the current to a usable amount.

【0024】尚、本実施例では、商用電源をエネルギ供
給手段102とする例を示したが、エネルギ供給手段とし
て、発電器が用いられても、また、太陽光、風力等を利
用したエネルギ供給器が用いられても良い。具体的には
携帯用ガソリン発電器にエネルギ形態変換手段104を取
り付け、簡易給電器として用いることができる。この構
成は、排気ガス規制の緩い地域において、走行距離を延
ばすのに効果がある。また、給電器103に太陽電池をと
りつける構成も、低緯度地域や、乾燥地域で効果的であ
る。以上の如き図1の充電システムにより、次のような
利点が生じる。
In this embodiment, the commercial power source is used as the energy supply means 102. However, even if a generator is used as the energy supply means, the energy supply using sunlight, wind power, etc. Vessels may be used. Specifically, the energy form conversion means 104 can be attached to a portable gasoline power generator and used as a simple power feeder. This configuration is effective in extending the traveling distance in an area where the exhaust gas regulations are loose. Further, the configuration in which the solar cell is attached to the power feeder 103 is also effective in the low latitude area and the dry area. The charging system of FIG. 1 as described above has the following advantages.

【0025】まず、充電に当たって直接電気自動車と充
電器とをケーブルで接続する必要がない。そのため、接
続時の感電の危険性がなくなる。さらに、雨中でも漏電
の心配が無く安心して充電が行える。また、ケーブルの
接続作業がないので、将来に向かっての省人化または無
人化の要望に応えることができる。
First, it is not necessary to directly connect the electric vehicle and the charger with a cable for charging. Therefore, there is no risk of electric shock during connection. In addition, there is no worry of electric leakage even in the rain, and charging can be performed with peace of mind. Further, since there is no cable connection work, it is possible to meet the demand for labor saving or unmanned operation in the future.

【0026】そして、本発明による指向性電磁波を用い
た遠隔充電法は、従来の電磁場、普通の電磁波および光
を用いた遠隔充電法に比べて、エネルギの散逸が無く充
電効率が非常によいという利点がある。従って、短時間
で、バッテリを充電することができる。これについて、
具体的に説明すると次の通りである。
Further, the remote charging method using directional electromagnetic waves according to the present invention does not dissipate energy and is very good in charging efficiency as compared with the conventional remote charging method using electromagnetic fields, ordinary electromagnetic waves and light. There are advantages. Therefore, the battery can be charged in a short time. about this,
The detailed description is as follows.

【0027】現在、電磁場を用いた遠隔充電法は電動歯
ブラシに採用され身近に見られるが、この方法は充電効
率が悪いのが欠点である。当発明者の計算によれば、充
電効率は 約22%である。指向性電磁波に比べれば、
1/4〜1/5倍 充電効率が劣る。また、電磁場充電
であっても専用コネクタを用意すれば、実用レベルの充
電効率に達するが、コネクタの接続作業が必要となり、
省人化または無人化の要望に応えることができなくな
る。
At present, a remote charging method using an electromagnetic field is used in electric toothbrushes and is found in everyday life. However, this method has a drawback that charging efficiency is poor. According to calculation by the present inventor, the charging efficiency is about 22%. Compared to directional electromagnetic waves,
1/4 to 1/5 times charge efficiency is poor. In addition, even if it is electromagnetic field charging, if you prepare a dedicated connector, you can reach the charging efficiency of a practical level, but connector connection work is required,
It becomes impossible to meet the demand for labor saving or unmanned operation.

【0028】また、太陽光を用いた遠隔充電法はソーラ
ーカーなどに見られる。しかし、この方法は、現状では
エネルギ密度が非常に小さく、現在のところ電気自動車
の充電用として実用化されるレベルにはない。具体的
に、1m2当たり約1kWのエネルギ密度である太陽光
を用いて、電気自動車に用いられているような約20kW
hの大きな容量のバッテリを充電する場合、仮に2m2
面積で太陽光を受け充電するとすれば、約10時間充電
に要し、実用的でないと言える。
A remote charging method using sunlight is found in solar cars and the like. However, this method has a very low energy density at present and is not at a level at which it can be put to practical use for charging electric vehicles at present. Specifically, using sunlight having an energy density of about 1 kW per 1 m 2 , about 20 kW as used in an electric vehicle.
In the case of charging a battery with a large capacity of h, if sunlight is charged in an area of 2 m 2 and it is charged, it takes about 10 hours to charge, which is not practical.

【0029】そしてまた、大出力のレーザ光発生装置が
考えられるが、大出力のレーザ光発生に長時間耐えられ
る発光物質が未だ研究の域にあって、実用化には程遠い
段階である。
Further, a high-power laser beam generator is conceivable, but a luminescent substance capable of withstanding high-power laser beam generation for a long time is still in the research area, and it is far from the stage of practical application.

【0030】さらにまた、普通の電磁波を用いた遠隔充
電法はあるが、この方法では広く電磁波が放射されるの
で、その放射立体角に比例するエネルギ密度はどうして
も小さなものとなる。どちらかと言えば、この電磁波を
用いた充電方法は、位置の定まらない移動体へのエネル
ギ供給に向いたものと考えられる。無人充電スタンドで
給電器から電気自動車に充電するような位置の定まった
移動体へのエネルギ供給の場合は、指向性電磁波による
充電方法が有効であると言える。
Further, there is a remote charging method using ordinary electromagnetic waves, but since electromagnetic waves are widely radiated by this method, the energy density proportional to the radiation solid angle is inevitably small. If anything, this charging method using electromagnetic waves is considered to be suitable for supplying energy to a moving body whose position is not fixed. It can be said that a charging method using directional electromagnetic waves is effective in supplying energy to a moving body whose position is fixed, such as charging an electric vehicle from a power feeder at an unmanned charging station.

【0031】具体的に、当発明者の計算によれば、普通
の電磁波による充電方法の充電効率は 約14%であ
る。指向性電磁波に比べれば、1/6〜1/7倍 充電
効率が劣る。
Specifically, according to the calculation by the inventor of the present invention, the charging efficiency of the ordinary charging method using electromagnetic waves is about 14%. The charging efficiency is 1/6 to 1/7 times lower than that of the directional electromagnetic wave.

【0032】以上のことから、遠隔充電を行う場合は、
外部電力を指向性電磁波と言うエネルギ形態に変換し充
電する方法が最も適していることが判る。この方法で
は、カセグレンアンテナなどを使って大出力の指向性電
磁波を出力することが可能である。そして、当発明者の
計算によれば、20kWhのバッテリを充電する場合、2
00V、60kWクラスの業務用電磁波発生装置が使える
無人充電スタンドで、約20分の充電時間である。因み
に、業務用の場合で比較すれば、指向性電磁波の20分
に対し、電磁場は80分〜1時間40分、普通の電磁波
は2時間〜3時間となる。
From the above, when performing remote charging,
It turns out that the method of converting external electric power into an energy form called directional electromagnetic wave and charging it is the most suitable. With this method, it is possible to output a high-power directional electromagnetic wave using a Cassegrain antenna or the like. Then, according to the calculation by the present inventor, when charging a battery of 20 kWh, 2
The charging time is about 20 minutes with an unmanned charging station that can use a commercial electromagnetic wave generator of 00V, 60kW class. By the way, when comparing in the case of business use, the electromagnetic field is 80 minutes to 1 hour and 40 minutes, and the ordinary electromagnetic wave is 2 hours to 3 hours, while the directional electromagnetic wave is 20 minutes.

【0033】また、100V、3kWクラスの家庭用電磁
波発生装置では、約7時間の充電時間である。家庭の場
合、夜間電力を使い充電すれば時間も料金も節約でき両
得である。尚、ここに用いる指向性電磁波は、107
1012Hzの範囲のものであり、光は、1012〜1016
Hzの範囲のものとして記述している。
Further, in a household electromagnetic wave generator of 100V, 3kW class, the charging time is about 7 hours. In the case of a home, charging at night will save both time and money, which is a great advantage. The directional electromagnetic wave used here is from 10 7 to
It is in the range of 10 12 Hz, and the light is 10 12 to 10 16.
It is described as being in the range of Hz.

【0034】図2、図3は、本発明による一実施例の送
出用アンテナと受入用アンテナの位置合わせ方法を示す
図である。
2 and 3 are views showing a method of aligning a transmitting antenna and a receiving antenna according to an embodiment of the present invention.

【0035】図2は、電気自動車の後部を示す図であ
る。電気自動車101の後部には、受入用エネルギ形態変
換手段108の一部である受入用アンテナ206とアンテナ位
置情報送信手段112が設けられている。アンテナ位置情
報送信手段112は、受入用アンテナ206の位置を給電器10
3に知らせるための信号光を発信するものである。
FIG. 2 is a view showing the rear part of the electric vehicle. At the rear of the electric vehicle 101, a receiving antenna 206, which is a part of the receiving energy form converting means 108, and an antenna position information transmitting means 112 are provided. The antenna position information transmitting means 112 determines the position of the receiving antenna 206 by the power feeder 10.
It emits a signal light to inform the 3rd party.

【0036】図3は、送出用アンテナと受入用アンテナ
の位置合わせ方法を示す図である。充電のために図2に
示されたような電気自動車101が、その後部を給電器103
の方に向け駐車している。給電器103には、送出用エネ
ルギ形態変換手段104の一部である送出用アンテナ205が
設置されている。
FIG. 3 is a diagram showing a method of aligning the transmitting antenna and the receiving antenna. For charging, an electric vehicle 101 as shown in FIG.
Is parked towards. The feeder 103 is provided with a sending antenna 205 which is a part of the sending energy form converting means 104.

【0037】アンテナ位置情報送信手段112から発せら
れた信号光は、給電器103の表面に取り付けられた受光
板113に照射される。給電器103は、受光板113に照射さ
れた該信号光に基づき受入用アンテナ206の位置を検出
する。
The signal light emitted from the antenna position information transmitting means 112 is applied to the light receiving plate 113 attached to the surface of the power feeder 103. The power feeder 103 detects the position of the receiving antenna 206 based on the signal light with which the light receiving plate 113 is irradiated.

【0038】また、受電口106あるいは電気自動車101の
位置を検出しても良い。即ち、受電口106または電気自
動車101の位置をもって、受入用アンテナ206の位置と代
替することも可能である。この場合、受入用アンテナ20
6と受電口106または電気自動車101との相対位置および
相対角度が定まっているものとする。
The position of the power receiving port 106 or the electric vehicle 101 may be detected. That is, the position of the power receiving port 106 or the electric vehicle 101 can be replaced with the position of the receiving antenna 206. In this case, the receiving antenna 20
It is assumed that the relative position and the relative angle between 6 and the power receiving port 106 or the electric vehicle 101 are fixed.

【0039】位置を検出し位置情報を得る方法は、例え
ば、次の通りである。受光板113は多数個の受光素子か
らなっている。そして、円形スポット状の信号光がその
受光板113に照射されている。ここにおいて送出用アン
テナ205と受入用アンテナ206との正対角度によって
真円状または楕円状となる円形スポット信号光の投影形
状の変化から、さらに、送出用アンテナ205と受入用
アンテナ206との距離による信号光の光度あるいは投影
面積の大きさの変化から、位置合わせの位置情報を得る
ものである。
The method of detecting the position and obtaining the position information is, for example, as follows. The light receiving plate 113 is composed of a large number of light receiving elements. Then, the circular spot-shaped signal light is applied to the light receiving plate 113. Here, from the change in the projected shape of the circular spot signal light that becomes a perfect circle or an ellipse depending on the facing angle between the transmitting antenna 205 and the receiving antenna 206, the distance between the transmitting antenna 205 and the receiving antenna 206 is further increased. The positional information for the alignment is obtained from the change in the intensity of the signal light or the size of the projected area due to

【0040】そして、該位置情報に応じて、送出用アン
テナ205の位置または角度が、受入用アンテナ206が確実
に送出エネルギを授受するように調節され、送出用アン
テナ205の向きと受入用アンテナ206の向きとが正対する
ように為されるものである。この時、給電器103は、上
記調節が容易になるように給電器自体が上下左右前後回
転自在に移動する台座に設置されている。尚、受入用ア
ンテナ206が自在に調節されても良い。アンテナ位置情
報の遣り取りは、電気自動車側または給電器側のどちら
側から行われても良い。
Then, according to the position information, the position or angle of the transmitting antenna 205 is adjusted so that the receiving antenna 206 surely transmits and receives the transmitted energy, and the direction of the transmitting antenna 205 and the receiving antenna 206 are adjusted. This is done so that the direction of is directly opposite. At this time, the power feeder 103 is installed on a pedestal on which the power feeder itself is rotatable in up, down, left, right, and back directions so as to facilitate the adjustment. The receiving antenna 206 may be freely adjusted. The antenna position information may be exchanged from either the electric vehicle side or the power feeder side.

【0041】図4、図5は、他の実施例の送出用アンテ
ナと受入用アンテナの位置合わせ方法を示す図である。
図4は、位置合わせ未完了時の状態を示す図である。図
5は、位置合わせ完了時の状態を示す図である。
4 and 5 are views showing a method of aligning the transmitting antenna and the receiving antenna of another embodiment.
FIG. 4 is a diagram showing a state when the alignment is not completed. FIG. 5 is a diagram showing a state when the alignment is completed.

【0042】説明を簡単にするため送出用アンテナ205
は、左右に一次元で移動する場合を示している。受電量
情報送信手段114が電気自動車101の後部に取り付けられ
ている。受電量情報送信手段114は、時間当たりの授受
エネルギの受電量情報を給電器103に送信するものであ
る。そして、送出用アンテナ205と受入用アンテナ206の
対向する位置が、受電量が最大となるように調節される
ものである。即ち、給電器103が、受電量情報送信手段1
14より発生する信号を常にモニタし、上下左右前後と角
度などを自在に調節し、送出用アンテナ205と受入用ア
ンテナ206とが正対するように位置合わせするものであ
る。
To simplify the description, the transmitting antenna 205
Shows the case of moving left and right in one dimension. The received power amount information transmitting means 114 is attached to the rear part of the electric vehicle 101. The power reception amount information transmission unit 114 transmits the power reception amount information of energy transferred / received per hour to the power feeder 103. Then, the positions where the transmitting antenna 205 and the receiving antenna 206 face each other are adjusted so that the amount of received power is maximized. That is, the power feeder 103 is the power reception amount information transmission means 1
The signal generated from 14 is constantly monitored, the vertical and horizontal directions and the angle are freely adjusted, and the transmitting antenna 205 and the receiving antenna 206 are aligned so as to face each other.

【0043】図6は、受電量情報送信手段を用いた場合
の位置合わせアルゴリズムを示す図である。位置合わせ
アルゴリズムは次のルールに従っているものである。
FIG. 6 is a diagram showing a positioning algorithm when the power reception amount information transmitting means is used. The registration algorithm follows the following rules.

【0044】1)もし移動後の受電量が移動前より多け
れば、前回と同じだけ移動せよ。 2)もし移動後の受電量が移動前より少なければ、前回
と逆向きに移動せよ。 3)もし、移動方向を3回連続して変えたら最適点とみ
なし移動を中止せよ。
1) If the amount of power received after the movement is larger than that before the movement, move the same as the previous time. 2) If the amount of power received after the move is less than that before the move, move in the opposite direction to the previous time. 3) If the movement direction is changed three times in a row, consider it as the optimum point and stop the movement.

【0045】このルールは、送出用アンテナ205の移動
が一次元だけでなく、二次元、三次元でも適用すること
ができる。また、位置方向だけでなく、角度方向を調節
する場合も、位置変数xが角度変数θに変わるだけで、
対応することができる。アルゴリズムそのものは、一般
に用いられ山登り法と呼称されているものであるので、
説明は割愛する。
This rule can be applied not only in one-dimensional movement of the transmitting antenna 205 but also in two-dimensional or three-dimensional movement. Further, when adjusting not only the position direction but also the angle direction, only the position variable x changes to the angle variable θ,
Can respond. Since the algorithm itself is commonly used and is called the hill climbing method,
I will omit the explanation.

【0046】また、簡単化のため移動量Δxは不変とし
ているが、移動を繰り返すごとに移動量Δxを変化させ
る構成も可能である。
Further, although the movement amount Δx is not changed for simplification, the movement amount Δx may be changed each time the movement is repeated.

【0047】尚、送出用アンテナと受入用アンテナの位
置合わせが旨く行かず、予想される充電作業の効率が所
定の値以下と判断される場合は、たとえ運転者が充電指
示を出しても給電器103が送電しない手段が設けられて
いる。これは、電力の無駄遣いを防止するものである。
If the sending antenna and the receiving antenna are not properly aligned and it is determined that the expected efficiency of the charging operation is less than a predetermined value, even if the driver issues a charging instruction, A means is provided to prevent the electric appliance 103 from transmitting power. This is to prevent waste of power.

【0048】図7は、バッテリ満充電時に充電を停止す
る充電システムを示す図である。バッテリ残存容量検出
手段115は、バッテリ109の残存容量を常に検出し、バッ
テリが満充電状態になった時、充電完了信号を出力す
る。
FIG. 7 is a diagram showing a charging system that stops charging when the battery is fully charged. The battery remaining capacity detecting means 115 always detects the remaining capacity of the battery 109 and outputs a charge completion signal when the battery is in a fully charged state.

【0049】バッテリ残存容量情報送信手段116は、バ
ッテリ残存容量検出手段115から充電完了信号を受け取
り、給電器103に対して充電完了信号を送信する。
The battery remaining capacity information transmitting means 116 receives the charging completion signal from the battery remaining capacity detecting means 115 and transmits the charging completion signal to the power feeder 103.

【0050】バッテリ残存容量情報送信手段116より発
信された充電完了信号は、バッテリ残存容量情報受信手
段117によって受信され、スイッチ118をオフさせる。以
上の構成により、バッテリの充電が完了したら自動的に
充電を終了することができ、例えば、運転者が充電中に
眠ってしまった場合における無駄な電力消費が避けられ
る。無人充電スタンドの場合、特に、有効である。
The charge completion signal transmitted from the battery remaining capacity information transmitting means 116 is received by the battery remaining capacity information receiving means 117, and the switch 118 is turned off. With the above configuration, the charging can be automatically terminated when the charging of the battery is completed, and, for example, useless power consumption when the driver falls asleep during charging can be avoided. This is particularly effective in the case of an unmanned charging stand.

【0051】図8は、給電器と電気自動車間の距離に応
じて充電を停止する充電システムを示す図である。給電
器と電気自動車間の距離が一定間隔以上離れると、測長
手段119がその間隔を判断しスイッチ118をオフさせ、自
動的に充電を停止するものである。具体的な測長手段11
9としては、光学式測長器や、超音波測長器などを用い
ることができる。
FIG. 8 is a diagram showing a charging system that stops charging depending on the distance between the power feeder and the electric vehicle. When the distance between the power feeder and the electric vehicle is a certain distance or more, the length measuring means 119 determines the distance and turns off the switch 118 to automatically stop the charging. Specific length measuring means 11
As the optical length measuring device 9, an optical length measuring device or an ultrasonic length measuring device can be used.

【0052】このような構成により、例えば、急に充電
中に発進したとしても、従来のようなケーブル破損、急
激なコネクタの分離によるケーブルの暴れ等が回避され
る。また、電気自動車が不在なのに充電し続ける無駄も
防止される。
With such a structure, even if the vehicle starts suddenly during charging, it is possible to avoid the conventional cable breakage, the sudden cable disconnection, and the like. In addition, the waste of continuing to charge the electric vehicle even when it is absent is prevented.

【0053】尚、図8の実施例では測長手段119を給電
器側に取り付けているが、電気自動車側に取り付けても
良い。ただし、この場合は、距離情報送信手段を電気自
動車側に、また、距離情報受信手段を給電器側に追加配
置する必要がある。
Although the length measuring means 119 is attached to the power feeder side in the embodiment of FIG. 8, it may be attached to the electric vehicle side. However, in this case, it is necessary to additionally arrange the distance information transmitting means on the electric vehicle side and the distance information receiving means on the power feeder side.

【0054】図9は、給電器と電気自動車間の障害物の
有無により充電を停止する充電システムを示す図であ
る。障害物検出手段を用いて充電を停止する一実施例を
示している。
FIG. 9 is a diagram showing a charging system for stopping charging depending on the presence or absence of an obstacle between the power feeder and the electric vehicle. An example is shown in which charging is stopped using an obstacle detection means.

【0055】電気自動車101に取り付けられた平行光線
発生手段120から信号光が発信される。その信号光は、
図3に示されたような受光板113に照射される。そし
て、信号光が障害物121で遮蔽され、受光板113に達しな
くなると充電を一時的に停止するものである。平行光線
発生手段120は、図2に示されたアンテナ位置情報送信
手段 112と兼用されても良いし、また、給電器側に取り
付けられても良い。また、信号光は、給電口を包絡する
ように円を描いて受電口の周囲から発信されても良い。
信号光は、電波または電気誘導でも良い。
Signal light is emitted from the parallel light beam generating means 120 attached to the electric vehicle 101. The signal light is
The light receiving plate 113 as shown in FIG. 3 is irradiated. Then, when the signal light is blocked by the obstacle 121 and does not reach the light receiving plate 113, the charging is temporarily stopped. The parallel light beam generating means 120 may be used also as the antenna position information transmitting means 112 shown in FIG. 2, or may be attached to the feeder side. Further, the signal light may be emitted from the periphery of the power receiving port in a circle so as to envelop the power feeding port.
The signal light may be radio waves or electric induction.

【0056】このように構成することで、充電中に、障
害物121が給電口と受電口の間に侵入した場合の充電効
率の低下や障害物121への危害が避けられる。
With this configuration, it is possible to avoid a decrease in charging efficiency and damage to the obstacle 121 when the obstacle 121 enters between the power supply port and the power receiving port during charging.

【0057】図10は、本発明による一実施例の給電器と
電気自動車間の相互通信を示す図である。この相互通信
は、バッテリを充電する場合に人手を省いたり無くした
りすることを実現するために考慮したものである。特
に、無人充電スタンドにおける無銭充電を防止するに有
効である。次のような相互通信が給電器と運転者間にお
いて無線方式で行われ、無人充電スタンドにおける充電
作業が実行される。
FIG. 10 is a diagram showing mutual communication between a power feeder and an electric vehicle according to an embodiment of the present invention. This mutual communication is considered in order to realize saving or eliminating manpower when charging the battery. In particular, it is effective in preventing the unpaid charging in the unmanned charging stand. The following mutual communication is performed wirelessly between the power feeder and the driver, and the charging work in the unmanned charging station is executed.

【0058】まず、運転者は無人充電スタンドに電気自
動車を停車させる。そして、運転者は充電要求の指示を
送信する。給電器はその指示を受信し、充電料金の支払
いがクレジットカードか現金かなどと言った支払い条件
についての確認信号を返信する。
First, the driver stops the electric vehicle on the unmanned charging stand. Then, the driver transmits a charging request instruction. The power feeder receives the instruction and sends back a confirmation signal regarding payment conditions such as whether the charge fee is paid by credit card or cash.

【0059】次に、運転者は振替口座番号などの運転者
情報を給電器へ送信し、充電料金のカード支払いなどの
信用取引が成立する。これで、充電料金の徴収が確保さ
れ、無銭充電は防止される。
Next, the driver transmits the driver information such as the transfer account number to the power feeder, and the credit transaction such as the card payment of the charging fee is completed. This secures the collection of the charging fee and prevents the non-paying charging.

【0060】次に、給電器は充電料金の支払い条件を確
認したので、送出用アンテナと受入用アンテナの位置合
わせなどの充電準備の遣り取りが行われる。位置合わせ
が終り準備が整えば、充電開始を運転者が指示し正式に
充電が開始される。
Next, since the power feeder has confirmed the payment condition of the charging fee, the preparation for charging such as the alignment of the transmitting antenna and the receiving antenna is carried out. When alignment is completed and preparations are complete, the driver instructs the start of charging and officially charging starts.

【0061】互いに遣り取りする情報として、次のもの
が考えられる。(1)充電要求信号 (2)料金支払確
認信号 (3)振替口座番号 (4)位置合わせ確認信
号 (5)充電開始信号 (6)充電量 (7)充電料
金 (8)充電中断信号 (9)充電終了信号(10)
料金確認信号などである。
The following information can be considered as the information exchanged with each other. (1) Charge request signal (2) Charge payment confirmation signal (3) Transfer account number (4) Positioning confirmation signal (5) Charge start signal (6) Charge amount (7) Charge fee (8) Charge interruption signal (9) ) Charge end signal (10)
For example, a charge confirmation signal.

【0062】充電量や充電料金情報は、給電器から運転
者に送られて来るもので、いくら充電されつつあるか、
またはされたかを運転者が知る事ができ便利である。
The charge amount and charge charge information are sent from the power feeder to the driver, and how much is being charged,
It is convenient because the driver can know whether or not it was done.

【0063】充電中断信号は、運転者が所定の料金で充
電を止めたい時、緊急の用事が生じ止めたい時などに使
われる。
The charge interruption signal is used when the driver wants to stop charging at a predetermined charge, or when he / she wants to stop an emergency.

【0064】充電終了信号は、運転者の最終確認に使わ
れる。例えば、運転者が未だ充電が終了していないと認
識しているのに給電器が充電完と返信して来る場合な
ど、運転者の勘違いや機械の故障などに対処できる。料
金確認信号は、運転者が最終的に銀行振替される料金を
確認するものである。
The charge end signal is used for final confirmation by the driver. For example, when the driver recognizes that the charging is not completed yet, but the power supply device replies that the charging is completed, it is possible to deal with the driver's misunderstanding and the machine failure. The charge confirmation signal is for the driver to confirm the charge finally transferred to the bank.

【0065】尚、現金支払いの場合、先に現金を給電器
に入れ、支払われた金額に応じて充電する方法が考えら
れる。この場合も、支払いの遣り取りを除き、カード支
払いと同じ方法で充電が行われる。また、上記の遣り取
り情報は、運転パネルに表示されたり、記憶されたりし
ても良いものである。
In the case of cash payment, a method in which cash is first put in a power feeder and charged according to the amount paid can be considered. Also in this case, charging is performed in the same manner as card payment, except for payment and payment. Further, the exchange information may be displayed on the operation panel or stored.

【0066】図11は、運転者情報の読み取り手段の一実
施例を示す図である。運転者情報記憶手段122は、運転
者のクレジットカードなどである。また、運転者情報読
み取り器123は、ハンドル124付近に取り付けられて、運
転者情報記憶手段122の情報を読み取るものである。読
み取られた運転者情報が、電気自動車から給電器へ送信
される。
FIG. 11 is a diagram showing an embodiment of the driver information reading means. The driver information storage means 122 is a driver's credit card or the like. Further, the driver information reader 123 is attached near the steering wheel 124 and reads the information of the driver information storage means 122. The read driver information is transmitted from the electric vehicle to the power feeder.

【0067】この構成により運転者情報の遣り取りが簡
便になり、異なったクレジットカードでの利用もでき、
一台の電気自動車を多人数で共用することができる。
With this configuration, the driver information can be exchanged easily, and it can be used with different credit cards.
One electric car can be shared by many people.

【0068】以上述べた構成により、充電作業は支払い
に至るまで完全に自動化でき、無人充電スタンドでも充
電することができる。そのため運転者は、給電器から充
電可能な距離に電気自動車を停車させ、自動充電を指示
するだけで済む。
With the configuration described above, the charging operation can be completely automated until the payment, and the unmanned charging station can also charge the battery. Therefore, the driver only needs to stop the electric vehicle within a chargeable distance from the power feeder and instruct automatic charging.

【0069】本発明による給電器は、駐車場に取り付け
られるのが非常に効果的である。なぜなら、駐車中に自
動的に充電を行うことができるからである。これによ
り、充電のためにわざわざ充電スタンドへ行く頻度を減
らすことができ、時間の節約になる。
The power supply according to the present invention is very effective when installed in a parking lot. This is because the battery can be automatically charged during parking. This reduces the frequency of going to the charging station for charging, which saves time.

【0070】図12は、電気自動車に給電器を取り付けた
一実施例の充電システムを示す図である。これにより、
他の電気自動車のバッテリが空になった場合に、電気エ
ネルギを分け与えることができる。
FIG. 12 is a diagram showing a charging system of an embodiment in which a power feeder is attached to an electric vehicle. This allows
When the battery of another electric vehicle is empty, the electric energy can be distributed.

【0071】ここで、給電器103と受電器107とは、どち
らも構造的に指向性アンテナとレギュレータとから構成
されているため、容易に兼用化することができる。この
ため、切替スイッチを含む簡単な回路を付加するだけ
で、給電器103と受電器107とを兼用した装置を、電気自
動車101に装備することができる。
Here, since both the power feeder 103 and the power receiver 107 are structurally composed of a directional antenna and a regulator, they can be easily combined. Therefore, by simply adding a simple circuit including a changeover switch, the electric vehicle 101 can be equipped with a device that also serves as the power feeder 103 and the power receiver 107.

【0072】図13は、本発明による一実施例の自走給電
車を用いた充電システムを示す図である。エネルギ供給
手段102および給電器103が、自走給電車125に搭載され
ている。エネルギ供給手段102は例えば大型バッテリ、
小型発電機などである。図は、例えば、ぬかるみ道130
に電気自動車101が入ってしまい、脱出できない状態に
なっている場合を示している。バッテリは放電し切って
しまい遠く離れた道路128から自走給電車125を用いて、
充電する場合である。このような場合において、指向性
電磁波による遠隔充電方法が最も活かされる。
FIG. 13 is a diagram showing a charging system using a self-propelled vehicle according to one embodiment of the present invention. The energy supply means 102 and the power feeder 103 are mounted on the self-propelled vehicle 125. The energy supply means 102 is, for example, a large battery,
For example, a small generator. The illustration shows, for example, a muddy road 130.
It shows a case where the electric vehicle 101 has entered and is in a state where it cannot escape. Using a self-propelled vehicle 125 from a distant road 128, the battery is completely discharged,
This is the case when charging. In such a case, the remote charging method using directional electromagnetic waves is most useful.

【0073】即ち、電磁場方式は、距離が離れ過ぎてエ
ネルギ送受が困難であり、光および普通の電磁波方式
は、充電に時間が掛かり過ぎて緊急時に役に立ち難い。
また、充電車が進入不可な場所や充電装置が持ち込めな
い場所などでは、ケーブル方式においてもエネルギ送受
が困難であり、指向性電磁波方式の良さが発揮される。
尚、このような場合、送出用アンテナの口径は、受入用
アンテナの口径よりも大きい方が、エネルギ送受の点か
ら望ましい。
That is, the electromagnetic field method is too far away to transmit and receive energy, and the optical and ordinary electromagnetic wave methods take too much time to charge and are not useful in an emergency.
Further, in a place where the charging vehicle cannot enter or a place where the charging device cannot be brought in, it is difficult to transmit and receive energy even in the cable system, and the goodness of the directional electromagnetic wave system is exhibited.
In such a case, it is desirable that the diameter of the transmitting antenna is larger than the diameter of the receiving antenna in terms of energy transmission and reception.

【0074】また、自走給電車125は、充電スタンドが
整備されていない地域での使用に効果的である。
Further, the self-propelled vehicle 125 is effective for use in an area where the charging station is not maintained.

【0075】図14は、自動車運搬手段に給電器を取り付
けた一実施例の充電システムを示す図である。自動車運
搬手段126に給電器103が装備されていて、電気自動車10
1の運搬中に充電を行うことができる例である。
FIG. 14 is a diagram showing a charging system of an embodiment in which a power feeder is attached to a vehicle carrier. If the vehicle carrier 126 is equipped with the power supply 103, the electric vehicle 10
This is an example in which charging can be performed during transportation of 1.

【0076】尚、この図では自動車運搬手段126は、貨
物運搬用自動車であるが、鉄道車両であっても、また、
航空機であっても一向に差し支えない。特に鉄道車両に
おいては、パンタグラフを介して容易に電力を利用でき
るので、本実施例の効果は大きい。
Although the vehicle carrying means 126 is a freight carrying vehicle in this figure, it may also be a rail car.
There is no problem even if it is an aircraft. Particularly in a railway vehicle, since electric power can be easily used via the pantograph, the effect of this embodiment is great.

【0077】図15は、床面に給電器を配設した一実施例
の充電システムを示す図である。この充電システムには
車重検知手段127が設けられている。電気自動車101が車
重検知手段127上に載ると、車重検知手段127はスイッチ
118をオンし、充電開始可能状態にする。
FIG. 15 is a diagram showing a charging system of an embodiment in which a power feeder is arranged on the floor surface. This charging system is provided with vehicle weight detection means 127. When the electric vehicle 101 is placed on the vehicle weight detecting means 127, the vehicle weight detecting means 127 is switched.
Turn on 118 to enable charging.

【0078】このような構成にすると、充電中、給電口
105と受電口106間に障害物が入り込むことが少ないとい
う利点がある。尚、この構成では、車重検知手段127は
分割配置され、複数の車重検知手段127が同時に車重を
検出しない限り充電が不可能な構成となっている。ま
た、スイッチ118の配置を変更して、いずれか一つの車
重検知手段127が車重を検出した時に充電可能状態とす
る構成としても差し支えない。また、車重検知手段127
の代わりに、近接センサ、金属感知センサ、または電気
自動車101から発する電磁ノイズを検出するセンサなど
を用いて、同様の構成を実現しても良い。
With such a structure, during charging, the power supply port
There is an advantage that obstacles are less likely to enter between 105 and the power receiving port 106. In this configuration, the vehicle weight detection means 127 is arranged in a divided manner, and charging is impossible unless a plurality of vehicle weight detection means 127 detect vehicle weights at the same time. Further, the arrangement of the switch 118 may be changed so that the charging state is set when any one of the vehicle weight detection means 127 detects the vehicle weight. Also, the vehicle weight detection means 127
Instead of the above, a similar configuration may be realized by using a proximity sensor, a metal detection sensor, a sensor that detects electromagnetic noise emitted from the electric vehicle 101, or the like.

【0079】図16は、道路に給電器を埋設した一実施例
の充電システムを示す図である。この充電システムは、
図15に示されたような床面の給電器103を道路128に埋設
し、車重検知手段127にて充電作動するものである。
FIG. 16 is a diagram showing a charging system of an embodiment in which a power feeder is buried in a road. This charging system is
The power feeder 103 on the floor as shown in FIG. 15 is buried in the road 128, and the vehicle weight detection means 127 performs charging operation.

【0080】このように道路に給電器を埋設することに
よって走行中の充電が可能となり、電気自動車の行動範
囲が飛躍的に増大する。そのためこの充電システムは、
エネルギ消費の大きい場所、たとえば高速道路などで用
いられる場合に適している。
By thus burying the power feeder in the road, charging can be performed while the vehicle is running, and the range of action of the electric vehicle is dramatically increased. Therefore, this charging system
It is suitable for use in places with high energy consumption, such as highways.

【0081】尚、自動車専用道路においては、道路に埋
設する以外に、騒音遮蔽壁やトンネル壁面、あるいはガ
ードレールに給電器103を設置することが考えられる。
そして、壁面に設置する場合は、道路に埋設する場合に
比べて設置費用が安く、補修も容易であると言う利点が
ある。
In addition, in the automobile-only road, it is conceivable to install the power feeder 103 on the noise shielding wall, the tunnel wall surface, or the guard rail, in addition to being buried in the road.
Further, when installed on a wall surface, there are advantages that the installation cost is lower and repair is easier than when installed on a road.

【0082】図17は、本発明による他の実施例の電気自
動車の充電システムの概略を示す図である。マニピュレ
ータを用いた自動充電システムの概略を示している。
FIG. 17 is a diagram schematically showing a charging system for an electric vehicle according to another embodiment of the present invention. The outline of the automatic charging system using a manipulator is shown.

【0083】将来に向かって無人充電スタンドによる電
気自動車の充電を考えた場合、無人充電スタンドに限定
するならば指向性電磁波方式以外にマニピュレータ方式
の自動充電システムが浮かび上がる。エネルギの供給と
授受の部分のみ異なるが、運転者と給電器間の無線によ
る遣り取り、給電口と受電口の位置合わせなどは、前述
の指向性電磁波による充電の場合と同様な思想である。
When considering the charging of an electric vehicle by an unmanned charging stand in the future, if limited to the unmanned charging stand, a manipulator type automatic charging system will emerge in addition to the directional electromagnetic wave system. Although only the supply and transfer of energy is different, the wireless communication between the driver and the power feeder, the alignment of the power supply port and the power reception port, and the like are the same ideas as in the case of charging by the directional electromagnetic wave described above.

【0084】その構成と動作は、次の通りである。給電
器103にマニピュレータ111が取り付けられている。マニ
ピュレータ111のエンドエフェクタ部に、コネクタを有
する給電口105が取り付けられている。一方の電気自動
車101に、コネクタを有する受電口106が取り付けられ、
そして、バッテリ109を充電する受電器107が搭載されて
いる。
The structure and operation are as follows. A manipulator 111 is attached to the power feeder 103. A power supply port 105 having a connector is attached to the end effector section of the manipulator 111. A power receiving port 106 having a connector is attached to one of the electric vehicles 101,
A power receiver 107 that charges the battery 109 is mounted.

【0085】充電開始時に、給電口105と受電口106とが
該コネクタを介し自動的に結合されるように、マニピュ
レータ111は自動制御される。
At the start of charging, the manipulator 111 is automatically controlled so that the power feeding port 105 and the power receiving port 106 are automatically coupled via the connector.

【0086】この自動制御は、前述の指向性電磁波によ
る充電の場合と同様に、電気自動車101と給電器103間の
遣り取りで行われるものである。即ち、受電口106の位
置情報が位置情報送信手段により給電器103へフィード
バックされることにより、給電口105と受電口106との位
置合わせ制御が行われるものである。
This automatic control is carried out by the exchange between the electric vehicle 101 and the power feeder 103, as in the case of charging by the directional electromagnetic wave described above. That is, the position information of the power receiving port 106 is fed back to the power feeder 103 by the position information transmitting means, so that the position adjustment control of the power feeding port 105 and the power receiving port 106 is performed.

【0087】本マニピュレータによる充電システムにお
いても、バッテリ残存容量情報送信手段から満充電時の
充電完了信号を受け取り、スイッチがオフするようにす
ることはできる。そして、充電が終了した時に、両コネ
クタの機械的接続を自動的に解除するようにマニピュレ
ータ111は制御される。
Also in the charging system using the present manipulator, the switch can be turned off by receiving the charge completion signal at the time of full charge from the battery remaining capacity information transmitting means. Then, when charging is completed, the manipulator 111 is controlled so as to automatically release the mechanical connection between both connectors.

【0088】尚、マニピュレータ方式の充電の場合も、
充電エネルギの単位時間当たりの供給量は多く、充電を
短時間に行うことができる。このようにして、人の手を
借りないで、エネルギ供給手段102からの電力が、給電
器103と受電器107を介してバッテリ109に充電される。
In the case of manipulator type charging,
Since the amount of charging energy supplied per unit time is large, charging can be performed in a short time. In this way, the electric power from the energy supply unit 102 is charged into the battery 109 via the power feeder 103 and the power receiver 107 without the help of a person.

【0089】[0089]

【発明の効果】本発明によれば、指向性電磁波方式また
はマニピュレータ方式の充電システムおよび充電方法を
採用し運転者の無線指示により充電が自動的に行え、充
電エネルギの単位時間当たりの供給量も多いので、人手
を省いたり無くしたりすることができ、充電を短時間に
行うことができる。さらに、無人充電スタンドで充電す
る場合の無銭充電が防止されるという効果がある。
According to the present invention, the charging system and the charging method of the directional electromagnetic wave system or the manipulator system are adopted, the charging can be automatically performed by the wireless instruction of the driver, and the supply amount of the charging energy per unit time is also increased. Since there are many, it is possible to omit or eliminate manpower, and charging can be performed in a short time. Further, there is an effect that moneyless charging when charging at an unmanned charging stand is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例の電気自動車の充電シス
テムの概略を示す図である。
FIG. 1 is a diagram schematically showing a charging system for an electric vehicle according to an embodiment of the present invention.

【図2】本発明による一実施例の電気自動車の後部を示
す図である。
FIG. 2 is a diagram illustrating a rear portion of an electric vehicle according to an exemplary embodiment of the present invention.

【図3】本発明による一実施例の送出用アンテナと受入
用アンテナの位置合わせ方法を示す図である。
FIG. 3 is a diagram showing a method of aligning a transmitting antenna and a receiving antenna according to an embodiment of the present invention.

【図4】位置合わせ未完了時の状態を示す図である。FIG. 4 is a diagram showing a state when alignment is not completed.

【図5】位置合わせ完了時の状態を示す図である。FIG. 5 is a diagram showing a state when alignment is completed.

【図6】受電量情報送信手段を用いた場合の位置合わせ
アルゴリズムを示す図である。構成図。
FIG. 6 is a diagram showing a positioning algorithm when a power reception amount information transmitting means is used. Diagram.

【図7】バッテリ満充電時に充電を停止する充電システ
ムを示す図である。
FIG. 7 is a diagram showing a charging system that stops charging when the battery is fully charged.

【図8】給電器と電気自動車間の距離に応じて充電を停
止する充電システムを示す図である。
FIG. 8 is a diagram showing a charging system that stops charging depending on a distance between a power feeder and an electric vehicle.

【図9】給電器と電気自動車間の障害物の有無により充
電を停止する充電システムを示す図である。
FIG. 9 is a diagram showing a charging system that stops charging depending on the presence or absence of an obstacle between the power feeder and the electric vehicle.

【図10】本発明による一実施例の給電器と電気自動車間
の相互通信を示す図である。
FIG. 10 is a diagram showing mutual communication between a power feeder and an electric vehicle according to an embodiment of the present invention.

【図11】運転者情報の読み取り手段の一実施例を示す図
である。
FIG. 11 is a diagram illustrating an example of a driver information reading unit.

【図12】電気自動車に給電器を取り付けた一実施例の充
電システムを示す図である。
FIG. 12 is a diagram showing a charging system of an embodiment in which a power feeder is attached to an electric vehicle.

【図13】本発明による一実施例の自走給電車を用いた充
電システムを示す図である。
FIG. 13 is a diagram showing a charging system using a self-propelled vehicle according to an embodiment of the present invention.

【図14】自動車運搬手段に給電器を取り付けた本発明に
よる一実施例の充電システムを示す図である。
FIG. 14 is a diagram showing a charging system of an embodiment according to the present invention in which a power feeder is attached to a vehicle carrier.

【図15】床面に給電器を配設した一実施例の充電システ
ムを示す図である。
FIG. 15 is a diagram showing a charging system of an embodiment in which a power feeder is arranged on the floor surface.

【図16】道路に給電器を埋設した一実施例の充電システ
ムを示す図である。
FIG. 16 is a diagram showing a charging system of an embodiment in which a power feeder is embedded in a road.

【図17】本発明による他の実施例の電気自動車の充電シ
ステムの概略を示す図である。
FIG. 17 is a diagram showing an outline of a charging system for an electric vehicle according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101…電気自動車、102…エネルギ供給手段、103…給電
器、104…送出用エネルギ形態変換手段、105…給電口、
106…受電口、107…受電器、108…受入用エネルギ形態
変換手段、109…バッテリ、110…レギュレータ、111…
マニピュレータ。
101 ... Electric vehicle, 102 ... Energy supply means, 103 ... Power supply device, 104 ... Energy form conversion means for sending, 105 ... Power supply port,
106 ... Power receiving port, 107 ... Power receiving device, 108 ... Receiving energy form conversion means, 109 ... Battery, 110 ... Regulator, 111 ...
manipulator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田島 文男 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 高本 祐介 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 金子 悟 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Fumio Tajima 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Yusuke Takamoto 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 in Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Satoru Kaneko 7-11, Omika-cho, Hitachi-shi, Ibaraki Inside Hitachi Research Laboratory, Hitachi, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】電気自動車の外部からエネルギを供給し前
記電気自動車のバッテリに前記エネルギを蓄える電気自
動車の充電システムにおいて、 前記電気自動車の外部に配置され前記エネルギを供給す
る給電器と、前記電気自動車に搭載され前記エネルギを
授受し前記バッテリに前記エネルギを与える受電器とを
設け、前記給電器は前記エネルギを指向性電磁波エネル
ギに変換し前記受電器に向かって前記指向性電磁波エネ
ルギを送出する送出用エネルギ形態変換手段を備え、前
記受電器は前記指向性電磁波エネルギを受入し電気エネ
ルギに変換する受入用エネルギ形態変換手段を備えたこ
とを特徴とする電気自動車の充電システム。
1. A charging system for an electric vehicle, which supplies energy from the outside of an electric vehicle and stores the energy in a battery of the electric vehicle, comprising: a power supply unit arranged outside the electric vehicle to supply the energy; An electric power receiver mounted on a vehicle for transmitting and receiving the energy to give the energy to the battery is provided, and the electric power feeder converts the energy into directional electromagnetic wave energy and sends the directional electromagnetic wave energy toward the electric power receiver. A charging system for an electric vehicle, comprising: an energy form conversion means for transmission; and the power receiver comprising an energy form conversion means for reception for receiving the directional electromagnetic wave energy and converting it into electric energy.
【請求項2】請求項1において、前記給電器は前記電気
自動車に向けて前記指向性電磁波エネルギを送出する送
出用アンテナを備え、前記受電器は前記送出用アンテナ
に対向して前記指向性電磁波エネルギを受入する受入用
アンテナを備えるものであって、前記送出用アンテナま
たは前記受入用アンテナのうち少なくとも一方の位置情
報を送信するアンテナ位置情報送信手段と、前記位置情
報に基づき前記送出用アンテナの向きと前記受入用アン
テナの向きとを正対させるアンテナ位置調節手段とを設
けたことを特徴とする電気自動車の充電システム。
2. The power feeder according to claim 1, further comprising: a sending antenna for sending the directional electromagnetic wave energy toward the electric vehicle, and the power receiver facing the sending antenna, the directional electromagnetic wave. An antenna position information transmitting means for transmitting position information of at least one of the transmitting antenna and the receiving antenna, and an antenna for receiving the energy based on the position information. A charging system for an electric vehicle, comprising: an antenna position adjusting means for directly aligning the orientation of the receiving antenna with the orientation of the receiving antenna.
【請求項3】請求項1において、前記給電器は前記電気
自動車に向けて前記指向性電磁波エネルギを送出する送
出用アンテナを備え、前記受電器は前記送出用アンテナ
に対向して前記指向性電磁波エネルギを受入する受入用
アンテナを備えるものであって、前記指向性電磁波エネ
ルギの単位時間当たりの受電量情報を検出する受電量情
報検出手段と、前記受電量情報に基づき前記送出用アン
テナの向きと前記受入用アンテナの向きとを正対させる
アンテナ位置調節手段とを設けたことを特徴とする電気
自動車の充電システム。
3. The power feeder according to claim 1, further comprising: a sending antenna for sending the directional electromagnetic wave energy toward the electric vehicle, and the power receiver facing the sending antenna, the directional electromagnetic wave. A receiving antenna for receiving energy, the received power amount information detecting means for detecting received power amount information of the directional electromagnetic wave energy per unit time, and the direction of the sending antenna based on the received power amount information. A charging system for an electric vehicle, comprising: an antenna position adjusting means for directly facing the direction of the receiving antenna.
【請求項4】請求項1において、前記給電器または前記
電気自動車のうち少なくとも一方に前記給電器と前記電
気自動車間の距離を測定する測長手段を設け、前記距離
が所定値を越えた場合に前記指向性電磁波エネルギの送
出を停止させる送出停止手段を設けたことを特徴とする
電気自動車の充電システム。
4. The method according to claim 1, wherein at least one of the power feeder and the electric vehicle is provided with length measuring means for measuring a distance between the power feeder and the electric vehicle, and the distance exceeds a predetermined value. A charging system for an electric vehicle, characterized in that a delivery stopping means for stopping the delivery of the directional electromagnetic wave energy is provided in the.
【請求項5】請求項1において、前記給電器または前記
電気自動車のうち少なくとも一方に前記給電器と前記電
気自動車間に存在する障害物を検出する障害物検出手段
を設け、前記障害物検出手段にて前記障害物が検出され
た場合に前記指向性電磁波エネルギの送出を停止させる
送出停止手段を設けたことを特徴とする電気自動車の充
電システム。
5. The obstacle detecting means according to claim 1, wherein at least one of the power feeder and the electric vehicle is provided with obstacle detecting means for detecting an obstacle existing between the power feeder and the electric vehicle. 2. A charging system for an electric vehicle, comprising: a delivery stopping means for stopping the delivery of the directional electromagnetic wave energy when the obstacle is detected.
【請求項6】請求項1において、前記バッテリの充電料
金の支払い条件を確認する支払条件確認手段と、前記支
払い条件を確認した後に前記指向性電磁波エネルギの送
出を開始させる送出開始手段とを、設けたことを特徴と
する電気自動車の充電システム。
6. The payment condition confirmation means for confirming a payment condition of a charge charge of the battery according to claim 1, and a transmission start means for starting transmission of the directional electromagnetic energy after confirming the payment condition. An electric vehicle charging system characterized by being provided.
【請求項7】電気自動車の外部からエネルギを供給し前
記電気自動車のバッテリに前記エネルギを蓄える電気自
動車の充電システムにおいて、 前記電気自動車の外部に配置され前記エネルギを供給す
る給電器と、前記電気自動車に搭載され前記エネルギを
授受し前記バッテリに前記エネルギを与える受電器と、
前記エネルギの供給と授受のため前記給電器と前記受電
器間を直接接続するマニピュレータを自動結合するマニ
ピュレータ自動結合手段と、前記バッテリの充電料金の
支払い条件を確認する支払条件確認手段と、前記支払い
条件を確認した後に前記給電器の前記エネルギの供給を
開始させる供給開始手段とを設けたことを特徴とする電
気自動車の充電システム。
7. A charging system for an electric vehicle, which supplies energy from the outside of the electric vehicle and stores the energy in a battery of the electric vehicle, comprising: a power supply unit arranged outside the electric vehicle to supply the energy; A power receiver that is mounted on a vehicle and transfers the energy to give the energy to the battery;
Manipulator automatic coupling means for automatically coupling the manipulator directly connecting the power feeder and the power receiver for supplying and receiving the energy, payment condition confirmation means for confirming the payment condition of the charge charge of the battery, and the payment A charging system for an electric vehicle, comprising: a supply starting means for starting the supply of the energy of the power feeder after confirming a condition.
【請求項8】請求項1または請求項7において、前記給
電器から前記電気自動車へ前記バッテリの充電量情報ま
たは充電料金情報のうち少なくとも1つの情報を伝達す
る情報伝達手段と、前記情報を表示する情報表示手段と
を設けたことを特徴とする電気自動車の充電システム。
8. The information transmission means according to claim 1 or 7, for transmitting at least one of the charge amount information and the charge fee information of the battery from the power feeder to the electric vehicle, and the information is displayed. A charging system for an electric vehicle, comprising:
【請求項9】請求項1または請求項7において、前記エ
ネルギの供給の停止を指示する停止指示手段と、前記指
示に従って前記エネルギの供給を停止させる供給停止手
段とを設けたことを特徴とする電気自動車の充電システ
ム。
9. The method according to claim 1 or 7, further comprising stop instruction means for instructing to stop the supply of the energy, and supply stop means for stopping the supply of the energy in accordance with the instruction. Electric vehicle charging system.
【請求項10】電気自動車の外部からエネルギを供給し
前記電気自動車のバッテリに前記エネルギを蓄える電気
自動車の充電方法において、 前記電気自動車の外部で前記エネルギを指向性電磁波エ
ネルギに変換し前記指向性電磁波エネルギを前記電気自
動車に向けて送出し、前記電気自動車で前記指向性電磁
波エネルギを受入し電気エネルギに変換し該電気エネル
ギで前記バッテリを充電することを特徴とする電気自動
車の充電方法。
10. A charging method for an electric vehicle, which supplies energy from outside the electric vehicle and stores the energy in a battery of the electric vehicle, wherein the energy is converted to directional electromagnetic wave energy outside the electric vehicle. A method of charging an electric vehicle, comprising: transmitting electromagnetic wave energy to the electric vehicle, receiving the directional electromagnetic wave energy in the electric vehicle, converting the directional electromagnetic wave energy into electric energy, and charging the battery with the electric energy.
【請求項11】電気自動車と、前記電気自動車に搭載さ
れたバッテリと、前記電気自動車の外部に配置され前記
電気自動車にエネルギを供給するエネルギ供給手段とを
含み、前記バッテリに前記エネルギを蓄える電気自動車
の充電システムにおいて、 前記バッテリの充電料金の支払い条件を確認する支払条
件確認手段と、前記支払い条件を確認した後に前記エネ
ルギ供給手段の前記エネルギの供給を開始させる供給開
始手段とを設けたことを特徴とする電気自動車の充電シ
ステム。
11. Electricity that includes an electric vehicle, a battery mounted on the electric vehicle, and energy supply means that is disposed outside the electric vehicle and supplies energy to the electric vehicle, and that stores the energy in the battery. In an automobile charging system, payment condition confirmation means for confirming payment conditions for the charge charge of the battery, and supply start means for starting supply of the energy of the energy supply means after confirming the payment conditions are provided. Charging system for electric vehicles.
JP6024103A 1994-02-22 1994-02-22 Method and system for charging electric automobile Pending JPH07236204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6024103A JPH07236204A (en) 1994-02-22 1994-02-22 Method and system for charging electric automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6024103A JPH07236204A (en) 1994-02-22 1994-02-22 Method and system for charging electric automobile

Publications (1)

Publication Number Publication Date
JPH07236204A true JPH07236204A (en) 1995-09-05

Family

ID=12129025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6024103A Pending JPH07236204A (en) 1994-02-22 1994-02-22 Method and system for charging electric automobile

Country Status (1)

Country Link
JP (1) JPH07236204A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267578A (en) * 2006-03-30 2007-10-11 Mitsubishi Heavy Ind Ltd Obstacle detector, energy supply device and system
JP2008253131A (en) * 1999-12-10 2008-10-16 Toyota Motor Corp Energy supply apparatus
JP2009071966A (en) * 2007-09-12 2009-04-02 Nissan Motor Co Ltd Feeding apparatus for vehicle
JP2009143714A (en) * 2007-12-18 2009-07-02 Daifuku Co Ltd Article storage facility
JP2010530210A (en) * 2007-06-14 2010-09-02 ゼイン ハテム Wireless power transmission system
JP2010246368A (en) * 2009-04-03 2010-10-28 General Electric Co <Ge> Device, method, and system for transporting electrical energy
WO2011065792A2 (en) * 2009-11-30 2011-06-03 Korea Advanced Institute Of Science And Technology Billing system and method for electric vehicles
JP2011166972A (en) * 2010-02-10 2011-08-25 Enegate:Kk Composite power supplying system
JP2011217460A (en) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd Charge supporter for vehicles, method of supporting charge to vehicles, and computer program
JP2011244682A (en) * 2010-05-13 2011-12-01 Ls Industrial Systems Co Ltd System and method for charging and discharging electric vehicle
JP2012019689A (en) * 2006-03-15 2012-01-26 Semiconductor Energy Lab Co Ltd Power receiving device
JP2012030049A (en) * 2010-06-30 2012-02-16 Fujifilm Corp Radiation image photographing system and power supply method of radiographic apparatus
JP2012070565A (en) * 2010-09-24 2012-04-05 Fujitsu Ltd Electric vehicle, charging station and program for these
US8159364B2 (en) 2007-06-14 2012-04-17 Omnilectric, Inc. Wireless power transmission system
JP2012161145A (en) * 2011-01-31 2012-08-23 Fujitsu Ten Ltd Wireless power transmission system, power reception device, power transmission device, and wireless power transmission supporting method
WO2012157320A1 (en) * 2011-05-17 2012-11-22 日産自動車株式会社 Mounting structure for non-contact charger
JP2012244844A (en) * 2011-05-23 2012-12-10 Denso Corp Power transmitting and receiving system for vehicle
JP2012533281A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Equipment for inductive transmission of electrical energy
JP2013013274A (en) * 2011-06-30 2013-01-17 Yazaki Corp Power supply system
JP2013033403A (en) * 2011-08-02 2013-02-14 Denso Corp Power charge/discharge system
JP2013219972A (en) * 2012-04-11 2013-10-24 Ihi Corp Underwater power supply system
JP2014075972A (en) * 2009-02-13 2014-04-24 Qualcomm Inc Wireless power from renewable energy
JP2014140303A (en) * 2009-12-04 2014-07-31 Sony Corp Power transmission device and power reception device
US8929510B2 (en) 2010-06-30 2015-01-06 Fujifilm Corporation Radiographic image capturing apparatus and radiographic image capturing system
US9022293B2 (en) 2006-08-31 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and power receiving device
JP2016015791A (en) * 2014-06-30 2016-01-28 古河電気工業株式会社 Power transmission system
CN105781172A (en) * 2016-04-15 2016-07-20 东莞市伟创东洋自动化设备有限公司 Planar mobile stereoscopic mechanical garage with automobile charging function and charging method implemented by planar mobile stereoscopic mechanical garage
CN106059115A (en) * 2015-04-02 2016-10-26 松下知识产权经营株式会社 Wireless power supply method
US9566870B2 (en) 2011-01-14 2017-02-14 Mitsubishi Heavy Industries, Ltd. Charging apparatus for electric vehicle
US9620996B2 (en) 2015-04-10 2017-04-11 Ossia Inc. Wireless charging with multiple power receiving facilities on a wireless device
US9632554B2 (en) 2015-04-10 2017-04-25 Ossia Inc. Calculating power consumption in wireless power delivery systems
US9711998B2 (en) 2013-03-27 2017-07-18 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
JP2017208885A (en) * 2016-05-16 2017-11-24 キヤノン株式会社 Power supply device, control method and program
CN107499166A (en) * 2017-08-31 2017-12-22 上海蔚来汽车有限公司 Charging and conversion electric facility and charge port guiding charging and conversion electric method and device
CN107585044A (en) * 2017-09-06 2018-01-16 浙江大学 A kind of passive passive type alignment device of electric automobile wireless charging
JP2018093562A (en) * 2016-11-30 2018-06-14 株式会社Ihi Stop position determination device
WO2018145992A1 (en) * 2017-02-10 2018-08-16 Robert Bosch Gmbh Inductive battery-charging device
WO2018147535A1 (en) * 2017-02-07 2018-08-16 안유진 Wind power generation system using jet stream
EP2431214B1 (en) * 2009-05-14 2019-02-27 Toyota Jidosha Kabushiki Kaisha Vehicle charging unit
CN109849699A (en) * 2019-03-11 2019-06-07 武汉楚象能源科技有限公司 A kind of module type wireless charging system and device
US10447092B2 (en) 2014-07-31 2019-10-15 Ossia Inc. Techniques for determining distance between radiating objects in multipath wireless power delivery environments
WO2020004069A1 (en) * 2018-06-27 2020-01-02 本田技研工業株式会社 Electric vehicle
JP2020131952A (en) * 2019-02-20 2020-08-31 三菱ロジスネクスト株式会社 Power supply system for unmanned flying body
US11011944B2 (en) 2017-02-14 2021-05-18 Ihi Corporation Foreign matter detection device for non-contact power supply system
US11264841B2 (en) 2007-06-14 2022-03-01 Ossia Inc. Wireless power transmission system
CN114655040A (en) * 2022-03-04 2022-06-24 浙江吉利控股集团有限公司 Automatic charging method, automobile and parking lot

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253131A (en) * 1999-12-10 2008-10-16 Toyota Motor Corp Energy supply apparatus
JP2012019689A (en) * 2006-03-15 2012-01-26 Semiconductor Energy Lab Co Ltd Power receiving device
JP2007267578A (en) * 2006-03-30 2007-10-11 Mitsubishi Heavy Ind Ltd Obstacle detector, energy supply device and system
US9022293B2 (en) 2006-08-31 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and power receiving device
US9531214B2 (en) 2006-08-31 2016-12-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and power receiving device
US10256669B2 (en) 2006-08-31 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and power receiving device
JP2016220543A (en) * 2006-08-31 2016-12-22 株式会社半導体エネルギー研究所 Power supply system
US10897161B2 (en) 2007-06-14 2021-01-19 Ossia Inc. Wireless power transmission system
US9142973B2 (en) 2007-06-14 2015-09-22 Ossia, Inc. Wireless power transmission system
US11264841B2 (en) 2007-06-14 2022-03-01 Ossia Inc. Wireless power transmission system
US11515734B2 (en) 2007-06-14 2022-11-29 Ossia Inc. Wireless power transmission system
US10008887B2 (en) 2007-06-14 2018-06-26 Ossia, Inc. Wireless power transmission system
US10396602B2 (en) 2007-06-14 2019-08-27 Ossia Inc. Wireless power transmission system
US10566846B2 (en) 2007-06-14 2020-02-18 Ossia Inc. Wireless power transmission system
US8159364B2 (en) 2007-06-14 2012-04-17 Omnilectric, Inc. Wireless power transmission system
US8558661B2 (en) 2007-06-14 2013-10-15 Omnilectric, Inc. Wireless power transmission system
US8854176B2 (en) 2007-06-14 2014-10-07 Ossia, Inc. Wireless power transmission system
JP2010530210A (en) * 2007-06-14 2010-09-02 ゼイン ハテム Wireless power transmission system
US8446248B2 (en) 2007-06-14 2013-05-21 Omnilectric, Inc. Wireless power transmission system
US8410953B2 (en) 2007-06-14 2013-04-02 Omnilectric, Inc. Wireless power transmission system
US11735961B2 (en) 2007-06-14 2023-08-22 Ossia Inc. Wireless power transmission system
JP2009071966A (en) * 2007-09-12 2009-04-02 Nissan Motor Co Ltd Feeding apparatus for vehicle
JP2009143714A (en) * 2007-12-18 2009-07-02 Daifuku Co Ltd Article storage facility
JP2015181340A (en) * 2009-02-13 2015-10-15 クアルコム,インコーポレイテッド wireless power from renewable energy
US8963486B2 (en) 2009-02-13 2015-02-24 Qualcomm Incorporated Wireless power from renewable energy
JP2014075972A (en) * 2009-02-13 2014-04-24 Qualcomm Inc Wireless power from renewable energy
JP2010246368A (en) * 2009-04-03 2010-10-28 General Electric Co <Ge> Device, method, and system for transporting electrical energy
EP2431214B1 (en) * 2009-05-14 2019-02-27 Toyota Jidosha Kabushiki Kaisha Vehicle charging unit
US9024483B2 (en) 2009-07-14 2015-05-05 Conductix-Wampfler Gmbh Device for inductive transmission of electrical energy
JP2012533281A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Equipment for inductive transmission of electrical energy
WO2011065792A2 (en) * 2009-11-30 2011-06-03 Korea Advanced Institute Of Science And Technology Billing system and method for electric vehicles
WO2011065792A3 (en) * 2009-11-30 2011-11-10 Korea Advanced Institute Of Science And Technology Billing system and method for electric vehicles
JP2014140303A (en) * 2009-12-04 2014-07-31 Sony Corp Power transmission device and power reception device
JP2011166972A (en) * 2010-02-10 2011-08-25 Enegate:Kk Composite power supplying system
JP2011217460A (en) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd Charge supporter for vehicles, method of supporting charge to vehicles, and computer program
JP2011244682A (en) * 2010-05-13 2011-12-01 Ls Industrial Systems Co Ltd System and method for charging and discharging electric vehicle
US8831786B2 (en) 2010-05-13 2014-09-09 Lsis Co., Ltd. System, apparatus and method for controlling charge and discharge of electric vehicle
JP2012030049A (en) * 2010-06-30 2012-02-16 Fujifilm Corp Radiation image photographing system and power supply method of radiographic apparatus
US8929510B2 (en) 2010-06-30 2015-01-06 Fujifilm Corporation Radiographic image capturing apparatus and radiographic image capturing system
JP2012070565A (en) * 2010-09-24 2012-04-05 Fujitsu Ltd Electric vehicle, charging station and program for these
US9566870B2 (en) 2011-01-14 2017-02-14 Mitsubishi Heavy Industries, Ltd. Charging apparatus for electric vehicle
JP2012161145A (en) * 2011-01-31 2012-08-23 Fujitsu Ten Ltd Wireless power transmission system, power reception device, power transmission device, and wireless power transmission supporting method
WO2012157320A1 (en) * 2011-05-17 2012-11-22 日産自動車株式会社 Mounting structure for non-contact charger
JP2012244844A (en) * 2011-05-23 2012-12-10 Denso Corp Power transmitting and receiving system for vehicle
US8772960B2 (en) 2011-05-23 2014-07-08 Denso Corporation Power transmitting and receiving system for vehicle
JP2013013274A (en) * 2011-06-30 2013-01-17 Yazaki Corp Power supply system
JP2013033403A (en) * 2011-08-02 2013-02-14 Denso Corp Power charge/discharge system
US8781675B2 (en) 2011-08-02 2014-07-15 Denso Corporation Electric power transmission reception system
JP2013219972A (en) * 2012-04-11 2013-10-24 Ihi Corp Underwater power supply system
US10020689B2 (en) 2013-03-27 2018-07-10 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10903689B2 (en) 2013-03-27 2021-01-26 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US9711998B2 (en) 2013-03-27 2017-07-18 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10008885B2 (en) 2013-03-27 2018-06-26 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10069347B2 (en) 2013-03-27 2018-09-04 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10014727B2 (en) 2013-03-27 2018-07-03 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
JP2016015791A (en) * 2014-06-30 2016-01-28 古河電気工業株式会社 Power transmission system
US11081907B2 (en) 2014-07-31 2021-08-03 Ossia Inc. Techniques for determining distance between radiating objects in multipath wireless power delivery environments
US10447092B2 (en) 2014-07-31 2019-10-15 Ossia Inc. Techniques for determining distance between radiating objects in multipath wireless power delivery environments
US10014729B2 (en) 2015-04-02 2018-07-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power supply method
JP2016197943A (en) * 2015-04-02 2016-11-24 パナソニックIpマネジメント株式会社 Wireless power supply method
CN106059115A (en) * 2015-04-02 2016-10-26 松下知识产权经营株式会社 Wireless power supply method
US9620996B2 (en) 2015-04-10 2017-04-11 Ossia Inc. Wireless charging with multiple power receiving facilities on a wireless device
US9632554B2 (en) 2015-04-10 2017-04-25 Ossia Inc. Calculating power consumption in wireless power delivery systems
US10574081B2 (en) 2015-04-10 2020-02-25 Ossia Inc. Calculating power consumption in wireless power delivery systems
CN105781172A (en) * 2016-04-15 2016-07-20 东莞市伟创东洋自动化设备有限公司 Planar mobile stereoscopic mechanical garage with automobile charging function and charging method implemented by planar mobile stereoscopic mechanical garage
JP2017208885A (en) * 2016-05-16 2017-11-24 キヤノン株式会社 Power supply device, control method and program
JP2018093562A (en) * 2016-11-30 2018-06-14 株式会社Ihi Stop position determination device
RU2709392C1 (en) * 2017-02-07 2019-12-17 Квангву АН Wind power generation system using jet current
US10428799B2 (en) 2017-02-07 2019-10-01 Kwangwoo An Wind power generation system using jet stream
CN109790822B (en) * 2017-02-07 2020-10-13 安光禹 Wind power generation system using jet air flow
WO2018147535A1 (en) * 2017-02-07 2018-08-16 안유진 Wind power generation system using jet stream
CN109790822A (en) * 2017-02-07 2019-05-21 安光禹 Utilize the wind generator system of jet-stream wind
WO2018145992A1 (en) * 2017-02-10 2018-08-16 Robert Bosch Gmbh Inductive battery-charging device
US11011944B2 (en) 2017-02-14 2021-05-18 Ihi Corporation Foreign matter detection device for non-contact power supply system
CN107499166A (en) * 2017-08-31 2017-12-22 上海蔚来汽车有限公司 Charging and conversion electric facility and charge port guiding charging and conversion electric method and device
CN107585044A (en) * 2017-09-06 2018-01-16 浙江大学 A kind of passive passive type alignment device of electric automobile wireless charging
WO2020004069A1 (en) * 2018-06-27 2020-01-02 本田技研工業株式会社 Electric vehicle
CN112218780A (en) * 2018-06-27 2021-01-12 本田技研工业株式会社 Electric vehicle
JPWO2020004069A1 (en) * 2018-06-27 2021-08-02 本田技研工業株式会社 Electric vehicles and systems
JP2020131952A (en) * 2019-02-20 2020-08-31 三菱ロジスネクスト株式会社 Power supply system for unmanned flying body
CN109849699A (en) * 2019-03-11 2019-06-07 武汉楚象能源科技有限公司 A kind of module type wireless charging system and device
CN114655040A (en) * 2022-03-04 2022-06-24 浙江吉利控股集团有限公司 Automatic charging method, automobile and parking lot

Similar Documents

Publication Publication Date Title
JPH07236204A (en) Method and system for charging electric automobile
US11938830B2 (en) Wireless power antenna alignment adjustment system for vehicles
CA2609641C (en) System and method for powering a vehicle using radio frequency generators
US11420530B2 (en) System and methods for a charging network of mobile power transmitters
EP3192141B1 (en) Systems, methods, and apparatus for integrated tuning capacitors in charging coil structure
EP3216105B1 (en) Systems, methods, and apparatus for controlling the amount of charge provided to a charge-receiving element in a series-tuned resonant system
US20190308513A1 (en) System and method for power delivery
KR101220809B1 (en) Wireless charging apparatus for electric vehicle and method for providing electric vehicle wireless charging service using same
US20110031047A1 (en) In-motion inductive charging system having a wheel-mounted secondary coil
JP2005210843A (en) Power supplying system, vehicle power supply and roadside power supply
KR20110042403A (en) Wireless charging system for electric car and charging method therefor
JP2004229425A (en) Charging apparatus for vehicle, vehicle bumper, and vehicle parking system
CN105163976A (en) System and method for detecting the presence of moving object below vehicle
KR20120081051A (en) Wireless charging system for electric car and charging method therefor
JP4710314B2 (en) Road-to-vehicle power supply system
CN106696751A (en) Wireless charging device used for electric vehicle and control system of wireless charging device
CN103112356A (en) Device for improving electric automobile contactless power transfer efficiency
CN106329677A (en) Switch array-type position induction focusing technology for wirelessly charging electric vehicle
WO2014054608A1 (en) Noncontact power supply device
KR101166867B1 (en) Charging management system of vehicle
CN206475761U (en) A kind of wireless charging device and its control system for electric automobile
CN108973738A (en) A kind of mobile powered vehicle
US20220407370A1 (en) Signal emitting apparatus and signal transmission/reception system
US20220410732A1 (en) Vehicle, method of control of power reception of vehicle, and nontransitory computer recording medium
KR20220168987A (en) Vehicle and noncontact power supplying system