JPH07235649A - Manufacture of non-volatile semiconductor storage device - Google Patents

Manufacture of non-volatile semiconductor storage device

Info

Publication number
JPH07235649A
JPH07235649A JP6027101A JP2710194A JPH07235649A JP H07235649 A JPH07235649 A JP H07235649A JP 6027101 A JP6027101 A JP 6027101A JP 2710194 A JP2710194 A JP 2710194A JP H07235649 A JPH07235649 A JP H07235649A
Authority
JP
Japan
Prior art keywords
semiconductor
conductive
film
prisms
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6027101A
Other languages
Japanese (ja)
Inventor
Yoichi Miyazaki
洋一 宮崎
Toru Yoshida
透 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6027101A priority Critical patent/JPH07235649A/en
Publication of JPH07235649A publication Critical patent/JPH07235649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To lessen a memory cell enough in area through a simple manufacturing process by a method wherein a second conductive film is connected between adjacent semiconductor square rods, a flattening insulting film is buried between the semiconductor square rods, and a wiring layer connected to a first conductivity type conductive layer above the semiconductor square rods is formed. CONSTITUTION:A polysilicon 117 formed on the side wall of a semiconductor square rod 107 is made to serve as a floating gate, and a polysilicon film 121 formed surrounding the floating gate is made to serve as a control gate 121. As a floating gate is formed on the side wall of a semiconductor square rod, it can be formed in a self-aligned manner. Furthermore, semiconductor square rods are reduced in space between them by the thickness of a floating gate, so that the polysilicon 121 is connected between adjacent semiconductor square rods when a polysilicon 121 is formed on the side wall of the floating gate through the intermediary of an insulating film 119. In result, a word line-shaped control gate connected between adjacent semiconductor square rods can be formed in a self-aligned manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は不揮発性半導体記憶装置
の製造方法に関する。特に、メモリセルを高密度に配置
した不揮発性メモリセルの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a nonvolatile semiconductor memory device. In particular, it relates to a method for manufacturing a non-volatile memory cell in which memory cells are arranged at a high density.

【0002】[0002]

【従来の技術】従来より、不揮発性半導体記憶装置に
は、半導体基板と逆導電型のソース及びドレイン間のチ
ャネル領域上に絶縁膜を介して浮遊ゲート及び制御ゲー
トを積層形成したMOSトランジスタをメモリセルとし
て用いている。しかし、このメモリセルを用いて大容量
の半導体記憶装置を実現する際に、ビット線とドレイン
とを接続するコンタクト領域(通常2メモリセルにつき
一つのコンタクト領域が必要となる)が高密度化の障害
になっていた。
2. Description of the Related Art Conventionally, in a nonvolatile semiconductor memory device, a MOS transistor in which a floating gate and a control gate are stacked and formed with an insulating film on a channel region between a semiconductor substrate and a source and drain of opposite conductivity type is used as a memory. It is used as a cell. However, when a large-capacity semiconductor memory device is realized by using this memory cell, the contact area for connecting the bit line and the drain (usually one contact area for every two memory cells) is densified. It was an obstacle.

【0003】ここで、1メモリセル当たりのコンタクト
領域の占める割合を大幅に低減するため、複数の積層ゲ
ート型MOSトランジスタのソース・ドレインを直列に
接続したメモリセルを用いた不揮発性半導体記憶装置が
開発されるに至っている。このようなメモリセルをNA
ND型メモリセルと呼び、それ以前のメモリセルをNO
R型メモリセルと呼ぶ。
Here, in order to significantly reduce the ratio of the contact region per memory cell, a nonvolatile semiconductor memory device using a memory cell in which the sources and drains of a plurality of stacked gate type MOS transistors are connected in series has been proposed. It has been developed. NA for such memory cells
It is called an ND type memory cell, and the memory cells before it are NO.
It is called an R-type memory cell.

【0004】最小加工線幅をFとすると、NAND型メ
モリセルは1ビット当たりの情報記憶を理想的には6F
2 の面積で実現することができる。しかし、例えば16
メモリセルを直列に接続したNAND型メモリセルの場
合、32ビット毎にやはりコンタクトは必要となり、さ
らに、ソース側及びドレイン側の2種の選択トランジス
タをそれぞれ設ける必要がある。この結果、理想的なほ
どにはメモリセル面積を低減することはできない。
Assuming that the minimum processing line width is F, the NAND type memory cell ideally stores information per bit of 6F.
It can be realized in 2 areas. However, for example, 16
In the case of a NAND type memory cell in which memory cells are connected in series, a contact is still required for every 32 bits, and it is also necessary to provide two kinds of select transistors on the source side and the drain side. As a result, the memory cell area cannot be reduced to an ideal level.

【0005】[0005]

【発明が解決しようとする課題】上記したように、メモ
リセル面積を低減するために、NAND型メモリセルが
開発されたが、ビット線コンタクトや選択トランジスタ
等が存在するため、十分にセル面積を低減することがで
きないという問題があった。さらに、NOR型、NAN
D型共に浮遊ゲートを各メモリセル毎に分離する工程が
必要となるため、マスク合わせを含めた工程数が増大す
るという問題もあった。本発明は、上記欠点を除去し、
簡易な製造工程により、高密度メモリセルを実現した不
揮発性半導体記憶装置の製造方法を提供することを目的
とする。
As described above, a NAND type memory cell has been developed in order to reduce the memory cell area. However, since there is a bit line contact, a select transistor, etc., the cell area is sufficiently reduced. There is a problem that it cannot be reduced. Furthermore, NOR type, NAN
There is also a problem in that the number of steps including mask alignment increases because a step of separating the floating gate for each memory cell is required for both the D type. The present invention eliminates the above drawbacks,
An object of the present invention is to provide a method for manufacturing a non-volatile semiconductor memory device which realizes a high density memory cell by a simple manufacturing process.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、第一の手段として、半導体基板の第1
導電型の半導体領域上に第1導電型、第2導電型及び第
1導電型の順に導電層が積層し、互いに隣接した複数の
半導体角柱を形成する工程と、複数の半導体角柱の前記
第2導電型の導電層領域の側壁に第1の絶縁膜を介して
各々独立した第1の導電膜を形成する工程と、この側壁
に第2の絶縁膜を介して第2の導電膜を形成し、隣接す
る複数の半導体角柱間でこの第2の導電膜を接続する工
程と、半導体角柱間に平坦化用絶縁膜を埋め込む工程
と、半導体角柱の上層の第1導電型の導電層と接続した
配線層を形成する工程とを具備することを特徴とする不
揮発性半導体記憶装置の製造方法を提供する。
In order to achieve the above object, in the present invention, as a first means, a first semiconductor substrate is used.
A step of forming a plurality of semiconductor prisms adjacent to each other by laminating conductive layers in the order of a first conductivity type, a second conductivity type, and a first conductivity type on a conductivity type semiconductor region; Forming a separate first conductive film on the side wall of the conductive type conductive layer region via the first insulating film; and forming a second conductive film on the side wall via the second insulating film. , A step of connecting the second conductive film between a plurality of adjacent semiconductor prisms, a step of embedding a planarization insulating film between the semiconductor prisms, and a step of connecting the first conductive type conductive layer above the semiconductor prisms. A method for manufacturing a non-volatile semiconductor memory device, comprising the step of forming a wiring layer.

【0007】また、第二の手段として、半導体基板の第
1導電型の半導体領域上に素子分離用絶縁膜を形成し互
いに隣接し半導体領域に達する開口部を形成する工程
と、(a)半導体領域と直接的もしくは間接的に接続し
た第1導電型、第2導電型及び第1導電型の順に導電層
が積層し、互いに隣接した複数の半導体角柱を形成する
工程と、(b)複数の半導体角柱の第2導電型の導電層
領域の側壁に第1の絶縁膜を介して各々独立した第1の
導電膜を形成する工程と、(c)複数の第1の導電膜の
側壁に第2の絶縁膜を介して第2の導電膜を形成し、隣
接する複数の半導体角柱間でこの第2の導電膜を接続す
る工程と、(d)半導体角柱間に平坦化用絶縁膜を埋め
込む工程とを具備し、さらにこれら(a)、(b)、
(c)及び(d)の工程を順に複数回繰り返した後、最
上層の半導体角柱の第1導電型の導電層と接続した配線
層を形成する工程とを具備することを特徴とする不揮発
性半導体記憶装置の製造方法を提供する。
As a second means, a step of forming an insulating film for element isolation on a semiconductor region of the first conductivity type of a semiconductor substrate and forming openings adjacent to each other and reaching the semiconductor region, and (a) semiconductor A step of forming a plurality of semiconductor prisms adjacent to each other by laminating conductive layers in the order of a first conductivity type, a second conductivity type, and a first conductivity type that are directly or indirectly connected to a region, and (b) Forming independent first conductive films on the sidewalls of the second conductive type conductive layer region of the semiconductor prism through the first insulating film; and (c) forming a plurality of first conductive films on the sidewalls of the first conductive films. A step of forming a second conductive film via the second insulating film and connecting the second conductive film between a plurality of adjacent semiconductor prisms; and (d) embedding a planarizing insulating film between the semiconductor prisms. And (a), (b),
A step of forming a wiring layer connected to the first conductive type conductive layer of the uppermost semiconductor prism, after repeating the steps (c) and (d) a plurality of times in sequence. A method for manufacturing a semiconductor memory device is provided.

【0008】[0008]

【作用】本発明で提供する第1の手段を用いると、半導
体角柱の側壁に形成した第1の導電膜が浮遊ゲートとし
て、この浮遊ゲートの外側に取り巻いて形成した第2の
導電膜が制御ゲートとして作用する。浮遊ゲートは半導
体角柱の側壁に形成するため、マスク合わせにより各セ
ル毎に当該浮遊ゲートを切り放す工程が必要なく、いわ
ばセルフアラインで形成することができる。さらに、浮
遊ゲートの膜厚により半導体角柱間の間隙が狭まってい
ため、この浮遊ゲートの側壁に第2の絶縁膜を介して第
2の導電膜を形成すると、隣接する半導体角柱間で、当
該第2の導電膜が接続される。この結果、互いに隣接す
る半導体角柱間で接続されたワード線形状の制御ゲート
が自然に、いわばセルフアラインで形成することができ
る。従って、簡単な製造工程によって、浮遊ゲート、制
御ゲートのどちらをもセルフアラインで形成する不揮発
性半導体記憶装置の製造方法を提供できる。
When the first means provided by the present invention is used, the first conductive film formed on the side wall of the semiconductor prism is used as a floating gate, and the second conductive film formed around the floating gate is controlled. Acts as a gate. Since the floating gate is formed on the side wall of the semiconductor prism, the step of cutting off the floating gate for each cell by mask alignment is not necessary, and can be so-called self-aligned. Further, the gap between the semiconductor prisms is narrowed due to the film thickness of the floating gate. Therefore, when the second conductive film is formed on the sidewall of the floating gate via the second insulating film, the adjacent semiconductor prisms are exposed to each other. The two conductive films are connected. As a result, the word line-shaped control gates connected between the semiconductor prisms adjacent to each other can be naturally formed, so to speak, self-aligned. Therefore, it is possible to provide a method of manufacturing a nonvolatile semiconductor memory device in which both the floating gate and the control gate are formed by self-alignment by a simple manufacturing process.

【0009】また、本発明の製造方法を用いて形成した
不揮発性半導体メモリセルは、縦型であり、角柱の下部
がソース電極、上部がドレイン電極として作用するた
め、ビット線コンタクトとして占める領域を、平面的
に、メモリセルのチャネル領域とオーバーラップさせる
ことができる。従って、NAND型メモリセルよりも1
ビット当たりの占有面積の小さなメモリセルを提供する
ことができる。
The nonvolatile semiconductor memory cell formed by using the manufacturing method of the present invention is of a vertical type, and since the lower part of the prism acts as a source electrode and the upper part acts as a drain electrode, the region occupied as a bit line contact is formed. , It can overlap with the channel region of the memory cell in a plane. Therefore, one more than a NAND memory cell
A memory cell having a small occupied area per bit can be provided.

【0010】さらに、本発明で提供する第2の手段を用
いると、(a)から(d)までのステップによって形成
されるメモリセル層のうち、当該メモリセル層に属する
半導体角柱の下部がソース電極、上部がドレイン電極と
して作用する。従って、各層を連続的に形成することが
可能となり、縦型のNAND型メモリセルを実現するこ
とが可能になる。これによって、さらに高密度のメモリ
セルを実現することが可能になる。
Further, when the second means provided by the present invention is used, in the memory cell layer formed by the steps (a) to (d), the lower portion of the semiconductor prism belonging to the memory cell layer is the source. The electrode and the upper part act as a drain electrode. Therefore, each layer can be formed continuously, and a vertical NAND memory cell can be realized. This makes it possible to realize a higher density memory cell.

【0011】[0011]

【実施例】以下、本発明の各実施例を図面を参照して説
明する。はじめに、図1から図5を参照して、第1の実
施例を説明する。図5は本発明の不揮発性半導体記憶装
置に用いるメモリセルの断面図及びその等価回路図であ
る。図5(a)に示すように、このメモリセルは、P型
の半導体基板上101表面に形成されたN型拡散層領域
103と、素子分離用絶縁膜105と、この開口部より
半導体基板101に接続され、N型層109、P型層1
11及びN型層113が積層された半導体角柱107
と、この半導体角柱107側壁に順に積層形成されたゲ
ート絶縁膜115、ポリシリコン膜117、ゲート間絶
縁膜119、ポリシリコン膜121とからなる。ポリシ
リコン膜117は各半導体角柱107毎に独立している
が、ポリシリコン膜121は隣接する半導体角柱毎に接
続されている(図5で示した方向に隣接する半導体角柱
間では接続されていないが、図示しない紙面垂直方向の
半導体角柱間では接続されている)。さらに、このメモ
リセルは、半導体角柱間を埋め込んだ平坦化用の層間絶
縁膜123と、金属配線125とからなる。
Embodiments of the present invention will be described below with reference to the drawings. First, a first embodiment will be described with reference to FIGS. 1 to 5. FIG. 5 is a cross-sectional view of a memory cell used in the nonvolatile semiconductor memory device of the present invention and its equivalent circuit diagram. As shown in FIG. 5A, this memory cell includes an N-type diffusion layer region 103 formed on the surface of a P-type semiconductor substrate 101, an element isolation insulating film 105, and a semiconductor substrate 101 through this opening. Connected to the N-type layer 109 and the P-type layer 1
Semiconductor prism 107 in which 11 and N-type layer 113 are laminated
And a gate insulating film 115, a polysilicon film 117, an inter-gate insulating film 119, and a polysilicon film 121 which are sequentially stacked on the side wall of the semiconductor prism 107. The polysilicon film 117 is independent for each semiconductor prism 107, but the polysilicon film 121 is connected for each adjacent semiconductor prism (not connected between adjacent semiconductor prisms in the direction shown in FIG. 5). However, it is connected between the semiconductor prisms in the direction perpendicular to the paper surface (not shown)). Furthermore, this memory cell is composed of an interlayer insulating film 123 for planarization, which fills the space between semiconductor prisms, and a metal wiring 125.

【0012】図5(b)は、(a)に示したメモリセル
の等価回路を示している。ビット線BLと共通ソース線
SLとの間に並列に接続された複数の浮遊ゲート付きM
OSトランジスタQ1 からなる。ビット線BLは金属配
線125に、共通ソース線SLはN型拡散層領域103
に相当し、MOSトランジスタQ1 の浮遊ゲートはポリ
シリコン膜117に、制御ゲートはポリシリコン膜12
1に相当する。さらに、N型層109はソース電極に、
P型層111はチャネル領域に、N型層113はドレイ
ン電極にそれぞれ相当する。
FIG. 5B shows an equivalent circuit of the memory cell shown in FIG. A plurality of floating gate Ms connected in parallel between the bit line BL and the common source line SL
It consists of an OS transistor Q1. The bit line BL is the metal wiring 125, and the common source line SL is the N-type diffusion layer region 103.
The floating gate of the MOS transistor Q1 is the polysilicon film 117, and the control gate is the polysilicon film 12
Equivalent to 1. Further, the N-type layer 109 serves as a source electrode,
The P-type layer 111 corresponds to the channel region, and the N-type layer 113 corresponds to the drain electrode.

【0013】続いて、本発明の第1の実施例の製造工程
を図1から図5を参照して説明する。P型単結晶シリコ
ンからなる半導体基板101表面にイオン注入により約
1μmの深さのN型拡散層領域103を形成する。この
半導体基板101表面を熱酸化することにより約0.5
μmの膜厚の素子分離用絶縁膜105を熱酸化により形
成する。この素子分離用絶縁膜105の所定の領域を、
最小加工線幅を1辺とする正方形状のマスクを用いてリ
アクティブイオンエッチング等の手法を用い選択的に除
去し、最小加工線幅が0.5μmの場合は0.5μm×
0.5μmの開口部を複数形成する。この開口部は行列
状に形成され、列方向には最小加工線幅の二倍の間隔を
空けて、行方向には最小加工線幅と同幅の間隔を空けて
配置する。開口により露出した半導体基板101を種結
晶とし、単結晶成長技術(ラテラルエピタキシー法)を
用いて半導体層を形成する。この単結晶成長中に不純物
を混入させ、下層から順に0.5μmの膜厚のN型層1
09、0.8μmの膜厚のP型層111及び0.8μm
の膜厚のN型層113となるように半導体層を順次形成
する。ここで、必要に応じてレーザーアニール法もしく
は電子アニール法等を用いて結晶性を向上させても良
い。上述したように、P型層111はトランジスタのチ
ャネル領域として使用するため、不純物濃度の十分な制
御が必要となる。最適なP型不純物濃度は5×1016
-3程度である。続いて、単結晶成長させたシリコン積
層を0.7μm×0.7μmの平面積となるようリアク
ティブイオンエッチング等を用いて正方形状に加工し、
半導体角柱107を形成する。(図1参照。ただし
(a)は平面図、(b)はA−A’領域のの断面図を示
している。)続いて、半導体角柱107の側面にゲート
絶縁膜となる約10nmの第1の絶縁膜115を熱酸化
により形成する。全面に0.4μmの膜厚の高濃度にN
型不純物がドープされたポリシリコン膜を形成し、リア
クティブイオンエッチング法を用いてエッチバックを行
い、半導体角柱107の側壁のみにポリシリコン膜11
7を残存させる。ここで、P型層111の側部が完全に
ポリシリコン膜117で覆われるようにエッチングの制
御を行う。続いて、ポリシリコン膜117の側面にゲー
ト間絶縁膜となる約10nmの第2の絶縁膜119を熱
酸化により形成する。ここで、第2の絶縁膜119は熱
酸化膜に限らず、酸化膜・窒化膜・酸化膜からなる複合
膜であってもよい。(図2参照。ただし(a)は平面
図、(b)はA−A’領域のの断面図を示している。)
続いて、全面に0.4μmの膜厚の高濃度にN型不純物
がドープされたポリシリコン膜を形成し、リアクティブ
イオンエッチング法を用いてエッチバックを行い、半導
体角柱107の側壁及び隣接する半導体角柱間の領域に
ポリシリコン膜121を残存させる。なお、このポリシ
リコン膜はシリサイド膜、ポリサイド膜、高融点金属膜
等を用いることも可能である。ここで、列方向に隣接す
る半導体角柱107−1、107−2間は最小加工線幅
の間隔であるため、ポリシリコン膜121はお互いに連
結するが、行方向に隣接する半導体角柱107−1、1
07−3間は最小加工線幅の二倍の間隔であるためポリ
シリコン膜121は互いに連結しない。(図3参照。た
だし(a)は平面図、(b)はA−A’領域のの断面図
を示している。)続いて、全面に酸化膜を2.5μmの
膜厚で形成した後、フッ化アンモニウム液等を用いて全
面にエッチバックを行い、半導体角柱107の上層部を
露出させ、半導体角柱間の領域を酸化膜123で埋め込
む。(図4参照)続いて、アルミニウムを全面にスパッ
タ法等により堆積させ、これをビット線形状にパターニ
ングすることにより、金属配線125を形成する。な
お、金属配線はアルミニウム・シリコン・銅からなる合
金や銅、チタン・窒化チタン等のバリアメタルを用いた
多層膜等から形成しても良い。(図5参照)このよう
に、第一の実施例によると、半導体角柱107の側壁に
形成したポリシリコン膜117、すなわち、第1の導電
膜が浮遊ゲートとして、この浮遊ゲートの外側に取り巻
いて形成したポリシリコン膜121、すなわち、第2の
導電膜が制御ゲートとして作用する。浮遊ゲートは半導
体角柱の側壁に形成するため、マスク合わせにより各セ
ル毎に当該浮遊ゲートを切り放す工程が必要なく、いわ
ばセルフアラインで形成することができる。さらに、浮
遊ゲートの膜厚により半導体角柱間の間隙が狭まってい
ため、この浮遊ゲートの側壁に第2の絶縁膜119を介
してポリシリコン121を形成すると、隣接する半導体
角柱間で、これらが接続される。この結果、互いに隣接
する半導体角柱間で接続されたワード線形状の制御ゲー
トが自然に、いわばセルフアラインで形成することがで
きる。従って、簡単な製造工程によって、浮遊ゲート、
制御ゲートのどちらをもセルフアラインで形成すること
ができる。
Next, the manufacturing process of the first embodiment of the present invention will be described with reference to FIGS. An N type diffusion layer region 103 having a depth of about 1 μm is formed on the surface of the semiconductor substrate 101 made of P type single crystal silicon by ion implantation. The surface of the semiconductor substrate 101 is thermally oxidized to about 0.5.
An element isolation insulating film 105 having a thickness of μm is formed by thermal oxidation. A predetermined region of the element isolation insulating film 105 is
It is selectively removed by a method such as reactive ion etching using a square mask having a minimum processing line width of one side. When the minimum processing line width is 0.5 μm, 0.5 μm ×
A plurality of 0.5 μm openings are formed. The openings are formed in a matrix, and are arranged at intervals of twice the minimum processing line width in the column direction and at intervals of the same width as the minimum processing line width in the row direction. A semiconductor layer is formed by using the semiconductor substrate 101 exposed by the opening as a seed crystal and using a single crystal growth technique (lateral epitaxy method). Impurities are mixed in during this single crystal growth, and the N-type layer 1 having a thickness of 0.5 μm is formed in order from the lower layer.
09, 0.8 μm thick P-type layer 111 and 0.8 μm
The semiconductor layers are sequentially formed so as to become the N-type layer 113 having the film thickness of. Here, if necessary, the crystallinity may be improved by using a laser annealing method, an electron annealing method or the like. As described above, since the P-type layer 111 is used as the channel region of the transistor, it is necessary to sufficiently control the impurity concentration. The optimum P-type impurity concentration is 5 × 10 16 c
It is about m -3 . Subsequently, the single-crystal-grown silicon stack is processed into a square shape by reactive ion etching or the like so as to have a flat area of 0.7 μm × 0.7 μm,
A semiconductor prism 107 is formed. (See FIG. 1, where (a) is a plan view and (b) is a cross-sectional view of the AA ′ region.) Then, on the side surface of the semiconductor prism 107, a gate insulating film having a thickness of about 10 nm is formed. The first insulating film 115 is formed by thermal oxidation. N on the entire surface with a high concentration of 0.4 μm
A polysilicon film doped with type impurities is formed, and is etched back using a reactive ion etching method to form a polysilicon film 11 only on the side wall of the semiconductor prism 107.
7 is left. Here, the etching is controlled so that the side portion of the P-type layer 111 is completely covered with the polysilicon film 117. Then, a second insulating film 119 having a thickness of about 10 nm to be an inter-gate insulating film is formed on the side surface of the polysilicon film 117 by thermal oxidation. Here, the second insulating film 119 is not limited to the thermal oxide film and may be a composite film including an oxide film, a nitride film, and an oxide film. (See FIG. 2, where (a) is a plan view and (b) is a cross-sectional view taken along the line AA ′.)
Then, a polysilicon film having a high concentration of 0.4 μm and doped with N-type impurities is formed on the entire surface, and is etched back by using a reactive ion etching method to adjoin the side wall of the semiconductor prism 107 and the adjacent side. The polysilicon film 121 is left in the region between the semiconductor prisms. It is also possible to use a silicide film, a polycide film, a refractory metal film, or the like as the polysilicon film. Here, since the distance between the semiconductor prisms 107-1 and 107-2 adjacent to each other in the column direction is the minimum processing line width, the polysilicon films 121 are connected to each other, but the semiconductor prisms 107-1 adjacent to each other in the row direction. 1
Since the interval between 07-3 is twice the minimum processing line width, the polysilicon films 121 are not connected to each other. (See FIG. 3, where (a) is a plan view and (b) is a cross-sectional view of the area AA ′.) Then, after forming an oxide film to a thickness of 2.5 μm on the entire surface. Etch back is performed on the entire surface using an ammonium fluoride solution or the like to expose the upper layer portion of the semiconductor prisms 107 and the region between the semiconductor prisms is filled with an oxide film 123. (See FIG. 4) Subsequently, aluminum is deposited on the entire surface by a sputtering method or the like, and this is patterned into a bit line shape to form a metal wiring 125. The metal wiring may be formed of an alloy of aluminum / silicon / copper or a multilayer film using a barrier metal such as copper, titanium / titanium nitride. (See FIG. 5) As described above, according to the first embodiment, the polysilicon film 117 formed on the side wall of the semiconductor prism 107, that is, the first conductive film surrounds the floating gate as an outside. The formed polysilicon film 121, that is, the second conductive film functions as a control gate. Since the floating gate is formed on the side wall of the semiconductor prism, the step of cutting off the floating gate for each cell by mask alignment is not necessary, and can be so-called self-aligned. Furthermore, since the gap between the semiconductor prisms is narrowed due to the film thickness of the floating gate, when the polysilicon 121 is formed on the sidewall of the floating gate via the second insulating film 119, these semiconductors are connected between adjacent semiconductor prisms. To be done. As a result, the word line-shaped control gates connected between the semiconductor prisms adjacent to each other can be naturally formed, so to speak, self-aligned. Therefore, the floating gate,
Both control gates can be self-aligned.

【0014】また、本実施例の不揮発性半導体メモリセ
ルは、縦型であり、角柱の下部がソース電極、上部がド
レイン電極として作用するため、ビット線コンタクトと
して占める領域を、平面的に、メモリセルのチャネル領
域とオーバーラップさせることができる。この結果、理
想的な6F2 の面積で1ビットを実現できる。従って、
NAND型メモリセルよりも1ビット当たりの占有面積
の小さなメモリセルを形成できる。
The nonvolatile semiconductor memory cell of this embodiment is of a vertical type, and since the lower part of the prism acts as the source electrode and the upper part acts as the drain electrode, the region occupied by the bit line contact is planarly stored in the memory. It can overlap the channel region of the cell. As a result, 1 bit can be realized with an ideal area of 6F 2 . Therefore,
A memory cell having a smaller occupied area per bit than a NAND type memory cell can be formed.

【0015】さらに、第1の実施例で形成したメモリセ
ルはNOR型の接続であり、NAND型よりも読み出し
が一般に高速である。さらに、トランジスタはサラウン
ドゲート形状(半導体角柱を制御ゲートが覆っている形
状)となっているため、非選択時に確実にオフし、選択
時に消去状態のメモリセルであれば確実にオンすること
ができる(一般のプレーナ型よりもよりコンダクタンス
が大きくなる)。従って、高速化にはさらに有利であ
る。
Further, the memory cell formed in the first embodiment has a NOR type connection, and reading is generally faster than that of the NAND type. Furthermore, since the transistor has a surround gate shape (a shape in which a semiconductor prism is covered by a control gate), it can be reliably turned off when not selected, and can be reliably turned on if it is an erased memory cell when selected. (The conductance is larger than that of a general planar type). Therefore, it is more advantageous for speeding up.

【0016】続いて、本発明の第2の実施例を図6を参
照して説明する。図6は本発明の不揮発性半導体記憶装
置に用いるメモリセルの断面図及びその等価回路図であ
る。図5(a)に示すように、このメモリセルは、10
層のメモリセル層131……140からなり、各々のメ
モリセル層は第1の実施例で説明したメモリセル構造と
ほぼ同様の形状であるため、対応する要素には同様の番
号を符している。すなわち、P型半導体基盤101と、
N型拡散層領域103と、素子分離用絶縁膜105上に
第一層目のメモリセル層131及び上層のメモリセル層
が形成され、各メモリセル層はN型層109、P型層1
11及びN型層113が積層された半導体角柱107
と、この半導体角柱107側壁に順に積層形成されたゲ
ート絶縁膜115、ポリシリコン膜117、ゲート間絶
縁膜119、ポリシリコン膜121とからなる。ポリシ
リコン膜117は各半導体角柱107毎に独立している
が、ポリシリコン膜121は隣接する半導体角柱毎に接
続されている(図5で示した方向に隣接する半導体角柱
間では接続されていないが、図示しない紙面垂直方向の
半導体角柱間では接続されている)。さらに、このメモ
リセル層には、半導体角柱間を埋め込んだ平坦化用の層
間絶縁膜123が形成されており、最上層には金属配線
125が形成されている。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view of a memory cell used in the nonvolatile semiconductor memory device of the present invention and its equivalent circuit diagram. As shown in FIG. 5A, this memory cell has 10
Since the memory cell layers 131 ... 140 each have the same shape as the memory cell structure described in the first embodiment, the corresponding elements are designated by the same reference numerals. There is. That is, a P-type semiconductor substrate 101,
A first memory cell layer 131 and an upper memory cell layer are formed on the N-type diffusion layer region 103 and the isolation insulating film 105, and each memory cell layer is an N-type layer 109 and a P-type layer 1.
Semiconductor prism 107 in which 11 and N-type layer 113 are laminated
And a gate insulating film 115, a polysilicon film 117, an inter-gate insulating film 119, and a polysilicon film 121 which are sequentially stacked on the side wall of the semiconductor prism 107. The polysilicon film 117 is independent for each semiconductor prism 107, but the polysilicon film 121 is connected for each adjacent semiconductor prism (not connected between adjacent semiconductor prisms in the direction shown in FIG. 5). However, it is connected between the semiconductor prisms in the direction perpendicular to the paper surface (not shown)). Further, in this memory cell layer, an interlayer insulating film 123 for flattening, which is embedded between semiconductor prisms, is formed, and a metal wiring 125 is formed in the uppermost layer.

【0017】図6(b)は、(a)に示したメモリセル
の等価回路を示している。ビット線BLと共通ソース線
SLとの間に直列に複数個接続された浮遊ゲート付きM
OSトランジスタQ1 ……Q10からなる。ビット線BL
は金属配線125に、共通ソース線SLはN型拡散層領
域103に相当し、MOSトランジスタQ1 の浮遊ゲー
トはポリシリコン膜117に、制御ゲートはポリシリコ
ン膜121に相当する。さらに、N型層109はソース
電極に、P型層111はチャネル領域に、N型層113
はドレイン電極にそれぞれ相当する。MOSトランジス
タQ2 ……Q9の8トランジスタはメモリセルトランジ
スタとして作用し、MOSトランジスタQ1 はソース側
選択トランジスタ、MOSトランジスタQ10はドレイン
側選択トランジスタして作用する。このようにn層のメ
モリセル層を積層した場合、n−2ビットのNAND型
のメモリセルが実現される。
FIG. 6B shows an equivalent circuit of the memory cell shown in FIG. M with floating gate connected in series between bit line BL and common source line SL
It consists of an OS transistor Q1 ... Q10. Bit line BL
Corresponds to the metal wiring 125, the common source line SL corresponds to the N type diffusion layer region 103, the floating gate of the MOS transistor Q1 corresponds to the polysilicon film 117, and the control gate corresponds to the polysilicon film 121. Further, the N-type layer 109 is a source electrode, the P-type layer 111 is a channel region, and the N-type layer 113 is
Correspond to drain electrodes, respectively. The eight transistors of the MOS transistors Q2 ... Q9 act as memory cell transistors, the MOS transistor Q1 acts as a source side selection transistor, and the MOS transistor Q10 acts as a drain side selection transistor. When n memory cell layers are stacked in this manner, an n-2 bit NAND type memory cell is realized.

【0018】このように、本発明で提供する第2の手段
を用いると、各ステップによって形成されるメモリセル
層のうち、当該メモリセル層に属する半導体角柱の下部
がソース電極、上部がドレイン電極として作用する。従
って、各層を連続的に形成することが可能となり、縦型
のNAND型メモリセルを実現することが可能になる。
これによって、さらに高密度のメモリセルを実現するこ
とが可能になる。
As described above, by using the second means provided by the present invention, among the memory cell layers formed by each step, the lower part of the semiconductor prism belonging to the memory cell layer is the source electrode and the upper part is the drain electrode. Acts as. Therefore, each layer can be formed continuously, and a vertical NAND memory cell can be realized.
This makes it possible to realize a higher density memory cell.

【0019】また、第一の実施例と同様に、簡単な製造
工程によって、浮遊ゲート、制御ゲートのどちらをもセ
ルフアラインで形成することができる。また、ビット線
コンタクトとして占める領域を、平面的に、メモリセル
のチャネル領域とオーバーラップさせることができる。
このため極端に1ビット当たりの占有面積の小さなメモ
リセルを形成できる。
Further, like the first embodiment, both the floating gate and the control gate can be formed by self-alignment by a simple manufacturing process. Further, the region occupied as the bit line contact can be planarly overlapped with the channel region of the memory cell.
Therefore, a memory cell having an extremely small occupied area per bit can be formed.

【0020】さらに、トランジスタはサラウンドゲート
形状(半導体角柱を制御ゲートが覆っている形状)とな
っているため、非選択時に確実にオフし、選択時に消去
状態のメモリセルであれば確実にオンすることができる
(一般のプレーナ型よりもよりコンダクタンスが大きく
なる)。これは、ビット線と共通ソース線との間の直列
コンダクタンスが増大しがちなNAND型メモリセルに
とって、非常に好ましい。従って、高速化にも非常に有
利である。
Further, since the transistor has a surround gate shape (a shape in which a semiconductor prism is covered by a control gate), it is surely turned off when not selected, and surely turned on if it is an erased memory cell when selected. It is possible (the conductance is larger than that of a general planar type). This is highly desirable for NAND memory cells where the series conductance between the bit line and the common source line tends to increase. Therefore, it is also very advantageous for speeding up.

【0021】[0021]

【発明の効果】以上のように、本発明を用いると、簡易
な製造工程により、高密度メモリセルを実現した不揮発
性半導体記憶装置の製造方法を実現できる。また、付随
的な効果として、高速消去・高速読出動作が可能な不揮
発性半導体記憶装置を提供できる。この効果は、NAN
D型メモリセルに用いたときに特に重要である。
As described above, according to the present invention, a method for manufacturing a non-volatile semiconductor memory device which realizes a high density memory cell can be realized by a simple manufacturing process. As an additional effect, it is possible to provide a non-volatile semiconductor memory device capable of high speed erasing and high speed reading operations. This effect is NAN
It is particularly important when used in a D-type memory cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による不揮発性半導体メ
モリセルの製造工程を示す平面図及び断面図である。
FIG. 1 is a plan view and a cross-sectional view showing a manufacturing process of a nonvolatile semiconductor memory cell according to a first embodiment of the present invention.

【図2】本発明の第1の実施例による不揮発性半導体メ
モリセルの製造工程を示す平面図及び断面図である。
2A and 2B are a plan view and a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory cell according to the first embodiment of the present invention.

【図3】本発明の第1の実施例による不揮発性半導体メ
モリセルの製造工程を示す平面図及び断面図である。
FIG. 3 is a plan view and a cross-sectional view showing a manufacturing process of the nonvolatile semiconductor memory cell according to the first embodiment of the present invention.

【図4】本発明の第1の実施例による不揮発性半導体メ
モリセルの製造工程を示す断面図である。
FIG. 4 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory cell according to the first embodiment of the present invention.

【図5】本発明の第1の実施例による不揮発性半導体メ
モリセルの断面図及びその等価回路である。
FIG. 5 is a sectional view of a nonvolatile semiconductor memory cell according to a first embodiment of the present invention and its equivalent circuit.

【図6】本発明の第2の実施例による不揮発性半導体メ
モリセルの断面図及びその等価回路である。
FIG. 6 is a cross-sectional view of a nonvolatile semiconductor memory cell according to a second embodiment of the present invention and its equivalent circuit.

【符号の説明】[Explanation of symbols]

101 半導体基板 103 N型拡散層 105 素子分離用絶縁膜 107 半導体角柱 109 N型層 111 P型層 113 N型層 115 第1の絶縁膜 117 ポリシリコン膜 119 第2の絶縁膜 121 ポリシリコン膜 123 平坦化用層間絶縁膜 125 金属配線 BL ビット線 SL 共通ソース線 Q MOSトランジスタ 101 semiconductor substrate 103 N-type diffusion layer 105 element isolation insulating film 107 semiconductor prism 109 N-type layer 111 P-type layer 113 N-type layer 115 first insulating film 117 polysilicon film 119 second insulating film 121 polysilicon film 123 Flattening interlayer insulating film 125 Metal wiring BL Bit line SL Common source line Q MOS transistor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の第1導電型の半導体領域上
に第1導電型、第2導電型及び第1導電型の順に積層し
た導電層からなり、互いに隣接した複数の半導体角柱を
形成する工程と、 複数の前記半導体角柱の前記第2導電型の導電層領域の
側壁に第1の絶縁膜を介して各々独立した第1の導電膜
を形成する工程と、 複数の前記第1の導電膜の側壁に第2の絶縁膜を介して
第2の導電膜を形成し、隣接する複数の半導体角柱間で
この第2の導電膜を接続する工程と、 前記半導体角柱間に平坦化用絶縁膜を埋め込む工程と、 前記半導体角柱の上層の前記第1導電型の導電層と接続
した配線層を形成する工程とを具備することを特徴とす
る不揮発性半導体記憶装置の製造方法。
1. A plurality of semiconductor prisms adjacent to each other are formed on a semiconductor region of a first conductivity type of a semiconductor substrate, comprising a conductive layer of a first conductivity type, a second conductivity type, and a first conductivity type stacked in this order. A step of forming independent first conductive films on the sidewalls of the conductive layer regions of the second conductivity type of the plurality of semiconductor prisms with a first insulating film interposed therebetween; Forming a second conductive film on a sidewall of the film through a second insulating film and connecting the second conductive film between a plurality of adjacent semiconductor prisms; and insulating for planarization between the semiconductor prisms. A method of manufacturing a nonvolatile semiconductor memory device, comprising: a step of burying a film; and a step of forming a wiring layer connected to the first conductive type conductive layer above the semiconductor prism.
【請求項2】 半導体基板の第1導電型の半導体領域上
に素子分離用絶縁膜を形成し互いに隣接し前記半導体領
域に達する開口部を形成する工程と、 (a)前記半導体領域と直接的もしくは間接的に接続し
た第1導電型、第2導電型及び第1導電型の順に積層し
た導電層からなり、互いに隣接した複数の半導体角柱を
形成する工程と、 (b)複数の前記半導体角柱の前記第2導電型の導電層
領域の側壁に第1の絶縁膜を介して各々独立した第1の
導電膜を形成する工程と、 (c)複数の前記第1の導電膜の側壁に第2の絶縁膜を
介して第2の導電膜を形成し、隣接する複数の半導体角
柱間でこの第2の導電膜を接続する工程と、 (d)前記半導体角柱間に平坦化用絶縁膜を埋め込む工
程と、を具備し、さらに前記(a)、(b)、(c)及
び(d)の工程を順に複数回繰り返した後、最上層の前
記半導体角柱の前記第1導電型の導電層と接続した配線
層を形成する工程とを具備することを特徴とする不揮発
性半導体記憶装置の製造方法。
2. A step of forming an element isolation insulating film on a semiconductor region of the first conductivity type of a semiconductor substrate and forming openings adjacent to each other and reaching the semiconductor region, and (a) directly connecting to the semiconductor region. Alternatively, a step of forming a plurality of semiconductor prisms adjacent to each other, which are composed of conductive layers laminated in the order of a first conductivity type, a second conductivity type, and a first conductivity type that are indirectly connected, and (b) a plurality of the semiconductor prisms. Forming independent first conductive films on the sidewalls of the second conductive type conductive layer region via a first insulating film, and (c) forming a plurality of first conductive films on the sidewalls of the plurality of first conductive films. Forming a second conductive film via the second insulating film and connecting the second conductive film between a plurality of adjacent semiconductor prisms; and (d) forming a planarizing insulating film between the semiconductor prisms. And a step of embedding, further comprising (a), (b), (c) and A step of forming a wiring layer connected to the conductive layer of the first conductivity type of the semiconductor prism, which is the uppermost layer, after repeating step (d) a plurality of times in sequence. Device manufacturing method.
JP6027101A 1994-02-25 1994-02-25 Manufacture of non-volatile semiconductor storage device Pending JPH07235649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6027101A JPH07235649A (en) 1994-02-25 1994-02-25 Manufacture of non-volatile semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6027101A JPH07235649A (en) 1994-02-25 1994-02-25 Manufacture of non-volatile semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH07235649A true JPH07235649A (en) 1995-09-05

Family

ID=12211702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6027101A Pending JPH07235649A (en) 1994-02-25 1994-02-25 Manufacture of non-volatile semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH07235649A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19600307C1 (en) * 1996-01-05 1998-01-08 Siemens Ag Highly integrated semiconductor memory and method for producing the semiconductor memory
US6114725A (en) * 1997-01-22 2000-09-05 International Business Machines Corporation Structure for folded architecture pillar memory cell
EP1179850A2 (en) * 2000-08-11 2002-02-13 Fujio Masuoka A semiconductor memory and its production process
EP1246247A2 (en) * 2001-03-30 2002-10-02 Fujio Masuoka A semiconductor memory and its production process
JP2003078044A (en) * 2001-06-23 2003-03-14 Fujio Masuoka Semiconductor memory and its producing method
DE10241172A1 (en) * 2002-09-05 2004-03-18 Infineon Technologies Ag Semiconductor memory with vertical memory transistors and method for its production
JP2007180389A (en) * 2005-12-28 2007-07-12 Toshiba Corp Semiconductor memory device, and method of manufacturing same
CN100359672C (en) * 2003-08-05 2008-01-02 南亚科技股份有限公司 Multi-position-element stacked non-volatile memory unit and its manufacturing method
JP2008072051A (en) * 2006-09-15 2008-03-27 Toshiba Corp Nonvolatile semiconductor storage apparatus and method of manufacturing the same
JP2008141196A (en) * 2006-11-30 2008-06-19 Dongbu Hitek Co Ltd Flash memory element
JP2008141173A (en) * 2006-11-30 2008-06-19 Dongbu Hitek Co Ltd Memory element
JP2008171918A (en) * 2007-01-10 2008-07-24 Toshiba Corp Nonvolatile semiconductor storage device and method for manufacturing the same
WO2008118433A1 (en) * 2007-03-27 2008-10-02 Sandisk 3D Llc Three dimensional nand memory and method of making thereof
WO2008118432A1 (en) 2007-03-27 2008-10-02 Sandisk 3D Llc Three dimensional nand memory and method of making thereof
WO2008118435A1 (en) * 2007-03-27 2008-10-02 Sandisk 3D Llc Three dimensional nand memory and method of making thereof
KR100866966B1 (en) * 2007-05-10 2008-11-06 삼성전자주식회사 Non-volatile memory device, method of fabricating the same, and semiconductor package
US7476929B2 (en) 2003-06-24 2009-01-13 Nanya Technology Corporation Multi-bit stacked-type non-volatile memory
US7514321B2 (en) 2007-03-27 2009-04-07 Sandisk 3D Llc Method of making three dimensional NAND memory
JP2009099997A (en) * 2008-09-25 2009-05-07 Fujio Masuoka Semiconductor storage device
US7575973B2 (en) 2007-03-27 2009-08-18 Sandisk 3D Llc Method of making three dimensional NAND memory
WO2009119527A1 (en) 2008-03-26 2009-10-01 株式会社 東芝 Semiconductor memory and method for manufacturing the same
JP2010080561A (en) * 2008-09-25 2010-04-08 Toshiba Corp Nonvolatile semiconductor memory device
US7745265B2 (en) 2007-03-27 2010-06-29 Sandisk 3D, Llc Method of making three dimensional NAND memory
US7808038B2 (en) 2007-03-27 2010-10-05 Sandisk 3D Llc Method of making three dimensional NAND memory
US7848145B2 (en) 2007-03-27 2010-12-07 Sandisk 3D Llc Three dimensional NAND memory
US7851851B2 (en) 2007-03-27 2010-12-14 Sandisk 3D Llc Three dimensional NAND memory
US8008732B2 (en) 2006-09-21 2011-08-30 Kabushiki Kaisha Toshiba Semiconductor memory and method of manufacturing the same
JP2012256932A (en) * 2012-08-27 2012-12-27 Intellectual Properties I Kft Semiconductor storage device
JP2013122976A (en) * 2011-12-09 2013-06-20 Takehide Shirato Semiconductor device and manufacturing method of the same
US9111963B2 (en) 2013-03-25 2015-08-18 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor memory device and semiconductor memory device

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157060A (en) * 1996-01-05 2000-12-05 Siemens Aktiengesellschaft High density integrated semiconductor memory and method for producing the memory
DE19600307C1 (en) * 1996-01-05 1998-01-08 Siemens Ag Highly integrated semiconductor memory and method for producing the semiconductor memory
US6440801B1 (en) 1997-01-22 2002-08-27 International Business Machines Corporation Structure for folded architecture pillar memory cell
US6114725A (en) * 1997-01-22 2000-09-05 International Business Machines Corporation Structure for folded architecture pillar memory cell
KR100295000B1 (en) * 1997-01-22 2001-09-07 포만 제프리 엘 2f-square memory cell for gigabit memory applications
EP1179850A2 (en) * 2000-08-11 2002-02-13 Fujio Masuoka A semiconductor memory and its production process
EP1179850A3 (en) * 2000-08-11 2006-02-22 Fujio Masuoka A semiconductor memory and its production process
US7135726B2 (en) 2000-08-11 2006-11-14 Fujio Masuoka Semiconductor memory and its production process
EP1246247A2 (en) * 2001-03-30 2002-10-02 Fujio Masuoka A semiconductor memory and its production process
EP1246247A3 (en) * 2001-03-30 2006-04-12 Fujio Masuoka A semiconductor memory and its production process
JP2003078044A (en) * 2001-06-23 2003-03-14 Fujio Masuoka Semiconductor memory and its producing method
DE10241172A1 (en) * 2002-09-05 2004-03-18 Infineon Technologies Ag Semiconductor memory with vertical memory transistors and method for its production
US7265413B2 (en) 2002-09-05 2007-09-04 Infineon Technologies Ag Semiconductor memory with vertical memory transistors and method for fabricating it
DE10241172B4 (en) * 2002-09-05 2008-01-10 Qimonda Ag Semiconductor memory with vertical memory transistors and method for its production
US7476929B2 (en) 2003-06-24 2009-01-13 Nanya Technology Corporation Multi-bit stacked-type non-volatile memory
CN100359672C (en) * 2003-08-05 2008-01-02 南亚科技股份有限公司 Multi-position-element stacked non-volatile memory unit and its manufacturing method
JP2007180389A (en) * 2005-12-28 2007-07-12 Toshiba Corp Semiconductor memory device, and method of manufacturing same
US8048741B2 (en) 2005-12-28 2011-11-01 Kabushiki Kaisha Toshiba Semiconductor memory device and method of fabricating the same
JP2008072051A (en) * 2006-09-15 2008-03-27 Toshiba Corp Nonvolatile semiconductor storage apparatus and method of manufacturing the same
US8278695B2 (en) 2006-09-15 2012-10-02 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
US11937437B2 (en) 2006-09-21 2024-03-19 Kioxia Corporation Semiconductor memory and method of manufacturing the same
US11101325B2 (en) 2006-09-21 2021-08-24 Toshiba Memory Corporation Semiconductor memory and method of manufacturing the same
US10056433B2 (en) 2006-09-21 2018-08-21 Toshiba Memory Corporation Semiconductor memory and method of manufacturing the same
US9450181B2 (en) 2006-09-21 2016-09-20 Kabushiki Kaisha Toshiba Semiconductor memory and method of manufacturing the same
US8766373B2 (en) 2006-09-21 2014-07-01 Kabushiki Kaisha Toshiba Semiconductor memory and method of manufacturing the same
US8008732B2 (en) 2006-09-21 2011-08-30 Kabushiki Kaisha Toshiba Semiconductor memory and method of manufacturing the same
JP2008141196A (en) * 2006-11-30 2008-06-19 Dongbu Hitek Co Ltd Flash memory element
JP2008141173A (en) * 2006-11-30 2008-06-19 Dongbu Hitek Co Ltd Memory element
JP2008171918A (en) * 2007-01-10 2008-07-24 Toshiba Corp Nonvolatile semiconductor storage device and method for manufacturing the same
US7808038B2 (en) 2007-03-27 2010-10-05 Sandisk 3D Llc Method of making three dimensional NAND memory
US7514321B2 (en) 2007-03-27 2009-04-07 Sandisk 3D Llc Method of making three dimensional NAND memory
WO2008118433A1 (en) * 2007-03-27 2008-10-02 Sandisk 3D Llc Three dimensional nand memory and method of making thereof
US7848145B2 (en) 2007-03-27 2010-12-07 Sandisk 3D Llc Three dimensional NAND memory
US7851851B2 (en) 2007-03-27 2010-12-14 Sandisk 3D Llc Three dimensional NAND memory
US7745265B2 (en) 2007-03-27 2010-06-29 Sandisk 3D, Llc Method of making three dimensional NAND memory
US7575973B2 (en) 2007-03-27 2009-08-18 Sandisk 3D Llc Method of making three dimensional NAND memory
WO2008118432A1 (en) 2007-03-27 2008-10-02 Sandisk 3D Llc Three dimensional nand memory and method of making thereof
WO2008118435A1 (en) * 2007-03-27 2008-10-02 Sandisk 3D Llc Three dimensional nand memory and method of making thereof
KR101437892B1 (en) * 2007-03-27 2014-09-04 쌘디스크 3디 엘엘씨 Three dimensional nand memory and method of making thereof
KR100866966B1 (en) * 2007-05-10 2008-11-06 삼성전자주식회사 Non-volatile memory device, method of fabricating the same, and semiconductor package
WO2009119527A1 (en) 2008-03-26 2009-10-01 株式会社 東芝 Semiconductor memory and method for manufacturing the same
US8569133B2 (en) 2008-09-25 2013-10-29 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
JP2009099997A (en) * 2008-09-25 2009-05-07 Fujio Masuoka Semiconductor storage device
US8148769B2 (en) 2008-09-25 2012-04-03 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
JP2010080561A (en) * 2008-09-25 2010-04-08 Toshiba Corp Nonvolatile semiconductor memory device
JP2013122976A (en) * 2011-12-09 2013-06-20 Takehide Shirato Semiconductor device and manufacturing method of the same
JP2012256932A (en) * 2012-08-27 2012-12-27 Intellectual Properties I Kft Semiconductor storage device
US9111963B2 (en) 2013-03-25 2015-08-18 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor memory device and semiconductor memory device

Similar Documents

Publication Publication Date Title
JPH07235649A (en) Manufacture of non-volatile semiconductor storage device
JP3917063B2 (en) Semiconductor device and manufacturing method thereof
KR100399363B1 (en) Semiconductor device and method of forming the same
US6515329B2 (en) Flash memory device and method of making same
US6057193A (en) Elimination of poly cap for easy poly1 contact for NAND product
US6995420B2 (en) Semiconductor device and method of manufacturing the same
JPH09167806A (en) Semiconductor device and its manufacture
JPH08250612A (en) Manufacture of non-volatile semiconductor storage device
JPH0328832B2 (en)
JP2000228509A (en) Semiconductor device
JPH05102436A (en) Semiconductor memory device and manufacture thereof
US5637897A (en) Nonvolatile semiconductor memory device with dual insulation layers between adjacent gate structures
US5414286A (en) Nonvolatile memory, method of fabricating the same, and method of reading information from the same
JPH0964215A (en) Flash memory device and its preparation
US4921815A (en) Method of producing a semiconductor memory device having trench capacitors
US8288227B2 (en) Semiconductor memory device with bit line of small resistance and manufacturing method thereof
GB2293269A (en) Method of manufacturing a nonvolatile memory device
US20020005546A1 (en) Non-volatile semiconductor memory and manufacturing method thereof
US6153475A (en) Method for the manufacturing a memory cell configuration
US7084453B2 (en) Method of forming different oxide thickness for high voltage transistor and memory cell tunnel dielectric
US7968404B2 (en) Semiconductor device and fabrication method therefor
JP2005183763A (en) Method of manufacturing semiconductor device including non-volatile memory
JP2848211B2 (en) Nonvolatile semiconductor memory device
US6559010B1 (en) Method for forming embedded non-volatile memory
JP4459955B2 (en) Bit line structure and manufacturing method thereof