JPH07232993A - Photochemical hole burning crystal and its production - Google Patents

Photochemical hole burning crystal and its production

Info

Publication number
JPH07232993A
JPH07232993A JP2428994A JP2428994A JPH07232993A JP H07232993 A JPH07232993 A JP H07232993A JP 2428994 A JP2428994 A JP 2428994A JP 2428994 A JP2428994 A JP 2428994A JP H07232993 A JPH07232993 A JP H07232993A
Authority
JP
Japan
Prior art keywords
crystal
hole
hole burning
gas
burning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2428994A
Other languages
Japanese (ja)
Inventor
Yuka Naitou
由香 内藤
Nobuhiro Kodama
展宏 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2428994A priority Critical patent/JPH07232993A/en
Publication of JPH07232993A publication Critical patent/JPH07232993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Abstract

PURPOSE:To produce the hole burning crystal with which a stable hole burning is effected even at room temp. and a narrow line width of the hole can be attained by growing the crystal through melting and solidifying a mixture of fluoride or oxide of Sm with fluorides of K and La in a non-oxidizing atmosphere. CONSTITUTION:In the production of this hole burning crystal, fluoride or oxide of Sm and fluorides of K and La are mixed together in atomic ratios in the product crystal of Sm:K:La=x:(1-x+y):(1-y), wherein: 0.001<=x<=0.2; 0<=y<=x. The resultant mixture is melted and solidified at 1000 to 1500 deg.C in a non- oxidizing atmosphere to grow the crystal and to produce the objective irregularly structured fluorite type crystal which contains Sm<2+> as the guest optically active ion and in which the composition of the host is represented by the formula Smx: K1-x+yLa1-yF4 wherein (x) and (y) are as defined above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Sm2+を含んだ不規則
構造フルオライト型結晶に関するもので、とくに高密度
の記録材料として利用できる光化学ホールバーニング材
料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an irregular structure fluorite type crystal containing Sm 2+ , and more particularly to a photochemical hole burning material which can be used as a high density recording material.

【0002】[0002]

【従来の技術】光化学ホールバーニング(PHB)材料
は、現在の光ディスクの記録密度より遥かに大きな記録
密度を可能にする記録素子として注目されている。PH
B材料においては、材料結晶に結晶成分として光活性種
を適当なマトリックスに分散させると、光活性種が様々
なサイトに置かれることから、その結晶の光吸収スペク
トルは不均一な広りを持ち、この広りよりも線幅の狭い
レーザー光を照射すると、その光に共鳴する光活性種の
みが励起される。
2. Description of the Related Art Photochemical hole-burning (PHB) materials have been attracting attention as recording elements that enable recording densities much higher than those of current optical disks. PH
In the B material, when the photoactive species as a crystal component is dispersed in an appropriate matrix in the material crystal, the photoactive species are placed at various sites, so that the light absorption spectrum of the crystal has a non-uniform spread. When a laser beam having a line width narrower than this spread is irradiated, only photoactive species that resonate with the light are excited.

【0003】そこで、レーザー光によってPHB材料の
光活性種を失活状態にしておく(書き込み動作)と、吸
収スペクトルを測定する際(読み出し)に、穴(ホー
ル)のあいたような状態の鋭いスペクトルが得られ、こ
の穴の有無をディジタル情報に対応させることによっ
て、超高密度の記録が可能となる。
Therefore, when the photoactive species of the PHB material are deactivated by a laser beam (writing operation), a sharp spectrum with a hole is present when measuring the absorption spectrum (reading). By making the presence or absence of this hole correspond to the digital information, it becomes possible to record at an extremely high density.

【0004】当初、このようなPHB材料の製法とし
て、ホールバーニングを発現し得る有機分子を無機高分
子や結晶にドープする方法が開発された。近時、ホール
バーニングを発現し得る物質として希土類イオンをドー
プすることが提案され、例えば、BaFCl0.5 Br
0.5 :Sm2+結晶の場合、液体窒素温度でホールが形成
されると報告されている(C.Wei, S.Haung et al, J.Lu
minescence,Vol 143,161(1989))。しかし、この結晶で
は、ホールバーニングを発現させるのに、極めて低い動
作温度が必要で、動作温度を高くするとホールの線幅が
大きくなり、記録素子の記録密度が減少する。
Initially, as a method of manufacturing such a PHB material, a method of doping an inorganic polymer or crystal with an organic molecule capable of expressing hole burning was developed. Recently, it has been proposed to dope rare earth ions as a substance capable of exhibiting hole burning, for example, BaFCl 0.5 Br.
In the case of 0.5 : Sm 2+ crystal, it is reported that holes are formed at liquid nitrogen temperature (C.Wei, S.Haung et al, J.Lu.
minescence, Vol 143,161 (1989)). However, in this crystal, an extremely low operating temperature is required to develop the hole burning, and when the operating temperature is increased, the line width of the holes becomes large and the recording density of the recording element decreases.

【0005】また、SrFCl0.5 Br0.5 :Sm2+
室温でホールバーニングが観察されたと報告されている
(R.Janniso and H.Bill,Europhys.Lett.,vol16,569(19
91)。しかしこの結晶は、400μm 程度の小さいサイ
ズでしか得られず、製造の容易さ、材料の大きさの点で
実用上必ずしも充分ではない。さらに第一のホールに隣
接して第2のホールが生成すると、第一のホールのかな
りの部分が埋没する現象(いわゆるHole filling現象)
がみられ、実用上問題があると考えられる。
Further, it has been reported that hole burning of SrFCl 0.5 Br 0.5 : Sm 2+ was observed at room temperature (R. Janniso and H. Bill, Europhys. Lett., Vol16,569 (19)).
91). However, this crystal can be obtained only in a small size of about 400 μm, which is not always practically sufficient in terms of easiness of production and size of material. Furthermore, when a second hole is formed adjacent to the first hole, a substantial part of the first hole is buried (so-called hole filling phenomenon).
Is observed, which is considered to be a problem in practical use.

【0006】また、非酸化物ガラスとして、HfF4
BaF3 などのフッ化物ガラスに希土類イオンを含有さ
せた場合、室温でホールバーニングが観察されることが
報告されている(K.Hirao, S.Todoroki et al, J.Non-Cr
yst.Solids.152,267 (1993)。しかし、そのホールは幅
が広くやはり実用面で問題があると考えられる。
Further, as a non-oxide glass, HfF 4 ,
It has been reported that when a rare earth ion is contained in a fluoride glass such as BaF 3 , hole burning is observed at room temperature (K. Hirao, S. Todoroki et al, J. Non-Cr.
yst. Solids. 152, 267 (1993). However, the hole is wide and it is considered that there is a problem in practical use.

【0007】一方、酸化物ガラスで、2価のSmイオン
を含有したホウ酸塩ガラスが室温で安定なホールバーニ
ング材料となることが報告されている(K.Hirao,S.Todo
rokiet al,Opt.Lett.18,1586(1993))。この材料は非酸
化物よりホールの線幅は狭くなるが、実用的な意味で未
だ充分ではない。
On the other hand, it has been reported that borate glass containing divalent Sm ions as an oxide glass can be a stable hole-burning material at room temperature (K. Hirao, S. Todo).
roki et al, Opt. Lett. 18, 1586 (1993)). This material has a narrower hole line width than non-oxide, but it is still not sufficient in a practical sense.

【0008】現在、液体窒素温度より高温で、室温でも
安定にホールバーニングを発現し、またホール線幅も充
分狭く、かつ埋没現象(hole filling現象)のないバル
ク単結晶材料は見出されていない。
At present, no bulk single crystal material has been found which exhibits hole burning at a temperature higher than liquid nitrogen temperature even at room temperature, has a sufficiently narrow hole line width, and has no hole filling phenomenon. .

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、かか
る状況に鑑み、高温度、例えば室温でも安定してホール
バーニングを発現し、かつホール線幅も狭い、ホールバ
ーニング結晶を提供することにある。
In view of the above situation, an object of the present invention is to provide a hole-burning crystal that stably exhibits hole-burning even at high temperature, for example, room temperature, and has a narrow hole line width. is there.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記課題
の解決のため種々検討を行った結果、光活性イオンとし
てSm2+を含有したある種のフルオライト型結晶は、結
晶中でSm2+は安定に存在し、室温程度の比較的高温度
でホールバーニングが発現するとともに狭いホール線幅
を持ち、またホール多重度の高い新規な結晶であること
を見出した。又、この結晶はホストとして高い不規則構
造を持つフッ化物固溶体結晶を用い、非酸化性雰囲気に
て溶融固化することにより得られることを見出し本発明
を完成した。
As a result of various studies for solving the above-mentioned problems, the present inventors found that a certain fluorite type crystal containing Sm 2+ as a photoactive ion was found in the crystal. It has been found that Sm 2+ is a novel crystal that is stable, exhibits hole burning at a relatively high temperature of about room temperature, has a narrow hole line width, and has a high hole multiplicity. Further, they have found that this crystal can be obtained by melting and solidifying in a non-oxidizing atmosphere using a fluoride solid solution crystal having a highly disordered structure as a host, and completed the present invention.

【0011】即ち、本発明は、ゲスト光活性イオンとし
てSm2+イオンを含み、ホストが組成式Smx :K
1-x+y La1-y 4 (x:0.001≦x≦0.2、
y:0≦y≦x)で表される不規則構造フルオライト型
光化学ホールバーニング結晶およびその製造法に関する
ものである。次に本発明を更に詳細に説明する。
That is, according to the present invention, Sm 2+ ions are contained as guest photoactive ions, and the host has the composition formula Smx: K.
1-x + y La 1-y F 4 (x: 0.001 ≦ x ≦ 0.2,
The present invention relates to a disordered structure fluorite type photochemical hole burning crystal represented by y: 0 ≦ y ≦ x) and a method for producing the same. Next, the present invention will be described in more detail.

【0012】本発明の結晶で、ホール活性イオンとして
のSm2+の量は、上記した組成のxで示すように0.0
01≦x≦0.2であるが、この量が0.001より小
であると結晶の吸収及び発光強度が弱くホール特性の面
で好ましくなく、又0.2より大であると濃度消光を起
こすので好ましくない。又、yの量は、上記組成式で示
したとおり、xと同様にこの範囲外ではホール特性の面
で好ましくない。
In the crystal of the present invention, the amount of Sm 2+ as hole active ions is 0.0 as shown by x in the above composition.
Although 01 ≦ x ≦ 0.2, if this amount is less than 0.001, the absorption and emission intensity of crystals is weak, which is not preferable in terms of Hall characteristics, and if it is more than 0.2, concentration quenching occurs. It is not preferred because it will occur. Also, as shown in the above composition formula, the amount of y is unfavorable from the viewpoint of hole characteristics outside of this range, similar to x.

【0013】本発明の結晶のホールバーニング材料の特
性として、後述の製造法において、還元により得られる
Sm2+は酸化され易い性質を持っているが、本発明のフ
ルオライト結晶では、Sm2+イオンを安定な状態で存在
させることが出来、しかも、Sm2+を含有した結晶は、
光イオン化の活性エネルギーが高く、ホール形成後Sm
3+に変化したイオンも安定な状態で存在するので、各種
ホールバーニング材料の内でも室温動作の光記録材料と
しての優れた特性が期待出来る。
As a characteristic of the hole burning material for crystals of the present invention, Sm 2+ obtained by reduction has a property of being easily oxidized in the production method described later, but in the fluorite crystal of the present invention, Sm 2+ is present. Ions can be allowed to exist in a stable state, and crystals containing Sm 2+ are
High activation energy of photoionization and Sm after hole formation
Since the ions that have changed to 3+ also exist in a stable state, excellent properties can be expected as an optical recording material that operates at room temperature among various hole burning materials.

【0014】又、この不規則構造フルオライト型結晶
は、SmイオンとF- イオンとのイオン結合形態(Sm
−F)が僅かに異なった部分が極めて多数存在するた
め、光の波長毎に屈折率が変化することから波長多重ホ
ログラムとなり得るので、フォトリフラクティブ効果を
応用したホログラム多重記録材料等としての応用も期待
できる。次ぎに本発明の製造方法について説明する。
Further, this disordered structure fluorite type crystal is an ionic bond form (Sm ion) of Sm ion and F ion.
Since there are an extremely large number of portions where -F) is slightly different, the refractive index changes for each wavelength of light, so that a wavelength-multiplexed hologram can be obtained. Therefore, it can also be applied as a hologram multiple-recording material to which a photorefractive effect is applied. Can be expected. Next, the manufacturing method of the present invention will be described.

【0015】本発明の結晶を得る際の原料は、結晶を構
成する各々の成分のフッ化物又は酸化物を用いる。即
ち、Smイオンのフッ化物又は酸化物、Kイオン、La
イオンのフッ化物を用い、これらを原子比でSm:K:
La=x:1−x+y:1−y(0.001≦x≦0.
2、0≦y≦x)の量比になるように予め混合し、この
混合物を還元性ガス、例えば水素又は水素と二酸化炭素
もしくは一酸化炭素との混合ガス、又は一酸化炭素と二
酸化炭素との混合ガス、あるいはこれらのいずれかのガ
スをキャリアガスとしてのヘリウム又はアルゴン又は窒
素と混合したガス、あるいはヘリウム、アルゴン、窒素
のいずれかのガスを用いた非酸化性雰囲気下で溶融固化
し結晶を育成する。
As a raw material for obtaining the crystal of the present invention, a fluoride or an oxide of each component constituting the crystal is used. That is, fluoride or oxide of Sm ion, K ion, La
Ion fluoride is used, and these are atomic ratio Sm: K:
La = x: 1−x + y: 1−y (0.001 ≦ x ≦ 0.
2, 0 ≦ y ≦ x), and the mixture is mixed in advance, and the mixture is mixed with a reducing gas such as hydrogen or a mixed gas of hydrogen and carbon dioxide or carbon monoxide, or carbon monoxide and carbon dioxide. Mixed gas, or a gas in which any of these gases is mixed with helium, argon, or nitrogen as a carrier gas, or melted and solidified in a non-oxidizing atmosphere using any of helium, argon, or nitrogen gas, and crystallized. To train.

【0016】本発明の結晶製造法での溶融温度は100
0〜1500℃で、0.1〜0.5℃/minの徐冷法、又
は熱交換法、0.5〜5mm/hr 程度の成長速度をもつ引
上げ法、フローティングゾーン法、ブリッジマン法等の
方法で溶融固化して結晶を得る。
The melting temperature in the crystal production method of the present invention is 100.
Slow cooling method of 0.1 to 0.5 ° C / min at 0 to 1500 ° C, or heat exchange method, pulling method with a growth rate of about 0.5 to 5 mm / hr, floating zone method, Bridgman method, etc. Are melted and solidified to obtain crystals.

【0017】[0017]

【実施例】次ぎに本発明を実施例により更に詳細に説明
する。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples.

【0018】[実施例1]SmF2 、KF、LaF3
原子比、Sm:K:La=0.04:1:0.96とな
るように調製、混合、成形し、成形体をモリブデンルツ
ボに入れ、2.5vol%の水素を含むアルゴンガス雰囲気
下、1350℃で溶融固化させ、単結晶を得た。得られ
た結晶のX線回折の結果を図1に示す。X線回折の結果
から、得られた結晶は不規則構造を持つ固溶体Sm:K
LaF4 の単結晶相で格子定数はa=5.941Aであ
った。得られた結晶の吸収スペクトルを図2に示す。ス
ペクトルはSm2+のf−d遷移による強い吸収を示し、
Sm2+を含有していることが確認された。
[Example 1] SmF 2 , KF and LaF 3 were prepared, mixed and molded so that the atomic ratio was Sm: K: La = 0.04: 1: 0.96, and the molded body was molybdenum crucible. And melted and solidified at 1350 ° C. in an argon gas atmosphere containing 2.5 vol% hydrogen to obtain a single crystal. The result of X-ray diffraction of the obtained crystal is shown in FIG. From the result of X-ray diffraction, the obtained crystal was a solid solution Sm: K having an irregular structure.
In the single crystal phase of LaF 4 , the lattice constant was a = 5.941A. The absorption spectrum of the obtained crystal is shown in FIG. The spectrum shows strong absorption due to the fd transition of Sm 2+ ,
It was confirmed to contain Sm 2+ .

【0019】得られた結晶のPHBの測定は以下の要領
で実施した。即ち、サンプルを293Kにて、DCM色
素レーザー(約100mW)を1秒〜600秒照射した。
波長は 50 70 遷移に共鳴するように設定した。
次に照射を断続的に行い、 50 72 遷移に対応す
る720nmでの発光をモニターすることによって、励起
スペクトルが観察され、波長を変えたDCM色素レーザ
ーで励起された励起スペクトルが得られた。
The PHB of the obtained crystal was measured according to the following procedure. That is, the sample was irradiated with a DCM dye laser (about 100 mW) for 1 to 600 seconds at 293K.
Wavelength 5 D 0 - was set to resonate to 7 F 0 transition.
Intermittently performs irradiation then, 5 D 0 - by monitoring emission at corresponding 720nm to 7 F 2 transition, the excitation spectrum is observed, the excitation spectrum is excited with DCM dye laser with different wavelengths Was obtained.

【0020】図3に682.5nmのDCM色素レーザー
を600秒照射した後の室温での励起スペクトルを示
す。スペクトルに永続的に存在するホールバーニングが
観察された。ホールの線幅は室温で約5cm-1であり、波
長を変えることにより、Hole fillingがない約15個の
ホールが形成される。ホールバーニング後の光化学反応
生成物としての電子のトラップはSm3+であり、光化学
反応は、Sm2++(トラップ中心)−> Sm3++(トラ
ップ中心)- のように示される。
FIG. 3 shows an excitation spectrum at room temperature after irradiation with a 682.5 nm DCM dye laser for 600 seconds. Permanently present hole burning in the spectrum was observed. The line width of the holes is about 5 cm -1 at room temperature, and by changing the wavelength, about 15 holes without hole filling are formed. The electron trap as a photochemical reaction product after hole burning is Sm 3+ , and the photochemical reaction is shown as Sm 2+ + (trap center) −> Sm 3+ + (trap center) .

【0021】図4に室温におけるホールバーニング時間
とホール深さの関係を示す。図3で観測されたものは、
いわゆる光ゲート型(選択励起波長λ1 とゲート波長λ
2 とがλ1 =λ2 の関係)と称されるものではない。従
って、ゲート波長を短くすれば、ホールバーニング効率
の向上あるいはバーニング時間の短縮化が可能である。
FIG. 4 shows the relationship between the hole burning time and the hole depth at room temperature. What was observed in Figure 3 is
So-called optical gate type (selective excitation wavelength λ 1 and gate wavelength λ
2 and λ 1 = λ 2 ) is not called. Therefore, if the gate wavelength is shortened, the hole burning efficiency can be improved or the burning time can be shortened.

【0022】[実施例2]SmF2 、KF、LaF3
原子比で、Sm:K:La=0.01:0.99:1と
なるように調製、混合して成形し、成形体をモリブデン
ルツボに入れ、2vol%の水素を含むアルゴンガス雰囲気
下、1350℃で加熱融解し、徐冷法により単結晶を育
成した。育成結晶は実施例1と同様、X線回折の結果、
単相である事を確認した。また、吸収スペクトルの測定
より、Sm2+が含有していることが確認された。
[Example 2] SmF 2 , KF and LaF 3 were prepared and mixed so that the atomic ratio of Sm: K: La was 0.01: 0.99: 1. It was placed in a molybdenum crucible and heated and melted at 1350 ° C. in an argon gas atmosphere containing 2 vol% hydrogen, and a single crystal was grown by a slow cooling method. As for the grown crystal, as in Example 1, as a result of X-ray diffraction,
It was confirmed to be a single phase. Further, it was confirmed from the absorption spectrum measurement that Sm 2+ was contained.

【0023】得られた結晶のPHBの測定は、実施例1
と同様な要領で行った。室温でのバーニング後、測定ス
ペクトルに、室温でホールが生成することが観測され
た。ホールの線幅は室温で約5cm-1で約15個のホール
が形成される。
The PHB of the obtained crystal was measured in Example 1
I went in the same way. After burning at room temperature, it was observed in the measured spectrum that holes were generated at room temperature. The line width of the holes is about 5 cm -1 at room temperature, and about 15 holes are formed.

【0024】[実施例3]SmF2 、KF、LaF3
原子比Sm:K:La=0.04:1:0.96になる
ように調製、混合した混合物の成形体を原料とし、1vo
l%の水素を含むアルゴンガス雰囲気下、成長速度1mm/h
でフローティングゾーン法により結晶を育成した。得ら
れた結晶はX線回折の結果、単相であることを確認し
た。またDCM色素レーザー照射後、励起スペクトルを
測定した結果、実施例1、2と同様に室温でホールバー
ニングが観測された。
Example 3 SmF 2 , KF and LaF 3 were prepared so that the atomic ratio Sm: K: La = 0.04: 1: 0.96 and mixed, and the mixture was used as a raw material to produce 1 vo.
Growth rate 1 mm / h under argon gas atmosphere containing l% hydrogen
The crystal was grown by the floating zone method. As a result of X-ray diffraction, the obtained crystal was confirmed to be a single phase. In addition, as a result of measuring an excitation spectrum after irradiation with a DCM dye laser, hole burning was observed at room temperature as in Examples 1 and 2.

【0025】[実施例4]SmF2 、KF、LaF3
原子比、Sm:K:La=0.05:0.95:1にな
るように調製、混合、成形し、成形体をモリブデンルツ
ボに入れて高周波誘導加熱によって、Sm2+イオンが含
まれるように2vol%の水素を含むアルゴンガス雰囲気下
で溶融し、結晶回転速度10rpm 、引き上げ速度0.8
mm/hで[100]軸方位で引き上げ法により、直径20mm、
長さ40mmの単結晶を育成した。得られた結晶はX線回
折の結果から単相であることを確認した。
[Example 4] SmF 2 , KF and LaF 3 were prepared, mixed and molded in an atomic ratio of Sm: K: La = 0.05: 0.95: 1, and the molded body was molybdenum crucible. In an argon gas atmosphere containing 2 vol% hydrogen so as to contain Sm 2+ ions by high-frequency induction heating, and the crystal rotation speed was 10 rpm and the pulling speed was 0.8.
20 mm diameter by pulling method in [100] axis direction at mm / h,
A single crystal having a length of 40 mm was grown. It was confirmed from the result of X-ray diffraction that the obtained crystal was a single phase.

【0026】この結晶は吸収スペクトルからSm2+が含
有することが確認された。PHBの測定は実施例1と同
様な要領で行った。レーザ照射後、室温で永続的に存在
するホールバーニングが励起スペクトルに観測された。
ホールの線幅、ホールの数は実施例1とほぼ同様であっ
た。
It was confirmed from the absorption spectrum that this crystal contained Sm 2+ . The PHB was measured in the same manner as in Example 1. After laser irradiation, hole burning, which exists permanently at room temperature, was observed in the excitation spectrum.
The line width of the holes and the number of holes were almost the same as in Example 1.

【0027】上記のホールバーニング結晶には、レーザ
ーの異なる波長毎に励起されるSm−F結合が多種類存
在するので、波長を変えてレーザーを照射することによ
り波長の数に応じた線幅のホールの形成が可能である。
さらに、このホールバーニング結晶にITO膜を付け、
ITO膜に電圧を印加すると、レーザーの波長毎にホー
ルが形成され、又同様に他のレベルの電圧でもレーザー
の波長毎にホールが形成され、電場下光多重メモリーと
なり得ることが判った。又、ホール幅が狭い特性を活か
し、フォトンエコー現象を利用した時間領域での光メモ
リーあるいは信号処理、パターン認識が可能である。
Since there are many kinds of Sm-F bonds excited in different wavelengths of the laser in the above hole-burning crystal, the line width corresponding to the number of wavelengths can be changed by irradiating the laser with changing the wavelength. Holes can be formed.
Furthermore, an ITO film is attached to this hole burning crystal,
It has been found that when a voltage is applied to the ITO film, holes are formed for each wavelength of the laser, and holes are also formed for each wavelength of the laser even at voltages of other levels, which can serve as an optical multiple memory under an electric field. Further, by utilizing the characteristic that the hole width is narrow, it is possible to perform optical memory or signal processing and pattern recognition in the time domain using the photon echo phenomenon.

【0028】[0028]

【発明の効果】本発明のSm2+を含有した不規則構造フ
ルオライト型結晶は、他のハロゲンを含む結晶(SrF
Cl0.5 Br0.5 :Sm2+、又はSm2+含有HfF4
BaF2 系ガラス)、ホウ酸ガラスなどに比べてホール
バーニングで発現するホールの線幅が狭く、又他のハロ
ゲン化物に比べ大きな結晶として得られ、室温において
安定なホールバーニングが発現し、室温動作の光記録材
料としての優れた特性を持つ材料として期待できる。
INDUSTRIAL APPLICABILITY The disordered structure fluorite type crystal containing Sm 2+ of the present invention is a crystal containing other halogen (SrF).
Cl 0.5 Br 0.5 : Sm 2+ or Sm 2 + -containing HfF 4
BaF 2 type glass), borate glass, etc., have a narrower hole line width that appears in hole burning, and are obtained as crystals larger than other halides. Stable hole burning appears at room temperature, and room temperature operation is achieved. It can be expected as a material having excellent properties as an optical recording material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で得た結晶のX線回折図FIG. 1 is an X-ray diffraction pattern of the crystal obtained in Example 1 of the present invention.

【図2】本発明の実施例1で得た結晶の吸収スペクトル
FIG. 2 is an absorption spectrum diagram of the crystal obtained in Example 1 of the present invention.

【図3】本発明の実施例1で得た結晶の励起スペクトル
FIG. 3 is an excitation spectrum diagram of the crystal obtained in Example 1 of the present invention.

【図4】本発明の実施例1で得た結晶のホールバーニン
グ時間とホールの深さの関係を示す図
FIG. 4 is a diagram showing the relationship between the hole burning time and the hole depth of the crystal obtained in Example 1 of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ゲスト光活性イオンとしてSm2+を含み、
ホストが組成Smx :K1-x+y La1-y 4 (x:0.
001≦x≦0.2、y:0≦y≦x)で表される不規
則構造フルオライト型結晶
1. A guest photoactive ion containing Sm 2+ ,
The host has the composition Sm x : K 1-x + y La 1-y F 4 (x: 0.
001 ≤ x ≤ 0.2, y: 0 ≤ y ≤ x)
【請求項2】結晶がホールバーニング結晶である請求項
1記載の不規則構造フルオライト型結晶。
2. The disordered fluorite type crystal according to claim 1, wherein the crystal is a hole burning crystal.
【請求項3】Smのフッ化物又は酸化物、K、Laのフ
ッ化物を、生成結晶における原子比でSm:K:La:
=x:1−x+y:1−y(x:0.001≦x≦0.
2、y:0≦y≦x)の量比で混合した混合物を、非酸
化性ガス雰囲気下で溶融固化させることにより結晶を育
成することを特徴とする不規則構造フルオライト型結晶
の製造方法。
3. A fluoride or oxide of Sm, or a fluoride of K or La in an atomic ratio of Sm: K: La: in the produced crystal.
= X: 1−x + y: 1−y (x: 0.001 ≦ x ≦ 0.
2. A method for producing a disordered structure fluorite-type crystal, characterized by growing a crystal by melting and solidifying a mixture obtained by mixing in an amount ratio of y: 0 ≦ y ≦ x) in a non-oxidizing gas atmosphere. .
【請求項4】非酸化性ガスとして、水素、又は水素と二
酸化炭素もしくは一酸化炭素との混合ガス、又は一酸化
炭素と二酸化炭素との混合ガス、あるいはこれらのいず
れかのガスをヘリウム又はアルゴン又は窒素と混合した
ガス、あるいはヘリウムガス、アルゴンガス、窒素ガス
のいずれかのガスを用いることを特徴とする請求項3記
載の製造方法。
4. As the non-oxidizing gas, hydrogen, a mixed gas of hydrogen and carbon dioxide or carbon monoxide, a mixed gas of carbon monoxide and carbon dioxide, or one of these gases is helium or argon. 4. The manufacturing method according to claim 3, wherein a gas mixed with nitrogen, or any one of helium gas, argon gas, and nitrogen gas is used.
JP2428994A 1994-02-22 1994-02-22 Photochemical hole burning crystal and its production Pending JPH07232993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2428994A JPH07232993A (en) 1994-02-22 1994-02-22 Photochemical hole burning crystal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2428994A JPH07232993A (en) 1994-02-22 1994-02-22 Photochemical hole burning crystal and its production

Publications (1)

Publication Number Publication Date
JPH07232993A true JPH07232993A (en) 1995-09-05

Family

ID=12134024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2428994A Pending JPH07232993A (en) 1994-02-22 1994-02-22 Photochemical hole burning crystal and its production

Country Status (1)

Country Link
JP (1) JPH07232993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676172A (en) * 2012-04-24 2012-09-19 中国科学院福建物质结构研究所 Rare earth-doped fluoride lanthanum potassium nano fluorescent marking material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676172A (en) * 2012-04-24 2012-09-19 中国科学院福建物质结构研究所 Rare earth-doped fluoride lanthanum potassium nano fluorescent marking material and preparation method thereof

Similar Documents

Publication Publication Date Title
Lin et al. High-security-level multi-dimensional optical storage medium: nanostructured glass embedded with LiGa5O8: Mn2+ with photostimulated luminescence
Barton et al. New phase change material for optical recording with short erase time
US5478498A (en) Disordered fluorite-type photochemical hole burning crystal containing SM2+ as active ions
US3932299A (en) Method for the reduction of iron in iron-doped lithium niobate crystals
JP2931960B2 (en) Iron-doped lithium niobate single crystal, heat treatment method thereof, and hologram application element including the single crystal
JPH07232993A (en) Photochemical hole burning crystal and its production
Lee et al. Photochromic effect in near-stoichiometric LiNbO 3 and two-color holographic recording
Hatano et al. Investigation of the oxidation state of Fe in stoichiometric Fe: LiNbO3 for digital holographic recording
JPH07157395A (en) Photochemical hole burning crystal and production thereof
JPH0562239A (en) Recording medium and information recording method by using this medium
JPH07277892A (en) Sm-containing fluorite crystal and its production
JPH07215797A (en) Fluorite-type crystal and its production
JPH07232995A (en) Fluorite type crystal and its production
JPH07172991A (en) Fluorite type crystal and its production
JPH07157396A (en) Fluorite type crystal and production thereof
JPH07257997A (en) Sm-containing fluorite type crystal and production thereof
JPH07232996A (en) Sm-containing fluorite type crystal and its production
JPH07172992A (en) Sm-containing fluorite type crystal and its production
JP2866924B2 (en) Oxide single crystal and method for producing the same
Liu et al. Growth and two-color holographic storage properties of Mn-doped lithium niobate crystals with varying Li∕ Nb ratio
JPH0618949A (en) Cerium-doped optical device
JPS63228433A (en) Optical information recording, reproducing and erasing member
JPH02103747A (en) Phase transfer type optical information recording medium
JP2866940B1 (en) Nonlinear optical materials and devices using transition element-doped fine particles
Asatsuma et al. Room-temperature spectral hole-burning observed from a thin film of SrFC1xBr (1− x): Sm2+