JPH0721117Y2 - Dynamic braking control circuit for electric vehicles - Google Patents

Dynamic braking control circuit for electric vehicles

Info

Publication number
JPH0721117Y2
JPH0721117Y2 JP1985084070U JP8407085U JPH0721117Y2 JP H0721117 Y2 JPH0721117 Y2 JP H0721117Y2 JP 1985084070 U JP1985084070 U JP 1985084070U JP 8407085 U JP8407085 U JP 8407085U JP H0721117 Y2 JPH0721117 Y2 JP H0721117Y2
Authority
JP
Japan
Prior art keywords
circuit
series
speed control
switch
field coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985084070U
Other languages
Japanese (ja)
Other versions
JPS61202103U (en
Inventor
年一 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP1985084070U priority Critical patent/JPH0721117Y2/en
Publication of JPS61202103U publication Critical patent/JPS61202103U/ja
Application granted granted Critical
Publication of JPH0721117Y2 publication Critical patent/JPH0721117Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は直流直巻モータを利用した電気自動車におい
て、自動車の走行状態に適合した条件で制動を開始する
発電制動制御回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of the Invention The present invention relates to a dynamic braking control circuit for starting braking in an electric vehicle using a DC series-wound motor under conditions suitable for the running state of the vehicle.

従来の技術 電気自動車は、車載のバッテリによって動く直流モータ
を駆動源とし、自動車の運転に必要な前進、後進の切換
え、及び速度制御をするため、その駆動回路(1)は一
般に第5図に示すような構成を持つ。
2. Description of the Related Art An electric vehicle uses a direct-current motor driven by an on-board battery as a drive source to perform forward / reverse switching and speed control necessary for driving the vehicle. Therefore, its drive circuit (1) is generally shown in FIG. It has the configuration as shown.

第5図において、(2)は車載のバッテリ、(3)は電
機子コイル(3a)及び界磁コイル(3b)からなる直流直
巻モータ、(4)は抵抗器r1,r2,r3を直列接続し、図示
しないアクセルペダルの踏み込みに連動して順に導通す
る接点m1,m2,m3によって、各抵抗器r1,r2,r3を短絡させ
るようにした速度制御用可変抵抗回路、(5)は前進モ
ード時にアクセルペダル等の速度制御手段が操作された
ときに界磁コイル(3b)の一端を可変抵抗回路(4)の
一端に接続する常開接点(5a)と、速度制御手段の非操
作時および前進モード時以外のとき界磁コイル(3b)の
一端を電機子コイル(3a)に接続する常閉接点(5b)と
からなる前進スイッチ、(6)は後進モード時に速度制
御手段が操作されたときに界磁コイル(3b)の他端を可
変抵抗回路(4)の一端に接続する常開接点(6a)と、
速度制御手段の非操作時および後進モード時以外のとき
界磁コイル(3b)の他端を電機子コイル(3a)に接続す
る常閉接点(6b)とからなる後進スイッチ、(7)はヒ
ューズである。
In FIG. 5, (2) is a vehicle-mounted battery, (3) is a DC series-wound motor including an armature coil (3a) and a field coil (3b), and (4) is resistors r 1 , r 2 , r. 3 a series connection, the contact m 1, m 2, m 3 to conduct in the forward in conjunction with the depression of the accelerator pedal, not shown, for speed control so as to short-circuit the respective resistors r 1, r 2, r 3 The variable resistance circuit (5) is a normally open contact (5a) that connects one end of the field coil (3b) to one end of the variable resistance circuit (4) when the speed control means such as the accelerator pedal is operated in the forward mode. And a forward switch (6) comprising a normally closed contact (5b) connecting one end of the field coil (3b) to the armature coil (3a) when the speed control means is not operated and not in the forward mode. When the speed control means is operated in the reverse drive mode, the other end of the field coil (3b) is connected to the variable resistance circuit (4). A normally open contact (6a) connected to the end,
A reverse switch consisting of a normally closed contact (6b) connecting the other end of the field coil (3b) to the armature coil (3a) when the speed control means is not operated and in a mode other than the reverse mode, and (7) is a fuse Is.

直流直巻モータ(3)の駆動回路(1)が第5図に示す
ように中立モード状態にあるとき、アクセルペダルを少
し踏み込むと前進スイッチ(5)は常開接点(5a)が導
通するように切換え接続されて駆動回路(1)が前進モ
ード状態になりモータ(3)は正方向に回転を開始す
る。この後アクセルペダルをさらに踏込むことにより、
これと連動している接点がm1→m2→m3の順に閉じ、電機
子コイル(3a)の両端に加わる電圧が上昇するので、モ
ータ(3)の回転数が上昇する。接点m3が導通した状態
は可変抵抗回路(4)の両端が短絡されているので、最
高速度が得られる。この後アクセルペダルの踏込み状態
を変化させて、接点m1,m2,m3のいずれかを導通させるこ
とにより、モータ(3)の回転速度を所望の大きさに制
御することができる。
When the drive circuit (1) of the DC series-wound motor (3) is in the neutral mode state as shown in FIG. 5, the forward switch (5) causes the normally open contact (5a) to conduct when the accelerator pedal is depressed a little. The drive circuit (1) is switched to the forward mode and the motor (3) starts rotating in the forward direction. After this, by further depressing the accelerator pedal,
The contacts interlocking with this are closed in the order of m 1 → m 2 → m 3 , and the voltage applied to both ends of the armature coil (3a) rises, so that the rotation speed of the motor (3) rises. Since the both ends of the variable resistance circuit (4) are short-circuited, the maximum speed is obtained when the contact m 3 is conductive. After that, by changing the depressing state of the accelerator pedal to bring one of the contacts m 1 , m 2 , and m 3 into conduction, the rotation speed of the motor (3) can be controlled to a desired magnitude.

また、後進時には、アクセルペダルから足を離し、前進
スイッチ(5)を常閉接点(5b)に切換えた後、モード
選択スイッチ(図示しない)により後進スイッチ(6)
の常開接点(6a)を導通状態にすると第5図の駆動回路
(1)は後進モード状態に切換えられて、界磁コイル
(3b)に通電する電流の向きが逆になるので、モータ
(3)は逆回転する。この場合にもアクセルペダルの踏
み込み操作により速度制御することが可能である。
When moving backward, release the accelerator pedal, switch the forward switch (5) to the normally closed contact (5b), and then press the reverse switch (6) with the mode selection switch (not shown).
When the normally open contact (6a) of the motor is turned on, the drive circuit (1) of FIG. 5 is switched to the reverse drive mode, and the direction of the current flowing through the field coil (3b) is reversed. 3) rotates in the reverse direction. Even in this case, the speed can be controlled by depressing the accelerator pedal.

考案が解決しようとする問題点 上記電気自動車の制動は、通常機械式のブレーキが使用
されている。しかし電気自動車は通常の自動車における
エンジンブレーキに相当するものがないため、大きなブ
レーキ力を必要とする場合、例えば下り坂の走行におい
てはブレーキ力が不足することもある。
Problems to be Solved by the Invention Generally, mechanical braking is used for braking the electric vehicle. However, since an electric vehicle does not have the equivalent of engine braking in a normal vehicle, when a large braking force is required, the braking force may be insufficient when traveling on a downhill, for example.

そこで本考案は直流直巻モータの駆動回路自体を利用
し、部品点数をほとんど増加させないで、自動車の走行
が、上記機械式ブレーキに補助が必要な所定の条件にな
ったときのみ、制動を開始する発電制動式のブレーキを
提供することを目的とする。
Therefore, the present invention uses the drive circuit itself of the DC series-wound motor, hardly increases the number of parts, and starts the braking only when the traveling of the vehicle becomes the predetermined condition that the above mechanical brake needs assistance. An object of the present invention is to provide a dynamic braking type brake.

問題点を解決するための手段 本考案は上記問題点に鑑みてなされたもので、上記問題
点を解決するための技術的手段は、 自動車の原動機である直流直巻モータの界磁コイル(10
b)と直流電源(11)を接続した第1の直列回路(9)
と、前記直流直巻モータの電機子コイル(10a)と速度
制御用可変抵抗回路(13)を接続した第2の直列回路
(12)と、前進・中立・後進の3状態に切替り、前進時
と後進時で上記第2の直列回路(12)の極性を切替えて
上記第1の直列回路(9)に接続し、アクセルペダル等
の速度制御手段が操作されないとき中立状態に復帰する
切換スイッチ回路(14)とからなる電気自動車の直流直
巻モータの駆動回路(8)において、 上記第1の直列回路(9)の直流電源(11)と界磁コイ
ル(10b)の接続点Pと、速度制御用可変抵抗回路(1
3)の端部から離れた所定の接続点Qとを接続する、発
電制御用スイッチ回路(18)を組込んだ分流回路(26)
と、 自動車が所定角度以上の傾斜の下り坂を走行しているこ
とを検出する下り勾配センサの出力aと、速度制御手段
を開放したアクセルOFF出力bとが同時に成立したこと
を条件として上記発電制御用スイッチ回路(18)を導通
させる制御条件判定回路(19)とからなり、 上記制御条件判定回路(19)の出力cにより発電制御用
スイッチ回路(18)を導通させて、第2の直列回路(1
2)の両端を切換スイッチ回路(14)によって閉じた閉
ループ回路(S)と、該閉ループ回路(S)中の抵抗器
と並列に接続された界磁コイル(10b)を含む分流回路
(T)とを形成し、 電機子コイル(10a)に、慣性走行速度に比例した制動
力を発生させたことを特徴とする発電制動制御回路であ
る。
Means for Solving Problems The present invention has been made in view of the above problems, and a technical means for solving the above problems is a field coil (10) of a direct current series motor, which is a prime mover of an automobile.
First series circuit (9) connecting b) and DC power supply (11)
And a second series circuit (12) in which the armature coil (10a) of the DC series-wound motor and the variable resistance circuit (13) for speed control are connected, and three states of forward, neutral and reverse, and forward, A changeover switch which switches the polarity of the second series circuit (12) between time and reverse and connects to the first series circuit (9), and returns to the neutral state when the speed control means such as the accelerator pedal is not operated. A drive circuit (8) for a DC series-wound motor of an electric vehicle comprising a circuit (14), a connection point P between the DC power supply (11) and the field coil (10b) of the first series circuit (9), Variable resistance circuit for speed control (1
A shunt circuit (26) incorporating a power generation control switch circuit (18) for connecting a predetermined connection point Q away from the end of 3).
And the above-mentioned power generation on the condition that the output a of the down-slope sensor for detecting that the vehicle is traveling on a downhill with an inclination of a predetermined angle or more and the accelerator OFF output b with the speed control means open are simultaneously established. A control condition determination circuit (19) for conducting the control switch circuit (18), and the power generation control switch circuit (18) is conducted by the output c of the control condition determination circuit (19) to generate a second series Circuit (1
A shunt circuit (T) including a closed loop circuit (S) whose both ends are closed by a changeover switch circuit (14) and a field coil (10b) connected in parallel with a resistor in the closed loop circuit (S). And the braking force proportional to the inertial traveling speed is generated in the armature coil (10a).

作用 上記手段の基本動作(正逆転及び速度制御)は次のよう
に行なわれる。
Action The basic operation (forward / reverse rotation and speed control) of the above means is performed as follows.

すなわち、切換スイッチ回路(14)は前進時と後進時と
で、第1の直列回路(9)と第2の直列回路(12)の両
側端子同士を逆向きに切換え接続する。これによって、
上記界磁コイル(10b)、電機子コイル(10a)、直流電
源(11)、及び速度制御用可変抵抗回路(13)を直列接
続した直流直巻モータの駆動回路(8)において、界磁
コイル(10b)と電機子コイル(10a)に通電する電流が
相対的に逆極性となり、正転(前進)と逆転(後進)が
切換えられる。また、この前進時と後進時に、アクセル
ペダルの踏み込み量に従う速度制御用可変抵抗回路(1
3)の抵抗値変化によって、モータ電流を変化させ速度
制御が行われる。
That is, the changeover switch circuit (14) switches and connects the both side terminals of the first series circuit (9) and the second series circuit (12) in opposite directions during forward movement and backward movement. by this,
A field coil in a drive circuit (8) for a direct current winding motor in which the field coil (10b), armature coil (10a), DC power supply (11), and variable resistance circuit for speed control (13) are connected in series. The currents flowing through (10b) and the armature coil (10a) have relatively opposite polarities, and normal rotation (forward movement) and reverse rotation (reverse movement) are switched. In addition, the speed control variable resistance circuit according to the amount of depression of the accelerator pedal (1
Speed control is performed by changing the motor current by changing the resistance value in 3).

発電制動は、本考案の特徴とする制動条件を判定回路
(19)が、制動開始条件の成立を検出したとき行われ
る。この制動開始条件は、少なくとも自動車が所定角度
以上の傾斜の下り坂を走行しているとき、速度制御手段
であるアクセルペダルから足を離すことである。
The dynamic braking is performed when the braking condition judging circuit (19), which is a feature of the present invention, detects that the braking start condition is satisfied. The braking start condition is to release the foot from the accelerator pedal, which is the speed control means, at least when the vehicle is traveling downhill with an inclination of a predetermined angle or more.

この条件成立時には、アクセルOFF出力を受けて中立と
なった切換スイッチ回路(14)が、直流電源(11)を切
離し、第2の直列回路(12)の両側端子を短絡・接続し
ている。そして、車両の慣性走行によって発生する電機
子コイル(10a)の電流を速度制御用可変抵抗回路(1
3)に流して、車両の慣性力を熱エネルギとして消費さ
せる発電制動を可能としている。仮にこのとき発電制動
用スイッチ回路(18)が投入されなければ、電機子コイ
ル(10a)に発生する起電力は界磁コイル(10b)の残留
磁気によるものだけであり、小さすぎて発電制動は有効
ではない。しかし、本考案では、このとき制動条件判定
回路(19)が発電制動用スイッチ回路(18)を導通させ
る。そして、界磁コイル(10b)に、速度制御用可変抵
抗回路(13)の一部(発電制動用スイッチ回路(18)が
接続される上記速度制御用可変抵抗回路(13)内の所定
の接続点bと第2の直列回路(12)の速度制御用可変抵
抗回路(13)側端子の間の抵抗)が接続され、電機子コ
イル(10a)の発生電圧をこの部分で分圧した電圧が、
正転(前進)時と同一極性で、界磁コイル(10b)の両
端に加えられる。これによって界磁コイルに所定電流が
通電し、残留磁気以上の発電制動に必要な界磁磁束を確
保する。この結果車両の慣性力は、速度制御用可変抵抗
回路内で熱エネルギとして消費され、発電制動が行なわ
れる。
When this condition is satisfied, the changeover switch circuit (14) which has been neutralized in response to the accelerator OFF output disconnects the DC power supply (11) and short-circuits / connects both terminals of the second series circuit (12). Then, the current of the armature coil (10a) generated by the inertial running of the vehicle is changed to the variable resistance circuit for speed control (1
It makes it possible to generate dynamic braking by consuming the inertial force of the vehicle as heat energy. If the dynamic braking switch circuit (18) is not turned on at this time, the electromotive force generated in the armature coil (10a) is only due to the residual magnetism of the field coil (10b), which is too small for dynamic braking. Not valid. However, in the present invention, at this time, the braking condition determination circuit (19) makes the dynamic braking switch circuit (18) conductive. A predetermined connection in the speed control variable resistance circuit (13) in which a part of the speed control variable resistance circuit (13) (the dynamic braking switch circuit (18) is connected to the field coil (10b) The resistance between the point b and the speed control variable resistance circuit (13) side terminal of the second series circuit (12) is connected, and the voltage generated by dividing the armature coil (10a) is ,
It is applied to both ends of the field coil (10b) with the same polarity as in normal rotation (forward movement). As a result, a predetermined current is passed through the field coil, and the field magnetic flux required for dynamic braking exceeding the residual magnetism is secured. As a result, the inertial force of the vehicle is consumed as heat energy in the variable resistance circuit for speed control, and dynamic braking is performed.

実施例 本考案の一実施例を第1図に示す直流直巻モータの駆動
回路(8)について説明する。
Embodiment An embodiment of the present invention will be described with reference to a drive circuit (8) for a DC series motor shown in FIG.

第1図において、(9)は直流直巻モータの界磁コイル
(10b)と車載バッテリ等の直流電源(11)を直列接続
した第1の直列回路、(12)は上記モータの電機子コイ
ル(10a)と速度制御用可変抵抗回路(13)を直列接続
した第2の直列回路、(14)は上記第1及び第2の直列
回路(9)(12)の両端同士を、前進時に速度制御手段
を操作することにより正方向に接続し、後進時に速度制
御手段を操作することにより逆方向に接続し、速度制御
手段が操作されない中立状態のときは第1図に示すよう
に第2の直列回路(12)の両端を短絡した状態で上記界
磁コイル(10b)の一端に接続する切換スイッチ回路、
(15)は手動の前進・後進選択スイッチ(16)及びアク
セルペダルから足を離したとき開くアクセルOFF接点(M
0)によって切換スイッチ回路(14)を切換え制御する
切換スイッチ制御回路、(18)は発電制動時に、第1の
直列回路(9)の直流電源(11)と界磁コイル(10b)
の接続点Pと、速度制御用可変抵抗回路(13)の端部か
ら離れた所定の接続点Qに、両端を接続したサイリスタ
(18a)等のスイッチ素子からなる発電制動用スイッチ
回路、(19)は自動車の車体に取付けられた図示しない
下り勾配センサの出力a及び図示しないアクセル制御機
構のアクセルOFF主力bが共に発生したことを、そのAND
ゲート(19a)によって検出し、前記サイリスタ(18a)
のゲートに、制動条件判定出力cを与えて導通させる制
動条件判定回路である。
In FIG. 1, (9) is a first series circuit in which a field coil (10b) of a DC series-wound motor and a DC power source (11) such as a vehicle battery are connected in series, and (12) is an armature coil of the motor. A second series circuit in which (10a) and a variable resistance circuit (13) for speed control are connected in series, (14) is a speed when moving forward between both ends of the first and second series circuits (9) and (12). By operating the control means, the connection is made in the forward direction, and by operating the speed control means in the reverse direction, the connection is made in the reverse direction. In the neutral state where the speed control means is not operated, as shown in FIG. A changeover switch circuit which is connected to one end of the field coil (10b) in a state where both ends of the series circuit (12) are short-circuited,
(15) is a manual forward / reverse selection switch (16) and accelerator OFF contact (M
Over switch control circuit for controlling switching the switch circuit (14) by 0), (18) during dynamic braking, the DC power source of the first series circuit (9) (11) and the field coil (10b)
, And a predetermined connection point Q distant from the end of the speed control variable resistance circuit (13), the switch circuit for dynamic braking comprising switch elements such as thyristors (18a) having both ends connected, ) Indicates that both the output a of the downward gradient sensor (not shown) mounted on the vehicle body of the vehicle and the accelerator OFF main force b of the accelerator control mechanism (not shown) are generated.
Detected by the gate (19a), the thyristor (18a)
Is a braking condition determination circuit that applies a braking condition determination output c to the gate of to make it conductive.

上記駆動回路(8)において、速度制御用可変抵抗回路
(13)は抵抗器R1,R2,R3を直列接続して構成され、図示
しないアクセルペダルに連動して、順に導通する接点
M1,M2,M3によって各抵抗器R1,R2,R3は選択的に短絡され
る。
In the drive circuit (8), the variable resistor circuit (13) for speed control is constituted by connecting resistors R 1 , R 2 and R 3 in series, and is a contact which is sequentially conducted in conjunction with an accelerator pedal (not shown).
The resistors R 1 , R 2 , R 3 are selectively short-circuited by M 1 , M 2 , M 3 .

また切換スイッチ回路(14)は、前進スイッチ(20)と
後進スイッチ(21)を組合せて構成している。
The changeover switch circuit (14) is configured by combining a forward switch (20) and a reverse switch (21).

前進スイッチ(20)は、第2の直列回路(12)の電機子
コイル(10a)側の端部を、前進モード時にアクセルペ
ダル等の速度制御手段が操作されたときに常開接点(20
a)によって第1の直列回路(9)の直流電源(11)側
の端部に、また速度制御手段の非操作時および前進モー
ド時でないとき常閉接点(20b)によって第1の直列回
路(9)の界磁コイル(10b)側の端部に接続する。な
おこの前進スイッチ(20)の各接点(20a)(20b)は、
切換スイッチ制御回路(15)内の電磁石(20c)によっ
て開閉する。
The forward switch (20) has a normally open contact (20) at the end of the second series circuit (12) on the armature coil (10a) side when a speed control means such as an accelerator pedal is operated in the forward mode.
a) to the end of the first series circuit (9) on the DC power supply (11) side, and the normally closed contact (20b) to the first series circuit (20b) when the speed control means is not operated or in the forward mode. Connect to the end of 9) on the side of the field coil (10b). In addition, each contact (20a) (20b) of this forward switch (20)
It is opened and closed by the electromagnet (20c) in the changeover switch control circuit (15).

後進スイッチ(21)は、第2の直列回路(12)の速度制
御用可変抵抗回路(13)側の端部を、後進モード時に速
度制御手段が操作されたときに常開接点(21a)によっ
て第1の直列回路(9)の直流電源(11)側の端部に、
また速度制御手段の非操作時および後進モード時でない
とき常閉接点(21b)によって第1の直列回路(9)の
界磁コイル(10b)側の端部に接着する。なおこの後進
スイッチ(21)の各接点(21a)(21b)は、切換スイッ
チ制御回路(15)内の電磁石(21c)によって開閉す
る。
The reverse switch (21) uses the normally open contact (21a) at the end of the second series circuit (12) on the speed control variable resistance circuit (13) side when the speed control means is operated in the reverse mode. At the end of the first series circuit (9) on the DC power supply (11) side,
Further, when the speed control means is not operated or in the reverse mode, the normally closed contact (21b) is bonded to the end of the first series circuit (9) on the side of the field coil (10b). The contacts (21a) (21b) of the reverse switch (21) are opened and closed by an electromagnet (21c) in the changeover switch control circuit (15).

また発電制動用スイッチ回路(18)は、第1の直列回路
(9)内の車載バッテリ(11)及び界磁コイル(10b)
の接続点Pと、速度制御用可変抵抗回路(13)内の抵抗
器R1,R2の接続点Qの間に、スイッチ素子、例えばサイ
リスタ(18a)を、カソード側が第1の直列回路(12)
に向くように接続して構成されている。
Further, the dynamic braking switch circuit (18) includes a vehicle-mounted battery (11) and a field coil (10b) in the first series circuit (9).
A switching element, for example, a thyristor (18a), between the connection point P of P and the connection point Q of the resistors R 1 and R 2 in the speed control variable resistance circuit (13), and the cathode side of the first series circuit ( 12)
It is configured to be connected to.

次に上記駆動回路(8)の動作について説明する。Next, the operation of the drive circuit (8) will be described.

自動車を前進させたい場合は、モータが回転していない
第1図の中立モード状態で、前進・後進選択スイッチ
(16)を、手動操作により前進側に接続する。そしてア
クセルペダルを踏むと、最初にアクセルOFF接点(M0
が導通し、電磁石(20c)への通電により前進スイッチ
(20)の常開接点(20a)が閉じ、第2図の前進モード
状態となる。すると、第2図中に矢印で示すように駆動
回路(8)内を電流が通電する。これによってモータが
正方向に回転を開始する。この後図示しないアクセルペ
ダルをさらに踏むことによって接点をM1→M2→M3の順で
閉じ、初めに抵抗器R1が、次に抵抗器R1,R2が、最後に
抵抗器R1,R2,R3が短絡される。これによって速度制御用
可変抵抗回路(13)における電圧降下が減少して、電機
子コイル(10a)に加わる電圧が上昇し、モータの回転
数は上昇する。この後、減速したいときにはアクセルペ
ダルの操作により、接点M1,M2,M3の閉状態を変えればよ
い。
To move the vehicle forward, the forward / reverse selection switch (16) is manually connected to the forward side in the neutral mode state of FIG. 1 in which the motor is not rotating. When you depress the accelerator pedal, the accelerator OFF contact (M 0 ) is first
And the normally open contact (20a) of the forward switch (20) is closed by energizing the electromagnet (20c), and the forward mode state of FIG. 2 is entered. Then, current flows through the drive circuit (8) as shown by the arrow in FIG. This causes the motor to start rotating in the forward direction. After that, by further pressing an accelerator pedal (not shown), the contacts are closed in the order of M 1 → M 2 → M 3 , first resistor R 1 , then resistors R 1 and R 2 , and finally resistor R 1 . 1 , R 2 and R 3 are short-circuited. As a result, the voltage drop in the speed control variable resistance circuit (13) is reduced, the voltage applied to the armature coil (10a) is increased, and the rotation speed of the motor is increased. After that, when it is desired to decelerate, the closed state of the contacts M 1 , M 2 , M 3 may be changed by operating the accelerator pedal.

また自動車を後進させるためモータを逆回転させたいと
きは、アクセルペダルを戻し、前進・後進選択スイッチ
(16)を手動操作により後進側に接続してアクセルペダ
ルを踏むと、電磁石(21c)への通電により後進スイッ
チ(21)の常開接点(21a)が閉じ、第3図の後進モー
ド状態となる。このとき電磁石(20c)には通電してお
らず、前進スイッチ(20)は、常閉接点(20b)が閉じ
た状態にあるので、第3図に示すように界磁コイル(10
b)の電流の向きは変わらないで、電機子コイル(10a)
の電流の向きが変わって通電するので、モータは逆回転
する。この後進時にも、速度制御は、アクセルペダルに
連動して開閉する接点M1,M2,M3によって上記同様に行な
われる。
When you want to rotate the motor in the reverse direction to move the vehicle backward, return the accelerator pedal, connect the forward / reverse selection switch (16) to the reverse side by manual operation, and step on the accelerator pedal to move the electromagnet (21c). The energization closes the normally open contact (21a) of the reverse switch (21), and the reverse mode state of FIG. 3 is entered. At this time, the electromagnet (20c) is not energized, and the forward switch (20) is in the state where the normally closed contact (20b) is closed, so that as shown in FIG.
The direction of the current in b) does not change, and the armature coil (10a)
Since the direction of the electric current is changed to energize, the motor rotates in the reverse direction. Even during this reverse movement, speed control is performed in the same manner as above by the contacts M 1 , M 2 , M 3 which are opened and closed in conjunction with the accelerator pedal.

次に発電制動の動作について説明する。Next, the operation of dynamic braking will be described.

自動車が下り坂を前進走行しているとき、下り勾配セン
サは“H"レベルの出力aを発生している。この状態で速
度制御手段であるアクセルペダルから足を離すと、その
接点M0,M1,M2,M3は全て開状態になる。アクセルOFF接点
M0が開状態になると電磁石(20c)(21c)には通電しな
いので、第4図に示すように、切換スイッチ回路(14)
は、中立モード状態〔前進スイッチ(20)及び後進スイ
ッチ(21)が共に常開接点(20a)(21a)が開で、常閉
接点(20b)(21b)が閉〕に切換わる。またこれと同時
に“H"レベルのアクセルOFF出力bが発生するので、既
に発生している“H"レベルの下り勾配センサ出力aとの
一致を検出した制動条件範囲回路(19)が、サイリスタ
(18a)に制動条件判定出力cを与えて導通状態にす
る。すると、電機子コイル(10a)は慣性により、それ
までと同一方向に回転しているので、界磁コイル(10
b)内の残留磁気によって起電力を発生し、第4図内に
矢印で示すように電流が通電する。このときの電流の経
路は、第2の直列回路(12)の両端を、切換スイッチ回
路(14)によって閉じた閉ループ回路Sと、発電制動ス
イッチ回路(18)によって、この閉ループ回路中の抵抗
器R1と並列に接続された界磁コイル(10b)による分流
回路Tである。この発電制動状態になると、界磁コイル
(10b)には、抵抗器R1の電圧降下分の電圧が印加され
るので、正回転時と同一極性で、上記残留磁気以上の発
電制動に必要な界磁磁束が発生する。そして電機子コイ
ル(10a)は、自動車の慣性走行の速度に比例した起電
力を発生し、抵抗器R1,R2,R3の直列接続により構成され
た速度制御用可変抵抗回路(13)に電流を通電して、ジ
ュール熱として自動車の慣性力を消費させる。これを車
体側から観察すれば、電機子コイル(10a)は、その慣
性走行速度に比例した制動力で、ブレーキ作用をなすこ
とになる。
When the vehicle is traveling forward on a downhill, the downhill gradient sensor produces an output "a" of "H" level. In this state, when the foot is released from the accelerator pedal which is the speed control means, all the contacts M 0 , M 1 , M 2 and M 3 are opened. Accelerator OFF contact
Since the electromagnets (20c) and (21c) are not energized when M 0 is opened, as shown in FIG. 4, the changeover switch circuit (14)
Is switched to a neutral mode state (the forward switch (20) and the reverse switch (21) both have normally open contacts (20a) (21a) open and normally closed contacts (20b) (21b) closed). At the same time, since the "H" level accelerator OFF output b is generated, the braking condition range circuit (19) that has detected the coincidence with the already generated "H" level downward gradient sensor output a is changed to the thyristor ( 18a) is applied with a braking condition determination output c to bring it into a conductive state. Then, because the armature coil (10a) is rotating in the same direction as before due to inertia, the field coil (10a)
An electromotive force is generated by the residual magnetism in b), and a current flows as indicated by an arrow in FIG. The current path at this time is the closed loop circuit S in which both ends of the second series circuit (12) are closed by the changeover switch circuit (14) and the resistor in the closed loop circuit by the dynamic braking switch circuit (18). It is a shunt circuit T composed of a field coil (10b) connected in parallel with R 1 . In this dynamic braking state, the voltage corresponding to the voltage drop of the resistor R 1 is applied to the field coil (10b). Field magnetic flux is generated. The armature coil (10a) generates an electromotive force proportional to the speed of inertial running of the automobile, and a variable resistance circuit for speed control (13) composed of resistors R 1 , R 2 and R 3 connected in series. An electric current is applied to the car to consume the inertial force of the car as Joule heat. Observing this from the vehicle body side, the armature coil (10a) performs a braking action with a braking force proportional to its inertial traveling speed.

なお上記発電制動は、実際的には機械式のブレーキの補
助として、併用される。
Note that the above-described dynamic braking is actually used together as an auxiliary to a mechanical brake.

また上記駆動回路(8)において、切換スイッチ回路
(14)を中立状態にし、発電制動用スイッチ回路(18)
を導通状態にした直後には、界磁コイル(10b)に電流
が通電しないので、発電制動は界磁コイル(10b)の残
留磁気によって開始され、動作不安定となるおそれもあ
る。そこで開始動作を確実化したい場合は、第1図中に
点線で示すように、小容量の蓄電池(22)及び電流制限
用抵抗器(23)等よりなる制動開始用電源(24)を、第
2の直列回路(12)の電機子コイル(10a)側の端部
と、車載バッテリ(11)の界磁コイル(10b)側の端子
の間に挿入接続する。この挿入回路は、前進走行時に充
電された制動開始用電源(24)によって、発電制動の開
始直後のみ、界磁コイル(10b)に通電して、発電制動
の開始時点から充分に大きな界磁磁束を発生させる。
In the drive circuit (8), the changeover switch circuit (14) is set to the neutral state, and the dynamic braking switch circuit (18)
Immediately after the electric field is turned on, no electric current is applied to the field coil (10b), so that the dynamic braking is started by the residual magnetism of the field coil (10b), which may cause unstable operation. Therefore, in order to ensure the starting operation, as shown by the dotted line in FIG. 1, a braking start power source (24) including a small capacity storage battery (22) and a current limiting resistor (23) The two series circuits (12) are inserted and connected between the armature coil (10a) side end and the field coil (10b) side terminal of the vehicle battery (11). This insertion circuit energizes the field coil (10b) only immediately after the start of the dynamic braking by the braking start power source (24) charged during the forward running, and the field magnetic flux is sufficiently large from the start of the dynamic braking. Generate.

また発電制動用スイッチ回路(18)を構成するスイッチ
素子としてのサイリスタ(18a)は他のスイッチ、例え
ば第1図中に点線で示すような制動条件判定出力cによ
って閉じるマグネットスイッチ(25)によって置き換え
ることもできる。
Further, the thyristor (18a) as a switch element constituting the switch circuit (18) for dynamic braking is replaced by another switch, for example, a magnet switch (25) which is closed by a braking condition determination output c shown by a dotted line in FIG. You can also

また本考案は、上記実施例の回路構成に限定されること
はなく、切換スイッチ回路(14)は、上記同様の機能を
有するように設計すればよく、異種の部品の組合せによ
って構成することができる。また速度制御用可変抵抗回
路(13)も、例えば抵抗器の直列数を増加するなどの設
計変更が可能で、発電制動用スイッチ回路(18)の可変
抵抗回路への接続を、発電制動に適した電圧が得られる
位置に選定すればよい。
Further, the present invention is not limited to the circuit configuration of the above embodiment, and the changeover switch circuit (14) may be designed so as to have the same function as described above, and may be configured by combining different kinds of parts. it can. Also, the variable resistor circuit for speed control (13) can be changed in design, for example, by increasing the number of resistors in series, and the connection of the switch circuit for dynamic braking (18) to the variable resistor circuit is suitable for dynamic braking. It may be selected at a position where a high voltage is obtained.

考案の効果 本考案によれば、速度制御用可変抵抗回路を持つ直流直
巻モータにおいて、制動時に電力を全く消費せず車載バ
ッテリに負担を与えない発電制動を行うことができる。
また、例えば一個のサイリスタのみよりなる発電制動用
スイッチ回路と、これを制御するための制動条件判定回
路とを付加するだけで、走行条件に適応した発電制動が
可能になる。従って、装置を複雑・大型化することな
く、坂道走行時等に必要な強力なブレーキ力を得ること
ができ、コストアップを最小限に抑えて、性能を向上で
き、また発電制動は機械式ブレーキに補助が必要となる
坂道走行のときのみに行われるもので、走行エネルギの
無だな消費が避けられ、バッテリ容量が限られた電気自
動車において、特にその実用価値は高い。
EFFECTS OF THE INVENTION According to the present invention, it is possible to perform dynamic braking in a DC series-wound motor having a variable resistance circuit for speed control, which consumes no electric power at the time of braking and does not burden a vehicle battery.
Further, for example, only by adding a switch circuit for dynamic braking consisting of only one thyristor and a braking condition determination circuit for controlling this, dynamic braking adapted to the running condition becomes possible. Therefore, it is possible to obtain the strong braking force required for traveling on a slope without increasing the size and complexity of the device, minimizing the cost increase and improving the performance. It is performed only when driving on a slope that requires assistance, so that it is of high practical value especially in an electric vehicle with a limited battery capacity that avoids unnecessary consumption of running energy.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第4図は本考案に係る直流直巻モータの発電
制動制御回路の一実施例を示し、第1図は停止状態、第
2図は前進状態、第3図は後進状態、第4図は発電制動
状態を夫々示す。第5図は従来の直流直巻モータの駆動
回路例を示す回路図である。 (8)……直流直巻モータの駆動回路(電気自動車発電
制動制御回路) (9)……第1の直列回路 (10a)……直流直巻モータの電機子コイル (10b)……直流直巻モータの界磁コイル (11)……直流電源(車載バッテリ) (12)……第2の直列回路 (13)……速度制御用可変抵抗回路 (14)……切換えスイッチ回路 (18)……発電制動用スイッチ回路 (18a)……スイッチ素子 (19)……制動条件判定回路 (20)……前進スイッチ (21)……後進スイッチ (20a),(21a)……常開接点 (20b),(21b)……常閉接点 a……下り勾配センサ出力 b……アクセルOFF出力 c……制動条件判定出力
1 to 4 show an embodiment of a dynamic braking control circuit for a DC series-wound motor according to the present invention. FIG. 1 is a stopped state, FIG. 2 is a forward state, FIG. 3 is a reverse state, and FIG. FIG. 4 shows the dynamic braking states, respectively. FIG. 5 is a circuit diagram showing an example of a drive circuit of a conventional DC series-wound motor. (8) ... DC series-wound motor drive circuit (electric vehicle dynamic braking control circuit) (9) ... 1st series circuit (10a) ... DC series-wound motor armature coil (10b) ... DC series Winding motor field coil (11) ... DC power supply (vehicle battery) (12) ... second series circuit (13) ... speed control variable resistance circuit (14) ... changeover switch circuit (18) ... … Dynamic braking switch circuit (18a) …… Switch element (19) …… Braking condition judgment circuit (20) …… Forward switch (21) …… Reverse switch (20a), (21a) …… Normally open contact (20b) ), (21b) …… Normally closed contact a …… Down slope sensor output b …… Accelerator OFF output c …… Brake condition judgment output

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】自動車の原動機である直流直巻モータの界
磁コイル(10b)と直流電源(11)を接続した第1の直
列回路(9)と、前記直流直巻モータの電機子コイル
(10a)と速度制御用可変抵抗回路(13)を接続した第
2の直列回路(12)と、前進・中立・後進の3状態に切
替り、前進時と後進時で上記第2の直列回路(12)の極
性を切替えて上記第1の直列回路(9)に接続し、アク
セルペダル等の速度制御手段が操作されないとき中立状
態に復帰する切換スイッチ回路(14)とからなる電気自
動車の直流直巻モータの駆動回路(8)において、 上記第1の直列回路(9)の直流電源(11)と界磁コイ
ル(10b)の接続点Pと、速度制御用可変抵抗回路(1
3)の端部から離れた所定の接続点Qとを接続する、発
電制御用スイッチ回路(18)を組込んだ分流回路(26)
と、 自動車が所定角度以上の傾斜の下り坂を走行しているこ
とを検出する下り勾配センサの出力aと、速度制御手段
を解放したアクセルOFF出力bとが同時に成立したこと
を条件として上記発電制御用スイッチ回路(18)を導通
させる制御条件判定回路(19)とからなり、 上記制御条件判定回路(19)の出力cにより発電制御用
スイッチ回路(18)を導通させて、 第2の直列回路(12)の両端を切換スイッチ回路(14)
によって閉じた閉ループ回路(S)と、該閉ループ回路
(S)中の抵抗器と並列に接続された界磁コイル(10
b)を含む分流回路(T)とを形成し、電機子コイル(1
0a)に、慣性走行速度に比例した制動力を発生させたこ
とを特徴とする発電制動制御回路。
1. A first series circuit (9) connecting a field coil (10b) of a DC series-wound motor, which is a motor of an automobile, and a DC power supply (11), and an armature coil () of the DC series-wound motor. 10a) and a second series circuit (12) in which a speed control variable resistance circuit (13) is connected to the second series circuit (12), which is switched between three states of forward, neutral and reverse, and the second series circuit (forward and backward) ( DC switch of an electric vehicle comprising a changeover switch circuit (14) which switches the polarity of 12) and is connected to the first series circuit (9) and returns to a neutral state when speed control means such as an accelerator pedal is not operated. In the winding motor drive circuit (8), the connection point P between the DC power supply (11) and the field coil (10b) of the first series circuit (9), and the speed control variable resistance circuit (1
A shunt circuit (26) incorporating a power generation control switch circuit (18) for connecting a predetermined connection point Q away from the end of 3).
And the above-mentioned power generation on the condition that the output a of the down-gradient sensor for detecting that the vehicle is traveling on a downhill with an inclination of a predetermined angle or more and the accelerator OFF output b for releasing the speed control means are simultaneously established. A control condition judging circuit (19) for making the control switch circuit (18) conductive, and the power generation control switch circuit (18) is made conductive by the output c of the control condition judging circuit (19) so that the second series Both ends of the circuit (12) are changeover switch circuits (14)
And a field coil (10) connected in parallel with the resistor in the closed loop circuit (S).
and a shunt circuit (T) including b), and the armature coil (1
0a), a dynamic braking control circuit characterized in that a braking force proportional to the inertial traveling speed is generated.
JP1985084070U 1985-06-04 1985-06-04 Dynamic braking control circuit for electric vehicles Expired - Lifetime JPH0721117Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985084070U JPH0721117Y2 (en) 1985-06-04 1985-06-04 Dynamic braking control circuit for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985084070U JPH0721117Y2 (en) 1985-06-04 1985-06-04 Dynamic braking control circuit for electric vehicles

Publications (2)

Publication Number Publication Date
JPS61202103U JPS61202103U (en) 1986-12-18
JPH0721117Y2 true JPH0721117Y2 (en) 1995-05-15

Family

ID=30633258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985084070U Expired - Lifetime JPH0721117Y2 (en) 1985-06-04 1985-06-04 Dynamic braking control circuit for electric vehicles

Country Status (1)

Country Link
JP (1) JPH0721117Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997506U (en) * 1982-12-20 1984-07-02 株式会社豊田自動織機製作所 Braking control device for electric vehicles

Also Published As

Publication number Publication date
JPS61202103U (en) 1986-12-18

Similar Documents

Publication Publication Date Title
US3190387A (en) Electric drive mechanism and method of operating same
US5764009A (en) Motor control device in electric motor-operated vehicle
US4378855A (en) Multi-speed drive with forward/reverse lockout
JPH08340604A (en) Regenerative braking method and power control system for electrically driven vehicle
US4427928A (en) Braking control apparatus for an electric motor operated vehicle
JPH0721117Y2 (en) Dynamic braking control circuit for electric vehicles
KR0152301B1 (en) Brake revival control of an industrial car
US4590409A (en) Control system for a power steering motor of a battery operated vehicle
JP2819621B2 (en) Travel control device for electric vehicles
JP3432966B2 (en) Control device for electric wheelchair
JP3669049B2 (en) DC motor drive control device
JP2523679Y2 (en) Braking control device in electric vehicle running speed control device
JPH0656065A (en) Motor-driven bicycle
JPH0993726A (en) Method for controlling electric rolling stock
JPH06101881B2 (en) Braking controller for electric vehicle
JP3540923B2 (en) Electric vehicle regeneration control method and device
JPS6211123Y2 (en)
US1175377A (en) Motor-vehicle.
JPH10310398A (en) Regenerative braking device for battery vehicle
JPH11266505A (en) Driving control method of electric vehicle
JPH0613523Y2 (en) Electric braking control circuit for electric vehicles
JP3345915B2 (en) Travel control device for battery car
JPH058728Y2 (en)
US1303870A (en) of chicago
JPS635366Y2 (en)