JPH07206378A - Position measuring device for bucket - Google Patents

Position measuring device for bucket

Info

Publication number
JPH07206378A
JPH07206378A JP517994A JP517994A JPH07206378A JP H07206378 A JPH07206378 A JP H07206378A JP 517994 A JP517994 A JP 517994A JP 517994 A JP517994 A JP 517994A JP H07206378 A JPH07206378 A JP H07206378A
Authority
JP
Japan
Prior art keywords
bucket
light receiving
measuring device
optical pulse
range finder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP517994A
Other languages
Japanese (ja)
Other versions
JP2795159B2 (en
Inventor
Michio Nakao
通夫 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP517994A priority Critical patent/JP2795159B2/en
Publication of JPH07206378A publication Critical patent/JPH07206378A/en
Application granted granted Critical
Publication of JP2795159B2 publication Critical patent/JP2795159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

PURPOSE:To improve measurement precision by a method wherein a bucket position measuring device is caused to effect tracking of movement of a bucket as a distance to the bucket is measured by a photo pulse range finder, the change of the angle in a vertical and a horizontal direction of the photo pulse range finder occasioned by the tracking operation is detected, and the three-dimensional coordinate position of the bucket is decided. CONSTITUTION:A position measuring device 22 to measure the position of a bucket 6 moved along a cable crane is installed in a home position. The bucket position measuring device is provided with a photo pulse range finder 32 comprising a pulse laser emitting part to irradiate a recurrence reflecting body 20, mounted on a bucket 6, with pulse beams; a light receiving part for measuring a distance to receive reflection light from the reflecting body 20; and a light receiving part for tracking. The range finder 32 is displaced in a vertical direction and a horizontal direction so as to correct the light receiving surface of the light receiving part 48 to a central position by means of a deviation value between a horizontal axis and a vertical axis based on an output from the light receiving part for tracking. In this case, the present coordinate position of the bucket 6 is computed by a computer 26 based on the angle in a horizontal and a vertical direction of the photo pulse range finder 32 and the measurement of the range finder 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はバケットの位置測定装
置に関し、特に、例えばダムの構築現場などにコンクリ
ートを供給するためのケーブルクレーンにおいて、時事
刻々と変化するバケットの位置を測定するためのバケッ
トの位置測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bucket position measuring device, and more particularly to a bucket crane for measuring the position of a bucket that changes from moment to moment in a cable crane for supplying concrete to, for example, a dam construction site. Position measuring device.

【0002】[0002]

【従来の技術】周知のように、ダムの構築現場におい
て、コンクリートを製造現場から打設現場まで搬送する
ための手段の一つとしてケーブルクレーンが用いられて
いる。
2. Description of the Related Art As is well known, a cable crane is used as one of means for transporting concrete from a manufacturing site to a setting site at a dam construction site.

【0003】このケーブルクレーンは、例えば図4に示
すように、山間に構築されるダム1の構築予定箇所の上
方に張設された主索2と、主索2に懸垂され、これに沿
って走行可能なトロリー3と、トロリー牽引用の牽索4
と、トロリー3の下部に吊索5を介して吊下されたコン
クリートバケット6と、前記牽索4を牽引して前記トロ
リー3を山側に設けた搬送開始位置Aとダム1の中央底
部に設定された搬送終了位置B間を往復移動させる横行
ウインチ7と、前記吊索5を巻取,巻き下げしてバケッ
ト6を昇降させる縦行ウインチ8と、トロリー3の位置
およびバケット6の位置を監視するとともに、前記各ウ
インチ7,8を駆動制御する操作室9を備えている。
This cable crane is, for example, as shown in FIG. 4, a main rope 2 stretched above a planned construction site of a dam 1 constructed in a mountain, and is suspended from the main rope 2 along the main rope 2. Travelable trolley 3 and trolley towing 4
And a concrete bucket 6 hung from the bottom of the trolley 3 via suspension lines 5, and a transport start position A at which the trolley 3 is installed on the mountain side by pulling the trolley 3 and the center bottom of the dam 1. The traverse winch 7 that reciprocates between the transportation end positions B, the longitudinal winch 8 that winds up and down the suspension rope 5 to elevate the bucket 6, and the position of the trolley 3 and the position of the bucket 6 are monitored. In addition, an operation room 9 for driving and controlling the winches 7 and 8 is provided.

【0004】そして、コンクリートをバケット6により
運搬打設するには、例えば、搬送開始位置Aの側方上部
には、紙面と直交する方向に図示しないバッチャープラ
ントで作られたコンクリートを搬送するトランスファー
カー10が走行し、また搬送終了位置Bにはコンクリー
トホッパー11が配置されており、操作室9からの制御
操作に基づき、トロリー3を横移動させつつバケット6
を昇降させ、各位置A,Bにバケット6を位置決め停止
させて、コンクリートの供給と排出を行う。かかるバケ
ット6の移動や停止を操作する方法として、従来は、例
えば各位置A,Bに配置された監視員と、操作室9に配
置されたオペレータ同士が無線で連絡を取り合い、監視
員の指示に基づくオペレータの手動操作によって走行動
作、振れ止め動作を行い、微調整しつつ停止させる作業
を行っていた。
In order to transport and set concrete using the bucket 6, for example, a transfer for transporting concrete made by a batcher plant (not shown) in a direction orthogonal to the paper surface is provided at the upper side of the transport start position A. A concrete hopper 11 is arranged at the transport end position B while the car 10 is traveling. Based on a control operation from the operation room 9, the trolley 3 is moved laterally and the bucket 6 is moved.
Is moved up and down, the bucket 6 is positioned and stopped at each of the positions A and B, and concrete is supplied and discharged. As a method for operating the movement or stop of the bucket 6, conventionally, for example, a supervisor placed at each position A and B and an operator placed in the operation room 9 wirelessly communicate with each other to instruct the supervisor. Based on the above, a running operation and a steady rest operation were performed by an operator's manual operation, and a work for stopping the fine adjustment was performed.

【0005】[0005]

【発明が解決しようとする課題】しかし、この方法だと
情報伝達から実際の修正,微調整操作までの時間遅れが
大きく、制御方向,制御量も曖昧になりがちであること
から、必ずしも短い時間内で作業が完了するとは限ら
ず、作業員の熟練に左右されていた。また、作業員の頭
上でバケットが振り回され危険であることから、作業員
の待ち時間や退避時間も長くなるため、作業能率が悪
く、採算上問題となっており、自動化が望まれていた。
However, with this method, there is a large time delay from information transmission to actual correction and fine adjustment operation, and the control direction and control amount tend to be ambiguous. The work was not always completed inside, and was dependent on the skill of the worker. Further, since it is dangerous that the bucket is swung over the worker's head, the waiting time and the evacuation time of the worker are long, so that the work efficiency is poor and it becomes a problem in profitability, and automation is desired.

【0006】また、自動化に際しては、各ウインチ7,
8にエンコーダを設け、ウインチの回転数をワイヤの繰
出し量に換算してバケットの位置を推測し、それを元に
フィードバック制御などを行う方法が考えられるが、実
際にはワイヤとウインチの滑りや、走行方向に沿った主
索の撓みなどの計測不能な要素が多く、かかる測定結果
は正確さにかけるものであった。
In automation, each winch 7,
It is conceivable that an encoder is provided on the position 8, the rotation speed of the winch is converted to the wire feed amount, the position of the bucket is estimated, and feedback control or the like is performed based on that position. However, there are many unmeasurable elements such as the bending of the main rope along the traveling direction, and the measurement results are not accurate.

【0007】本発明は、以上の問題を解決するものであ
って、その目的は、時事刻々と変化するバケットの位置
をリアルタイムで精度良く測定することにより、正確な
制御用情報を得られるようにしたバケットの位置測定装
置を提供するものである。
The present invention is intended to solve the above problems, and an object thereof is to obtain accurate control information by accurately measuring the position of a bucket that changes from moment to moment in real time. The present invention provides a bucket position measuring device.

【0008】[0008]

【課題を解決するための手段】係る目的を達成するた
め、本発明によるバケットの位置測定装置は、定点位置
に設置され、前記バケットに設けられた再帰性反射体に
向けてパルス光を照射する光源及び前記反射体からの反
射光を受光する受光部とからなる光パルス距離計と、前
記受光部の水平軸偏差値信号及び垂直軸偏差値信号を受
けて前記受光部の受光面を中心位置に補正すべく前記光
パルス距離計を垂直方向に傾動し水平方向に旋回させる
ための駆動手段と、前記光パルス距離計の水平,垂直方
向の角度を各々検出する検出手段と、該各検出手段の角
度測定値と前記光パルス距離計の測定値とにより前記バ
ケットの現在座標位置を演算する演算手段とを備えたこ
とを特徴とする。
In order to achieve the above object, a bucket position measuring device according to the present invention is installed at a fixed position and irradiates a retroreflector provided on the bucket with pulsed light. An optical pulse distance meter comprising a light source and a light receiving section for receiving the reflected light from the reflector, and a light receiving surface of the light receiving section as a central position for receiving a horizontal axis deviation value signal and a vertical axis deviation value signal of the light receiving section. Driving means for tilting the optical pulse distance meter in the vertical direction and turning it in the horizontal direction to correct it, detecting means for respectively detecting the horizontal and vertical angles of the optical pulse distance meter, and the respective detecting means. And a calculation unit that calculates the current coordinate position of the bucket based on the angle measurement value and the measurement value of the optical pulse distance meter.

【0009】[0009]

【作用】以上の構成によれば、光パルス距離計はバケッ
トまでの距離を計測しつつバケットの移動に応じて自動
的に追尾する。追尾動作に伴って光パルス距離計の垂
直,水平方向の角度変化が検出手段によって検出され、
この検出した角度と距離からバケットの三次元座標位置
がリアルタイムで判定される。
According to the above construction, the optical pulse range finder automatically tracks in accordance with the movement of the bucket while measuring the distance to the bucket. With the tracking operation, the vertical and horizontal angle changes of the optical pulse rangefinder are detected by the detection means,
The three-dimensional coordinate position of the bucket is determined in real time from the detected angle and distance.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面を用いて詳細
に説明する。なお、実施例において、ケーブルクレーン
システムの全体は図4と同様であるので説明を省略する
とともに、同様または相当する箇所は同一符号を援用
し、本発明の要部のみ新たな符号を付して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. In the embodiments, the entire cable crane system is the same as that shown in FIG. 4, and therefore the description thereof is omitted. The same or corresponding parts are referred to by the same reference numerals, and only the main parts of the present invention are given new reference numerals. explain.

【0011】図1はこの発明による位置測定装置のシス
テム構成を示すもので、例えば操作室9に近い位置であ
って、搬送開始位置A,搬送終了位置Bの全景を視野と
する定点位置に設置され、前記バケット6に設けられた
再帰性反射体20に向けてパルス光を照射し、前記反射
体20からの反射光を受光することによってバケット6
に対する距離を測定する光パルス距離計及び自動追尾機
構を備えた装置本体22と、操作室9内にあって、装置
本体22にコントロ―ラ24を介して接続されたリモー
トコントロール、及び座標演算のためのシステムを構成
するコンピューター26とからなっている。
FIG. 1 shows a system configuration of the position measuring device according to the present invention, which is installed at a fixed point position, for example, a position close to the operation room 9 and having the entire view of the transfer start position A and the transfer end position B as a visual field. The pulse light is emitted toward the retroreflector 20 provided in the bucket 6, and the reflected light from the reflector 20 is received, whereby the bucket 6
A device main body 22 equipped with an optical pulse distance meter and an automatic tracking mechanism for measuring a distance to the device, a remote control connected to the device main body 22 via a controller 24 in the operation room 9, and coordinate calculation. And a computer 26 which constitutes a system for.

【0012】装置本体22は図2に示すように、前記定
点位置に据え付けられた固定台28と、固定台28上を
旋回可能に取り付けられ凹状の支持アーム30と、支持
アーム30の内側に傾動可能に支持された光パルス距離
計32を備えている。
As shown in FIG. 2, the apparatus main body 22 has a fixed base 28 installed at the fixed position, a concave support arm 30 pivotably mounted on the fixed base 28, and a tilting inside the support arm 30. An optical pulse range finder 32 is provided that is pos- sibly supported.

【0013】支持アーム30は旋回用のサーボモータ等
からなる水平駆動部34を介して固定台28に対して水
平に旋回し、この旋回角度は支持アーム30の中央の旋
回軸に設けたエンコーダ36により計測される。
The support arm 30 is horizontally swiveled with respect to the fixed base 28 via a horizontal drive unit 34 composed of a swiveling servomotor or the like, and the swivel angle is an encoder 36 provided on a swivel shaft at the center of the support arm 30. It is measured by.

【0014】光パルス距離計32は支持アーム30にサ
ーボモータからなる垂直駆動部38を介して傾動可能に
支持されるもので、その傾斜角度は支持アーム30の側
部にあって光パルス距離計32の支持軸に設けたエンコ
ーダ40により計測される。この光パルス距離計32は
そのケース前面の中央下部にパルスレーザ発光部42、
上部にCCDカメラ44、左右に距離測定用受光部46
及び自動追尾用受光部48を配置したものである。
The optical pulse distance meter 32 is tiltably supported by the support arm 30 via a vertical drive unit 38 composed of a servo motor, and the tilt angle is on the side of the support arm 30. It is measured by the encoder 40 provided on the support shaft 32. The optical pulse distance meter 32 has a pulse laser emitting section 42 at the lower center of the front surface of the case.
CCD camera 44 on the upper part, light receiving part 46 for distance measurement on the left and right
And a light receiving section 48 for automatic tracking is arranged.

【0015】レーザ発光部44からのパルス光は前記バ
ケットに設けられた再帰性反射体20により反射され
る。この反射量は他の拡散反射面に対して1000倍以
上の反射強度となり、この象をレンズを介して前記各受
光部46,48に受光させることによって輝点となって
受光される。
The pulsed light from the laser emitting section 44 is reflected by the retroreflector 20 provided in the bucket. This reflection amount has a reflection intensity 1000 times or more higher than that of the other diffuse reflection surface, and when the light is received by the light receiving portions 46 and 48 through the lens, it is received as a bright spot.

【0016】距離測定用受光部46では前記発光部42
から発射された発射パルスに対する受光した反射パルス
の時間差に相当した距離が測定され、この測定値は前記
コンピューター26に入力される。測定精度は従来に比
べて高い測定精度を得られるとともに、主索の撓みやス
リップなどの変動要因に左右されないものとなる。
In the distance measuring light receiving section 46, the light emitting section 42 is used.
The distance corresponding to the time difference between the received reflected pulse and the emitted pulse emitted from is measured, and this measured value is input to the computer 26. The measurement accuracy is higher than that of the conventional one, and is not affected by fluctuation factors such as bending and slip of the main rope.

【0017】自動追尾用受光部48は、図3に示すよう
に、レンズ50aの焦点面に二次元の位置検出が可能な
多数のフォトダイオードからなる受光面50bを配置
し、そのx軸及びy軸が交差する受光面中心と、検出位
置の差に応じて水平軸(x軸)偏差値信号及び垂直軸
(y軸)偏差値信号を出力させる。
As shown in FIG. 3, the automatic tracking light receiving section 48 has a light receiving surface 50b composed of a large number of photodiodes capable of two-dimensional position detection on the focal plane of the lens 50a, and its x-axis and y-axis. A horizontal axis (x axis) deviation value signal and a vertical axis (y axis) deviation value signal are output according to the difference between the center of the light receiving surface where the axes intersect and the detection position.

【0018】水平,垂直駆動部34,38はその偏差値
信号が0に一致すべく、すなわち輝点を中心に一致させ
るべくx,y方向に駆動し、これによって光パルス距離
計32は、常時反射体3の移動に応じてこれを追尾す
る。追尾可能視野は前記反射体20の直径と反射光量に
より左右されるが、高精度に追尾することができる。
The horizontal and vertical driving units 34 and 38 are driven in the x and y directions so that the deviation value signals thereof coincide with 0, that is, in order to coincide with the bright spot as the center, whereby the optical pulse distance meter 32 is constantly operated. This is tracked according to the movement of the reflector 3. The trackable field of view depends on the diameter of the reflector 20 and the amount of reflected light, but can be tracked with high accuracy.

【0019】またこれらの駆動により各エンコーダ3
6,40が水平角度及び垂直角度を検出し、この値はコ
ンピューター26に入力される。
By driving these, each encoder 3
6 and 40 detect the horizontal angle and the vertical angle, and these values are input to the computer 26.

【0020】前記コンピューター26は、演算制御装置
26a,キイボード26b、手動操作用ジョイスティッ
ク26c、及びディスプレイ26d等からなるもので
(図1参照)、ディスプレイ26dは前記CCDカメラ
44で撮像された風景を表示する。
The computer 26 comprises an arithmetic and control unit 26a, a keyboard 26b, a joystick 26c for manual operation, a display 26d and the like (see FIG. 1), and the display 26d displays the scenery captured by the CCD camera 44. To do.

【0021】演算制御装置26aはフロッピーディスク
に内蔵されたプラグラム内容に応じた制御をするもの
で、ジョイスティック26cの人手による入力操作に応
じて前記水平,垂直駆動部34,38を動作させて装置
本体22を水平,垂直方向に旋回及び傾動させるととも
に、前記x,y軸を画像として映しだし、ディスプレイ
26dに表示した風景と重畳させて、反射体20により
検出された輝点と風景の差とを表示させる。
The arithmetic and control unit 26a controls in accordance with the contents of the program contained in the floppy disk, and operates the horizontal and vertical drive units 34 and 38 in response to the manual input of the joystick 26c. 22 is swung and tilted in the horizontal and vertical directions, the x and y axes are projected as an image, and the image is superimposed on the landscape displayed on the display 26d, and the difference between the bright spot and the landscape detected by the reflector 20 is calculated. Display it.

【0022】さらに起動操作によって前記装置本体22
を自動追尾動作モードにするとともに、前記距離検出用
受光部46によって得た距離情報及び各エンコーダ3
6,40からの角度情報により三次元の座標を演算す
る。計算式は一般的な数式に基づくもので、目標物まで
の距離をLとし、垂直方向見込角をθgとし、水平方向
見込角をθsとすると、それぞれの座標x,y,zは次
の式で求められる。
Further, the apparatus main body 22 is activated by a starting operation.
Is set to the automatic tracking operation mode, and the distance information obtained by the distance detecting light receiving unit 46 and each encoder 3 are set.
Three-dimensional coordinates are calculated based on the angle information from 6, 40. The calculation formula is based on a general formula. When the distance to the target object is L, the vertical direction projection angle is θg, and the horizontal direction projection angle is θs, the respective coordinates x, y, z are as follows. Required by.

【0023】x=LCosθg・Cosθs y=LCosθg・Sinθs z=LSinθg 以上の演算結果は順次ディスプレイ26dに表示される
とともに、時刻データなどとともに制御用データとして
図示しない運転制御部などに出力することにより、自動
制御のためのリアルタイムのデータとして活用される。
X = LCosθg · Cosθs y = LCosθg · Sinθs z = LSinθg The above calculation results are sequentially displayed on the display 26d and are output as control data together with time data to an operation control unit (not shown). It is used as real-time data for automatic control.

【0024】次に以上の位置測定装置の操作方法を説明
する。まず電源を投入し、装置を起動状態にし、自己診
断後はディスプレイ26dに現在計測している視野が表
示される。この状態からジョイスティック26cを用い
て手動制御により目標物、すなわち反射体20を自動追
尾可能な視野内に入れる。
Next, a method of operating the above position measuring device will be described. First, the power is turned on, the device is activated, and after self-diagnosis, the field of view currently being measured is displayed on the display 26d. From this state, the joystick 26c is used to manually control the target object, that is, the reflector 20, into the visual field in which automatic tracking is possible.

【0025】目標物を確認後、キイボード26aを入力
操作して追尾開始を指示すれば、自動追尾が開始され、
以後は三次元座標の連続計測が行われることになる。
After confirming the target object, if the key board 26a is input and the start of tracking is instructed, automatic tracking is started.
After that, continuous measurement of three-dimensional coordinates will be performed.

【0026】なお、予めバケット6の基準位置、すなわ
ち作業開始初期位置をプログラムしておくことによっ
て、以後の位置合わせは不要となる。
By previously programming the reference position of the bucket 6, that is, the initial position for starting the work, the subsequent alignment becomes unnecessary.

【0027】例えばバケット6が搬送開始位置Aに着座
している状態を基準位置とする場合には、その座標x,
y,z=0,0,0に設定しておくことにより、この位
置を原点座標として繰返し追尾動作することになる。
For example, when the reference position is the state where the bucket 6 is seated at the transport start position A, the coordinates x,
By setting y, z = 0, 0, 0, the tracking operation is repeated by using this position as the origin coordinate.

【0028】[0028]

【発明の効果】以上実施例によって詳細に説明したよう
に、本発明に係るバケットの位置測定装置にあっては、
光パルス距離計はバケットまでの距離を計測しつつバケ
ットの移動に応じて自動的に追尾し、追尾動作に伴って
光パルス距離計の垂直,水平方向の角度変化が検出さ
れ、この検出した角度と距離からバケットの三次元座標
位置が判定されるため、従来のようにウインチとワイヤ
のスリップや主索の撓みなどによる変動要因により測定
値が左右されることなく、光パルス距離計の測定精度に
応じた高い測定精度を得られる。したがって本発明では
コンクリートバケットの自動運転制御のためのリアルタ
イムのデータを得る手段として好適である。
As described above in detail with reference to the embodiments, in the bucket position measuring device according to the present invention,
The optical pulse rangefinder automatically measures the distance to the bucket according to the movement of the bucket, and the vertical and horizontal angle changes of the optical pulse rangefinder are detected with the tracking operation. Since the three-dimensional coordinate position of the bucket is determined from the distance and the distance, the measurement accuracy of the optical pulse rangefinder does not depend on the measurement values due to fluctuation factors such as the slip of the winch and wire and the bending of the main rope as in the past. It is possible to obtain high measurement accuracy according to. Therefore, the present invention is suitable as a means for obtaining real-time data for automatic operation control of a concrete bucket.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるバケットの位置測定装置のシステ
ム構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a system configuration of a bucket position measuring device according to the present invention.

【図2】同位置測定装置の本体を示す斜視図である。FIG. 2 is a perspective view showing a main body of the position measuring apparatus.

【図3】同装置における追尾機構を示す説明図である。FIG. 3 is an explanatory diagram showing a tracking mechanism in the same device.

【図4】ケーブルクレーンの全体を示す概略図である。FIG. 4 is a schematic view showing the entire cable crane.

【符号の説明】[Explanation of symbols]

2 主索 3 横行トロリー 5 吊索 6 バケット A 搬送開始位置 B 搬送終了位置 20 再帰性反射体 22 装置本体 26 コンピューター(演算手段) 32 光パルス距離計 34,38 水平,垂直駆動部 36,40 エンコーダ(垂直,水平方向の角度検出検
出手段) 42 光パルス発光部 46 距離測定用受光部 48 受光部
2 Main rope 3 Traverse trolley 5 Suspension rope 6 Bucket A Transport start position B Transport end position 20 Retroreflector 22 Device body 26 Computer (calculator) 32 Optical pulse range finder 34, 38 Horizontal, vertical drive unit 36, 40 Encoder (Vertical / horizontal angle detection / detection means) 42 optical pulse light emitting section 46 light receiving section for distance measurement 48 light receiving section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二点間に張設された主索に沿って走行可
能な横行トロリーの下部に吊索を介して吊下されたバケ
ットを備え、前記トロリーを搬送開始位置と搬送終了位
置間を往復移動させるとともに、前記吊索を巻取,巻き
下げして前記バケットを昇降させるケーブルクレーンに
用いられる位置測定装置であって、 該測定装置は、定点位置に設置され、前記バケットに設
けられた再帰性反射体に向けてパルス光を照射する光源
及び前記反射体からの反射光を受光する受光部とからな
る光パルス距離計と、前記受光部の水平軸偏差値信号及
び垂直軸偏差値信号を受けて前記受光部の受光面を中心
位置に補正すべく前記光パルス距離計を垂直方向に傾動
し水平方向に旋回させるための駆動手段と、前記光パル
ス距離計の水平,垂直方向の角度を各々検出する検出手
段と、該各検出手段の角度測定値と前記光パルス距離計
の測定値とにより前記バケットの現在座標位置を演算す
る演算手段とを備えたことを特徴とするバケットの位置
測定装置。
1. A bucket hung from a traverse trolley which is capable of traveling along a main rope stretched between two points via a hanging rope, and the trolley is provided between a conveyance start position and a conveyance end position. A position measuring device used for a cable crane that reciprocates, winds and lowers the hanging rope, and raises and lowers the bucket, the measuring device being installed at a fixed point position and provided on the bucket. Optical pulse distance meter consisting of a light source for radiating pulsed light toward the retroreflector and a light receiving section for receiving reflected light from the reflector, and a horizontal axis deviation value signal and a vertical axis deviation value of the light receiving section A drive means for tilting the optical pulse distance meter in a vertical direction to turn the optical pulse distance meter in the horizontal direction so as to correct the light receiving surface of the light receiving unit to a central position in response to a signal, and a horizontal and vertical direction of the optical pulse distance meter. Each angle A bucket position measuring device comprising: detecting means for detecting; and calculating means for calculating a current coordinate position of the bucket based on an angle measurement value of each detecting means and a measurement value of the optical pulse distance meter. .
JP517994A 1994-01-21 1994-01-21 Bucket position measuring device Expired - Fee Related JP2795159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP517994A JP2795159B2 (en) 1994-01-21 1994-01-21 Bucket position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP517994A JP2795159B2 (en) 1994-01-21 1994-01-21 Bucket position measuring device

Publications (2)

Publication Number Publication Date
JPH07206378A true JPH07206378A (en) 1995-08-08
JP2795159B2 JP2795159B2 (en) 1998-09-10

Family

ID=11604016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP517994A Expired - Fee Related JP2795159B2 (en) 1994-01-21 1994-01-21 Bucket position measuring device

Country Status (1)

Country Link
JP (1) JP2795159B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053759A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Apparatus for compensating deviation of laser target
JP2008116346A (en) * 2006-11-06 2008-05-22 Tadano Ltd Apparatus for automatically tracking hook block of crane for hanging load
JP2009115777A (en) * 2007-11-07 2009-05-28 Lite-On Semiconductor Corp Three-dimensional space position detecting equipment and detecting method thereof
JP2009115778A (en) * 2007-11-07 2009-05-28 Lite-On Semiconductor Corp Three-dimensional space multi-degree-of-freedom detecting equipment and detecting method thereof
CN102060235A (en) * 2010-12-09 2011-05-18 江苏省特种设备安全监督检验研究院 Braking glide quality tester for crane
CN104101301A (en) * 2014-08-11 2014-10-15 中铁宝桥集团有限公司 Close-range photogrammetry drone
KR20170121085A (en) * 2016-04-22 2017-11-01 카바스(주) Apparatus for automatically maintaining horizontal of camera and integration control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053759A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Apparatus for compensating deviation of laser target
JP2008116346A (en) * 2006-11-06 2008-05-22 Tadano Ltd Apparatus for automatically tracking hook block of crane for hanging load
JP2009115777A (en) * 2007-11-07 2009-05-28 Lite-On Semiconductor Corp Three-dimensional space position detecting equipment and detecting method thereof
JP2009115778A (en) * 2007-11-07 2009-05-28 Lite-On Semiconductor Corp Three-dimensional space multi-degree-of-freedom detecting equipment and detecting method thereof
CN102060235A (en) * 2010-12-09 2011-05-18 江苏省特种设备安全监督检验研究院 Braking glide quality tester for crane
CN104101301A (en) * 2014-08-11 2014-10-15 中铁宝桥集团有限公司 Close-range photogrammetry drone
KR20170121085A (en) * 2016-04-22 2017-11-01 카바스(주) Apparatus for automatically maintaining horizontal of camera and integration control system

Also Published As

Publication number Publication date
JP2795159B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US9453729B2 (en) Layout equipment and layout method
JP6908195B2 (en) Self-propelled inspection device and inspection method for metal plates, and manufacturing method of metal plates
JP2795159B2 (en) Bucket position measuring device
JP4787435B2 (en) Tunnel excavator position measurement device
JP2003065719A (en) Device for measuring dimension of elevator
CN206740074U (en) Laser relative position measurement instrument
JP2001080881A (en) Tower crane device
JP2000292167A (en) Method for detecting elevation angle and swivel angle of excavating boom of free section excavator
JP2023050332A (en) Survey system
JP3020448B2 (en) Target position input method for automatic operation of cable crane
JP2022055525A (en) Marking system and marking method
JPH0665438B2 (en) Adaptive welding equipment with fill control correction function for curved weld groove
JP2000065541A (en) Position detecting device
CN113406121B (en) Automatic device and method for multi-angle X-ray detection of weld defects
JPH03282305A (en) In-tunnel air sectional area measuring instrument
JP4411564B2 (en) Inking device
JP2002174519A (en) Automatically measuring system for tunnel section
JPH0953937A (en) Coordinate measuring apparatus
JP2622803B2 (en) Ventilation air inspection robot for air conditioning
JP4326664B2 (en) Guided positioning method for roof members, etc.
JP4090963B2 (en) Multi-dimensional moving positioning device
CN215910370U (en) Automatic device for multi-angle X-ray detection of weld defects
JP4278766B2 (en) Method for detecting swivel center of swivel in free section excavator
JP3241601B2 (en) Crane control method and control device
JPWO2020107123A5 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100626

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110626

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120626

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120626

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees