JPH07202275A - Aggregate of electronic cooling element - Google Patents

Aggregate of electronic cooling element

Info

Publication number
JPH07202275A
JPH07202275A JP5206791A JP20679193A JPH07202275A JP H07202275 A JPH07202275 A JP H07202275A JP 5206791 A JP5206791 A JP 5206791A JP 20679193 A JP20679193 A JP 20679193A JP H07202275 A JPH07202275 A JP H07202275A
Authority
JP
Japan
Prior art keywords
heat
electronic cooling
assembly
copper
cooling elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5206791A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yanagimachi
潔 柳町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5206791A priority Critical patent/JPH07202275A/en
Publication of JPH07202275A publication Critical patent/JPH07202275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To enable heat transmission by an extremely small heat resistance by compressing a thin plate held between heat conductors from both sides making copper bands face each other with a semiconductor between in parallel with each other shifting a half pitch and by welding the semiconductor and the copper band by solder, etc. CONSTITUTION:An aggregate 1 of a half-completed electronic cooling element and a polyimide sheet 2-based polyimide sheet 13 wherein a copper band 11 alone is adhered by adhesive are combined to make copper bands 5, 11 face each other with semiconductor elements 6, 7 between in parallel with each other shifting a half pitch. In the state, a heat conductor 16 at a HOT side and a heat conductor 17 at a COLD side are compressed by a bolt 18 and a nut 19 and a heat conductor 15 at a side of the polyimide sheet 13 is heated to melt solder. Thereby, heat can be transmitted by an extremely small heat resistance to fluid at the sides of HOT and COLD whereto heat is transmitted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はペルチエ効果を応用し
た冷却を実用的に行なうための設備に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a facility for practically applying the Peltier effect for cooling.

【0002】[0002]

【従来の技術】従来のこの種の電子冷却素子の集合体は
直流の電圧を印加するとペルチエ効果を生じる対をなす
半導体を数組または数十組または数百組を同数に区切ら
れてほぼ方形に1対のセラミックなどの電気絶縁体の板
の上にエッチングなどの方法で配置された電気導体の板
に挟んで電気的に直列に半田接続して固定しその外側に
さらに熱伝導体の板を取付けて1つの電子冷却素子の集
合体として製品化していた。
2. Description of the Related Art A conventional assembly of electronic cooling elements of this kind has a substantially rectangular shape in which a pair of semiconductors or tens or hundreds of paired semiconductors are divided into the same number to generate a Peltier effect when a DC voltage is applied. A pair of ceramic or other electrical insulator plates sandwiched between electrical conductor plates arranged by etching or the like, and electrically connected by soldering in series and fixed to the outside of which a heat conductor plate is further provided. Was attached and commercialized as an assembly of one electronic cooling element.

【0003】[0003]

【発明が解決しようとする課題】ところが前記の電子冷
却素子の集合体では複数組の対の半導体が所定のほぼ方
形のスペースに収められるために多数が連続的に一直線
状に配置される事はなく所定の方形の辺の長さの中で数
回または数十回に渉ってターンする形状となっていて,
工業的に連続的大量生産するのに不便であった。
However, in the above-described assembly of electronic cooling elements, since a plurality of pairs of semiconductors are accommodated in a predetermined substantially rectangular space, a large number of semiconductors are continuously arranged in a straight line. Instead, it has a shape that turns several times or dozens of times within the length of the side of a given square,
It was inconvenient for industrial continuous mass production.

【0004】さらに在来の電子冷却素子の集合体の外形
は方形で平面的であるため,その主目的たる熱伝導体と
の接触部分の形状も平面とならざるを得ず,またユニッ
ト単体での強度を得るためと各対をなす半導体の導電部
分相互の絶縁性を保つため,ある程度の厚さのあるセラ
ミックなどの電気絶縁性をもつ板で外装を施しているの
でこれと接する熱伝導体にいたるまでにかなりの熱抵抗
があるばかりでなく,流れを伴う液体との熱交換に便利
な円筒状のパイプや,気体との対流熱伝達に便利な密度
の高いフィン状の熱伝導体と接続するのが容易ではな
く,無理に熱伝導体を形成しようとすると熱伝導体が大
きくなり,目的の流体までの熱通過抵抗が大きくなっ
て,そのため電子冷却素子の集合体の両端の温度差が大
きくなり,電気入力に対する冷却効果の効率が低く抑え
られ勝ちであった。
Further, since the outer shape of the conventional assembly of thermoelectric cooling elements is rectangular and planar, the shape of the contact portion with the heat conductor, which is the main purpose of the assembly, is inevitably flat, and the unit alone has to be flat. In order to obtain the strength of the semiconductor and to maintain the insulation between the conductive parts of each pair of semiconductors, the outer surface is covered with an electrically insulating plate such as ceramic with a certain thickness. Not only does it have a considerable thermal resistance up to the end, but also a cylindrical pipe that is convenient for heat exchange with liquids that flow, and a fin-shaped heat conductor that has high density and is convenient for convective heat transfer with gas. It is not easy to connect, and if you try to forcibly form a heat conductor, the heat conductor becomes large and the heat passage resistance to the target fluid becomes large, so that the temperature difference between both ends of the assembly of electronic cooling elements becomes large. Becomes larger and Efficiency of the cooling effect of was suppressed to win low.

【0005】また1対の半導体に印加するに適切な直流
電圧は現存する半導体では0.1ボルト以下と極めて低
いため100ないし200ボルトといった商用電源電圧
で使用するには数千組の半導体を直列接続しなくてはな
らず,在来の製造方法では容易なことではなく,さらに
直列接続のいずれか一ヶ所が断線してもその組に通ずる
数千組の半導体の列は全く効果を発揮しなくなるなど信
頼性の面でも欠点があった。
In addition, the DC voltage suitable for applying to a pair of semiconductors is extremely low at 0.1 V or less in the existing semiconductors, and therefore thousands of semiconductors are connected in series in order to be used at a commercial power supply voltage of 100 to 200 V. They have to be connected, which is not easy with conventional manufacturing methods, and even if any one of the series connections is broken, the thousands of rows of semiconductors leading to the set are quite effective. There was also a drawback in terms of reliability, such as the disappearance.

【0006】従って,電子冷却は圧縮式冷凍機などに較
べて作動部分がなくきわめて単純な装置によってフロン
冷媒や石化燃料を使用することなく冷却効果を生じる事
が可能であるにもかかわらず,製造コストが高く,形状
的に実用性に欠けるなどの理由からほとんど商業的実用
に供する事が出来なかった。
[0006] Therefore, the electronic cooling can produce a cooling effect by using an extremely simple device without using an operating part as compared with a compression type refrigerator and the like, without using a chlorofluorocarbon refrigerant or petrochemical fuel. Because of its high cost and lack of practicality due to its shape, it could hardly be put to commercial use.

【0007】[0007]

【課題を解決するための手段】本発明はこの点を改良す
るためになされた。特許請求の項で述べたように耐熱性
かつ可撓性のある樹脂の薄板に耐熱性の接着剤を用いて
一定幅の可撓性のある薄い銅帯を前記一定幅より狭い間
隔を保って平行に貼り付けるかまたはエッチングによっ
て形成し,前記銅帯の長手方向にそって,直流電圧を印
加するとペルチエ効果を生じる対をなす半導体を一定の
間隔を保って同じ向きに配列して半田で溶着した半完成
の電子冷却素子の集合体をこれを取付ける熱伝導体の寸
法に合わせて用意する。これに前記と同じ銅帯を平行に
同じ間隔を保って耐熱性の接着剤をもちいて貼り付ける
かまたはエッチングによって形成した耐熱性,可撓性の
ある樹脂の薄板を半導体を挟んで銅帯が相対するよう
に,かつ,銅帯を半ピッチずらして平行になるようにし
て半田で溶着すれば電子冷却素子の集合体が完成するよ
うにしておく。
The present invention has been made to improve this point. As described in the claims, a heat-resistant adhesive is used on a thin plate of heat-resistant and flexible resin, and thin flexible copper strips of a certain width are kept at intervals narrower than the certain width. Bonded in parallel or formed by etching, and generate a Peltier effect when a DC voltage is applied along the longitudinal direction of the copper strips. The paired semiconductors are arranged in the same direction with a constant space and are welded by soldering. An assembly of the semi-finished electronic cooling elements is prepared according to the dimensions of the heat conductor to which it is attached. The same copper strips as described above are attached in parallel with a heat-resistant adhesive at the same intervals, or a thin strip of heat-resistant and flexible resin formed by etching is used to sandwich the copper strips between the semiconductor strips. The assembly of electronic cooling elements is completed by welding with solder so that the copper strips face each other and are offset by a half pitch so that they are parallel to each other.

【0008】電子冷却素子のCOLD側もHOT側も気
体との熱交換を行なう場合は熱伝導体と電子冷却素子の
接合面は平面が望ましく,この場合は前記半完成の電子
冷却素子の集合体の半導体の半田接合されるべき面にク
リーム半田を塗布し,前記の銅帯のみを付した樹脂の薄
板の銅帯には半田メッキを施して,両者をCOLD側の
熱伝導体とHOT側の熱伝導体の間に,相互の銅帯が半
ピッチずれて平行になるような正常な位置関係を保つよ
うにして挟み込み,ボルト絞めなどの方法によって圧着
した状態で半田が溶ける温度まで加熱して接合する。こ
のようにして,COLD側とHOT側の熱伝導体完全に
密着した状態で電子冷却素子の集合体が完成される。
When heat exchange with the gas is performed on both the COLD side and the HOT side of the electronic cooling element, it is desirable that the joint surface between the heat conductor and the electronic cooling element is a flat surface. In this case, the assembly of the semi-finished electronic cooling elements. Cream solder is applied to the surface of the semiconductor to be solder-joined, and the copper strip of the resin thin plate with only the copper strip is solder-plated, and both are bonded to the heat conductor on the COLD side and to the HOT side. It is sandwiched between the heat conductors so that the copper strips are parallel to each other with a half-pitch offset, and is then crimped by a method such as bolt tightening and heated to a temperature at which the solder melts. To join. In this way, the assembly of the electronic cooling elements is completed in a state where the heat conductors on the COLD side and the HOT side are in complete contact.

【0009】電子冷却素子のCOLD側とHOT側の両
方が液体と,または片方が液体,他方が気体と熱交換を
行なう場合は同心の直径の異なる2重管の間隙に電子冷
却素子の集合体を挟みこむのが望ましく,この場合は前
記半完成の電子冷却素子の集合体を直径の小さな内管の
外側に樹脂の薄板を接して銅帯を管の軸に直角をなすよ
うに巻き付け,半導体の半田接合されるべき面にクリー
ム半田を塗布し,前記銅帯のみを付した樹脂の薄板の銅
帯には半田メッキを施して,銅帯を内側に前記内管に巻
き付けた半完成の電子冷却素子の集合体の外側に銅帯が
管の軸に直角をなすように,かつ相互の銅帯が半ピッチ
ずれて平行になるように巻き付け,これを外管の内径に
収納したのち,内管の内部から拡管して外管の内側と内
管の外側に電子冷却素子の集合体の両面の樹脂の薄板が
圧着されるようにして,半田が溶ける温度まで外管を加
熱して接合する。このようにして同心の2重管の間隙に
挟まれ両方の管に密着した状態で電子冷却素子の集合体
が完成される。
When both the COLD side and the HOT side of the electronic cooling element exchange heat with the liquid, or one with the liquid and the other with the gas, the assembly of the electronic cooling elements is provided in the gap between the concentric double tubes having different diameters. In this case, the semi-finished assembly of electronic cooling elements is wrapped around the outer surface of the inner tube with a small diameter with a thin resin plate so that the copper strip is perpendicular to the axis of the tube. A semi-finished electronic device in which cream solder is applied to the surfaces to be soldered, the copper strip of the resin thin plate with only the copper strip is solder-plated, and the copper strip is wound inside the inner tube. Wrap the copper strips on the outside of the assembly of cooling elements so that the copper strips are perpendicular to the axis of the pipe and the copper strips are parallel to each other with a half-pitch offset. Expand from the inside of the tube and electronically cool it inside the outer tube and outside the inner tube. As thin plates both sides of the resin of the assembly element is crimped, bonded by heating the outer tube to the melting temperature solder. In this way, the assembly of the electronic cooling elements is completed in a state of being sandwiched between the concentric double tubes and closely contacting both tubes.

【0010】HOT側もCOLD側も流過する液体と熱
交換する場合には前記外管のさらに外側に同心のジャケ
ットを取付け,このジャケットと内管の双方にそれぞれ
の液体を流過させればよい。またHOT側とCOLD側
のいずれかが気体,他方が液体の場合には外管の外側に
フィンを装着して,フィン側に気体,内管に液体をそれ
ぞれ流過させればよい。
In the case of exchanging heat with the liquid flowing through both the HOT side and the COLD side, a concentric jacket is attached to the outer side of the outer pipe, and each liquid is passed through both the jacket and the inner pipe. Good. When one of the HOT side and the COLD side is gas and the other is liquid, a fin may be attached to the outside of the outer tube so that the gas flows through the fin side and the liquid flows through the inner tube.

【0011】段落Paragraph

【0009】および[0009] and

【0010】のいずれの場合もHOT側とCOLD側の
温度差の要求が大きい場合には複数の前記電子冷却素子
の集合体を熱伝導体の板を挟んで重ねて複数層の電子冷
却素子の集合体を形成すれば良い。
In any of the above cases, when the temperature difference between the HOT side and the COLD side is large, an assembly of a plurality of the electronic cooling elements is superposed with a plate of a heat conductor interposed therebetween to form a plurality of electronic cooling elements. It is sufficient to form an aggregate.

【0012】[0012]

【作用】本発明では電子冷却素子の集合体を製造するに
あたって実際に使われる寸法に近い幅の耐熱性・可撓性
のある樹脂の薄板を使用し,実際に使われる長さまたは
エンドレスの状態で前記可撓性のある一定幅の薄い銅帯
を前記一定幅より狭い間隔を保って耐熱性のある接着剤
で平行に貼り付けるかエッチングによって形成し,この
銅帯の長手方向にそって,直流電圧を印加するとペルチ
エ効果を生じる対をなす半導体を一定の間隔を保って同
じ向きに配列して半田で銅帯に溶着して半完成の電子冷
却素子の集合体を形成し,これに前記と同一寸法の薄い
可撓性のある一定幅の銅帯を前記一定幅より狭い間隔を
保って耐熱性のある接着剤で平行に貼り付けるかエッチ
ングによって形成した薄い耐熱性,可撓性のある樹脂板
をようして相互の半田接合されるべき面に半田メッキす
るかクリーム半田を塗布するなどして準備し,実際にH
OT側・COLD側の熱伝導体に組み込んだ際に前記両
者を正常な位置関係に向かい合わせて配置し圧着した状
態で加熱して半田を溶かして溶着し,電子冷却素子の集
合体を完成させるようにしたから,在来の方法で作られ
た小型の電子冷却素子のユニットよりも工業的に連続的
大量生産をするのが容易である。
In the present invention, a thin plate of heat-resistant and flexible resin having a width close to the size actually used in manufacturing an assembly of electronic cooling elements is used, and the length or endless state actually used is used. Then, the flexible thin copper strip having a constant width is formed by parallel bonding or etching with a heat-resistant adhesive while keeping a narrower space than the predetermined width, and along the longitudinal direction of the copper strip, A pair of semiconductors that produce a Peltier effect when a DC voltage is applied are arranged in the same direction at regular intervals and are welded to a copper strip with solder to form a semi-finished assembly of electronic cooling elements. Thin and heat-resistant and flexible copper foils of the same size and thin and having a constant width are formed by sticking them in parallel with a heat-resistant adhesive at intervals smaller than the predetermined width or by etching. Resin plate Such as by solder paste or solder plating on the surface to be field joined prepared, actually H
When assembled into the thermal conductors on the OT side and the COLD side, the both are arranged so as to face each other in a normal positional relationship, and are heated in a state of being crimped to melt and weld the solder to complete an assembly of electronic cooling elements. As a result, it is easier to carry out continuous mass production industrially than a unit of a small electronic cooling element made by a conventional method.

【0013】また半完成の状態の前記電子冷却素子の集
合体は薄い可撓性の樹脂板を基礎材料にしているため平
面的に保管をしてもロール状に丸めて保管しても,また
搬送してもそれなりに充分の強度が有り,在来のユニッ
トに使われていた強度と電気絶縁性を保つためのある程
度の厚みのあるセラミック板より,遥かに薄くて済み従
って熱抵抗も少なく,効率よく熱伝達ができる。
Since the assembly of the electronic cooling elements in a semi-finished state uses a thin flexible resin plate as a base material, it can be stored flatly or rolled into a roll. It has a sufficient strength even if it is transported, and it is much thinner than a ceramic plate used for conventional units with a certain thickness to maintain the strength and electrical insulation. Heat can be transferred efficiently.

【0014】さらに本発明による電子冷却素子の集合体
は前記のごとく半完成の状態で2枚に別れて用意され,
それを実際に組み込むHOT側とCOLD側の熱伝導体
の間に相互に正常な位置関係になるように挟んでから加
熱して両者を半田接合して電子冷却素子の集合体を完成
させるので,熱伝導体の形状が平面的であっても,円筒
状であっても,その形状に応じて直接に密着形成される
ので,熱伝導体に対しても,熱を伝えようとするHOT
側・COLD側の流体に対しても,非常に小さい熱抵抗
で熱伝達ができる。
Further, the assembly of electronic cooling elements according to the present invention is prepared in two pieces in a semi-finished state as described above.
Since it is sandwiched between the heat conductors on the HOT side and the COLD side, which are actually incorporated, so that they have a normal positional relationship with each other, they are heated and soldered to complete the assembly of electronic cooling elements. Whether the shape of the heat conductor is planar or cylindrical, it is directly formed in close contact according to the shape, so that the HOT that tries to transfer heat to the heat conductor as well.
Heat can be transferred to the fluids on the side and COLD side with very low thermal resistance.

【0015】さらに本発明による電子冷却素子の集合体
は電気的直列に数百個接続された対をなす半導体素子が
前記半導体素子を挟んで相対する各々の面の銅帯によっ
て全部電気的並列にも接続されているので,電気的断線
が生じても,断線を生じたその1対の半導体以外には全
く影響を与える事無く,その他の全数の半導体は有効に
冷却効果を発揮する事が出来る。
Further, in the assembly of electronic cooling elements according to the present invention, several hundred semiconductor elements connected in series in electrical series are electrically connected in parallel by the copper strips on the respective surfaces facing each other with the semiconductor element interposed therebetween. Even if an electrical disconnection occurs, it does not affect the semiconductors other than the pair of semiconductors that have the disconnection, and all other semiconductors can effectively exhibit the cooling effect. .

【0016】1枚の熱伝導体の板を挟んで2組の前記電
子冷却素子の集合体を配置しさらにそんそと側をHOT
側とCOOL側の熱伝導体で挟んで密着形成した2層式
の電子冷却素子の集合体では1層式のものに較べてHO
T側とCOLD側の温度差が2倍になっても同様の冷却
性能が得られる。
Two sets of the thermoelectric cooler assembly are arranged with one heat conductor plate sandwiched between them, and further the HOT is placed on the soft side.
In the assembly of the two-layer type electronic cooling elements that are tightly formed by sandwiching between the heat conductors on the side of COL and the side of COL, the HO
Similar cooling performance can be obtained even if the temperature difference between the T side and the COLD side is doubled.

【0017】[0017]

【実施例】以下,本発明の実施例について図面に添って
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【図1】は本発明による半完成の電子冷却素子の集合体
1を示す。図中2は基本材料となる厚さ20ミクロンの
の耐熱性ポリイミドのシート,3は35ミクロンの銅箔
を前記ポリイミドのシート2に貼り付けている耐熱性の
接着剤の25ミクロンの層で,4はエッチングによっ
て,前記銅箔が2.5ミリ幅で0.5ミリ間隔で残るよ
うにして生じた銅帯5の0.5ミリの間隔,6・7は前
記2.5ミリ幅の銅帯5の上に同方向に揃えて相互に
0.5ミリの間隔8を保って,銅帯5の長手方向には3
ミリの間隔9を保って半田層10で溶着された直流電圧
を印加するとペルチエ効果を生じる対をなす1ミリの立
方形の半導体素子を示す。
FIG. 1 shows an assembly 1 of semi-finished electronic cooling elements according to the invention. In the figure, 2 is a heat-resistant polyimide sheet having a thickness of 20 microns as a basic material, 3 is a 25-micron layer of heat-resistant adhesive in which a 35-micron copper foil is attached to the polyimide sheet 2, 4 is a 0.5 mm gap between the copper strips 5 formed by etching so that the copper foil remains at a 2.5 mm width at 0.5 mm intervals, and 6 and 7 are the 2.5 mm width copper. Aligned in the same direction on the strip 5 and keeping an interval 8 of 0.5 mm from each other, 3 in the longitudinal direction of the copper strip 5.
A pair of 1-mm cubic semiconductor elements that produce a Peltier effect when a DC voltage deposited on the solder layer 10 is applied while maintaining a 9-mm interval 9 is shown.

【0018】[0018]

【図2】は[Figure 2]

【図1】に示す半完成の電子冷却素子の集合体1に半導
体素子6・7を溶着する以前の状態と同様で銅帯11の
表面に半田メッキを施し半田層12を形成したポリイミ
ドのシート13を示す。
1 is a polyimide sheet in which a solder layer 12 is formed on the surface of a copper strip 11 by solder plating in the same state as before the semiconductor elements 6 and 7 are welded to the assembly 1 of semi-finished electronic cooling elements shown in FIG. 13 is shown.

【0019】[0019]

【図3】は前記半完成の電子冷却素子の集合体1と前記
銅帯11のみを耐熱性接着剤の層4で接着した耐熱性の
ポリイミドシート2を主材料とする加工済みのポリイミ
ドのシート13とを半導体素子6・7を挟んで銅帯5が
平行して相対するように,かつ,銅帯5・11が相互に
半ピッチすなわち本実施例では1.5ミリずれるように
組み合わせた状態を示す。
FIG. 3 is a processed polyimide sheet mainly composed of a heat-resistant polyimide sheet 2 in which only the assembly 1 of the semi-finished electronic cooling elements and the copper strip 11 are bonded by a heat-resistant adhesive layer 4; 13 and 13 so that the copper strips 5 and 11 face each other in parallel with the semiconductor elements 6 and 7 sandwiched therebetween, and the copper strips 5 and 11 are offset from each other by a half pitch, that is, 1.5 mm in this embodiment. Indicates.

【図3】で明らかなように両者を半田で溶着すれば,各
対の半導体素子6・7は両面の銅帯5・11を通じて電
気的に直列にまた同時にそれぞれ片側の銅帯を通じて電
気的並列に接続される。
As is clear from FIG. 3, if both are welded by solder, the semiconductor elements 6 and 7 of each pair are electrically connected in series through the copper strips 5 and 11 on both sides and simultaneously in parallel through the copper strips on one side. Connected to.

【0020】[0020]

【図4】は前記半完成の電子冷却素子の集合体1の半導
体素子6・7の,前記銅帯のみを付した加工済みのポリ
イミドシート13の銅帯11に接すべき面14にクリー
ム半田15を塗布し,前記半完成の電子冷却素子の集合
体1と前記銅帯11のみを付した加工ずみのポリイミド
シート13を
FIG. 4 shows a cream solder on a surface 14 of the semiconductor element 6 or 7 of the assembly 1 of the semi-finished electronic cooling elements, which is to be in contact with the copper strip 11 of the processed polyimide sheet 13 having only the copper strip. 15 is applied to form a processed polyimide sheet 13 having only the assembly 1 of the semi-finished electronic cooling elements and the copper strip 11 attached thereto.

【図3】の状態に組合わせHOT側の熱伝導体16とC
OLD側の熱伝導体17の間に挟んでボルト18,ナッ
ト19とを用いて圧着しポリイミドシート13側の熱伝
導体15を加熱して半田を溶着して完成した平面の伝熱
面をもつ電子冷却素子の集合体20を示す。
FIG. 3 is a combination of the state of FIG. 3 and the heat conductors 16 and C on the HOT side.
It is sandwiched between the heat conductors 17 on the OLD side and pressure-bonded using bolts 18 and nuts 19 to heat the heat conductors 15 on the side of the polyimide sheet 13 and weld the solder to form a flat heat transfer surface. An assembly 20 of electronic cooling elements is shown.

【0021】[0021]

【図5】は半完成の電子冷却素子の集合体1を直径10
ミリの銅管21の外側にその銅帯5が銅管21の軸に直
角をなすように巻き付け,半導体素子6・7の外面14
にクリーム半田15を塗布し,この外側に前記銅帯11
のみを付した加工済みのポリイミドシート13をその銅
帯11を内側にして銅管21の軸に直角をなし,かつ,
前記半完成の電子冷却素子の集合体1の銅帯5と半ピッ
チ,すなわち1.5ミリずれるように巻き付け,それを
内径13ミリ,肉厚1ミリの銅管22の中央に挿入した
後に内側の銅管21を内側から機械的または流体を介し
て圧力を掛けて拡管し,前記半完成の電子冷却素子の集
合体1の内面と内側の銅管21の外面,半完成の電子冷
却素子の集合体1の半導体素子6・7のクリーム半田1
5を塗布した外面14と前記銅帯11のみを付した加工
済みのポリイミドシート13の銅帯11の内面,同じく
ポリイミドシート13の外面と外側の銅管22の内面が
それぞれ相互に密着した状態にして,外側の銅管22を
加熱して半田を溶着して完成した円筒形の伝熱面をもつ
電子冷却素子の集合体23を示す。
FIG. 5 shows a semi-finished assembly 1 of electronic cooling elements having a diameter of 10
The copper strip 5 is wound around the millimeter copper tube 21 so that the copper strip 5 is perpendicular to the axis of the copper tube 21.
Apply the cream solder 15 to the outer surface of the copper strip 11
A processed polyimide sheet 13 with a chisel is formed so that the copper strip 11 is inside, and is perpendicular to the axis of the copper tube 21, and
The copper strip 5 of the assembly 1 of semi-finished electronic cooling elements is wound so as to be shifted by a half pitch, that is, 1.5 mm, and is inserted into the center of a copper tube 22 having an inner diameter of 13 mm and a wall thickness of 1 mm, and then the inner side. The copper tube 21 is expanded from the inside by applying pressure mechanically or through a fluid, and the inner surface of the assembly 1 of the semi-finished electronic cooling elements and the outer surface of the inner copper tube 21 of the semi-finished electronic cooling element Cream solder 1 for semiconductor elements 6 and 7 of assembly 1
The outer surface 14 coated with 5 and the inner surface of the copper strip 11 of the processed polyimide sheet 13 having only the copper strip 11 attached thereto, and the outer surface of the polyimide sheet 13 and the inner surface of the outer copper tube 22 are in close contact with each other. An assembly 23 of electronic cooling elements having a cylindrical heat transfer surface completed by heating the outer copper tube 22 and welding solder is shown.

【0022】[0022]

【図6】は[Figure 6]

【図3】に示す円筒形の伝熱面をもつ電子冷却素子の集
合体23のさらに外側に一組の半完成の電子冷却素子の
集合体1と加工済みのポリイミドシート13を段落
FIG. 3 shows a set of semi-finished electronic cooling element assemblies 1 and a processed polyimide sheet 13 on the outer side of the assembly 23 of electronic cooling elements having a cylindrical heat transfer surface.

【0021】に述べたと同様の方法で巻き付けこれを内
径18ミリの銅管24を400℃程度に加熱して,その
中央に挿入し,銅管24の熱収縮によって銅管24の内
面が内容物に圧着されながら半田を溶着させて完成され
た2層式の円筒形の伝熱面を持つ電子冷却素子の集合体
25を示す。これは無論の事3層以上の多層式の円筒形
の伝熱面を持つ電子冷却素子の集合体も,さらに多層式
の平面の伝熱面を持つ電子冷却素子の集合体も製作可能
な事を意味する。
A copper tube 24 having an inner diameter of 18 mm is wound in the same manner as described above, heated to about 400 ° C., and inserted into the center of the copper tube 24. The inner surface of the copper tube 24 is cooled by heat contraction. 2 shows an assembly 25 of electronic cooling elements having a two-layered cylindrical heat transfer surface, which is completed by welding solder while being crimped to. This is, of course, possible to manufacture an assembly of thermoelectric cooling elements having a multilayer cylindrical heat transfer surface of three or more layers, and an assembly of electronic cooling elements having a multilayer planar heat transfer surface. Means

【0023】[0023]

【図7】は[Figure 7]

【図5】に示した円筒形の伝熱面を持つ電子冷却素子の
集合体20の外側の銅管22のさらに外側に内径20ミ
リの銅管製の水用ジャケット26を取付けて,HOT側
もCOLD側も熱媒体として液体を流過させるに適した
形状にした液体〜液体用の熱伝導体を持つ電子冷却素子
の集合体27を示す。
FIG. 5 shows a water pipe jacket 26 made of a copper pipe having an inner diameter of 20 mm attached to the outer side of the copper pipe 22 outside the assembly 20 of the electronic cooling elements having the cylindrical heat transfer surface shown in FIG. Both of the COLD side and the COLD side show an assembly 27 of electronic cooling elements having a heat conductor for a liquid to a liquid, which has a shape suitable for flowing a liquid as a heat medium.

【0024】[0024]

【図8】は[Figure 8]

【図5】に示した円筒形の伝熱面を持つ電子冷却素子の
集合体20の外側の銅管22に直径15ミリのバーリン
グ穴加工を施した肉厚0.3ミリのアルミ製のフィン2
8を3ミリピッチにはめこんで固定したものでHOT
側,COLD側の熱媒体のいずれか一方が液体で他方が
気体である場合に銅管20の内側に接して液体の熱媒体
を,外側のフィン28に接して気体の熱媒体を流過させ
るに適した形状にした液体〜気体用の熱伝導体を持つ電
子冷却素子の集合体29を示す。
FIG. 5 is a fin made of aluminum having a thickness of 0.3 mm in which a copper ring 22 on the outer side of an assembly 20 of electronic cooling elements having a cylindrical heat transfer surface shown in FIG. Two
HOT with 8 fixed in 3 mm pitch
When either one of the heat mediums on the side and the COLD side is a liquid and the other is a gas, the liquid heat medium is brought into contact with the inside of the copper tube 20 and the gas heat medium is brought into contact with the outer fins 28. 3 shows an assembly 29 of electronic cooling elements having a liquid-to-gas heat conductor having a shape suitable for.

【0025】[0025]

【発明の効果】本発明ではAccording to the present invention,

【図1】〜[Figure 1]

【図3】に示すように可撓性のポリイミドのシートを基
本材料としこれに電子冷却用半導体素子を取付けて電子
冷却素子の集合体を形成したから,大きい版の定尺のポ
リイミドシートに合わせてでも,一定幅のエンドレス状
の形状でも,使用に適した1個の製品の大きさに合わせ
てでも自由な大きさで製作することが出来るので工業的
に連続的大量生産が出来るようになった。
As shown in FIG. 3, since a flexible polyimide sheet is used as a basic material and a semiconductor element for electronic cooling is attached to this to form an assembly of electronic cooling elements, the sheet is fitted to a large-sized standard polyimide sheet. In addition, it is possible to manufacture continuously and mass-produced industrially because it can be manufactured in an endless shape with a certain width or in a free size according to the size of one product suitable for use. It was

【0026】基本材料として使用している可撓性ポリイ
ミドシートは極めて薄いので電子冷却半導体素子から熱
伝導体に至るまでの熱抵抗が小さく電子冷却素子の集合
体のHOT側とCOLD側の温度差を小さくすることが
出来る。従って,電気入力に対する冷却効果の効率を実
用的に高める事が可能となった。
Since the flexible polyimide sheet used as the basic material is extremely thin, the thermal resistance from the electronic cooling semiconductor element to the heat conductor is small and the temperature difference between the HOT side and the COLD side of the assembly of electronic cooling elements is small. Can be reduced. Therefore, it became possible to practically increase the efficiency of the cooling effect for electric input.

【0027】[0027]

【図3】に示すように半完成の電子冷却素子の集合体と
銅帯のみを付したポリイミドのシードを各々の銅帯が平
行に,かつ,半ピッチずらして半田で溶着して電子冷却
素子の集合体を形成したから対をなす電子冷却用半導体
素子は銅帯によって電気的に直列に,かつ,銅帯に添っ
て電気的に並列に接続されているので,半導体素子個体
の断線事故に起因する全体のあるいは大きな範囲での事
故を防ぐ事が出来電子冷却素子の集合体全体の信頼性を
数百倍向上することが出来た。
[Fig. 3] As shown in Fig. 3, an assembly of semi-finished electronic cooling elements and a polyimide seed with only copper strips are welded with solder by shifting the copper strips in parallel with each other and shifting them by a half pitch. Since the semiconductor elements for electronic cooling forming the assembly of are electrically connected in series by the copper strip and electrically in parallel along the copper strip, it is possible to prevent disconnection accidents of individual semiconductor elements. It was possible to prevent the whole or a large range of accidents resulting from it, and it was possible to improve the reliability of the entire assembly of electronic cooling elements by several hundred times.

【0028】[0028]

【図4】に示すように2つの熱伝導体の間隙に電子冷却
素子の集合体を挟んで密着させ,加熱して半田接合した
から平面の熱伝導と電子冷却素子の集合体の密着度が極
めて良好で,熱媒体と電子冷却素子の集合体の表面温度
の差が小さくなり,電気入力に対する冷却効果の効率を
さらに向上させることが出来た。
[Fig. 4] As shown in Fig. 4, the assembly of the electronic cooling elements is sandwiched and closely contacted with each other in the gap between the two thermal conductors, and heating and soldering are performed. It was extremely good, and the difference in surface temperature between the heat medium and the assembly of electronic cooling elements was reduced, and the efficiency of the cooling effect for electric input could be further improved.

【0029】[0029]

【図5】に示すように同心の直径の異なる2重管の熱伝
導体の間隙に電子冷却素子の集合体をを密着挿入して半
田接合したから円筒形の熱伝導体と電子冷却素子の集合
体の密着度が良好で,熱媒体と電子冷却素子の集合体の
表面温度の差が小さくなり電気入力に対する冷却効果の
効率をさらに向上させることができた。
[Fig. 5] As shown in Fig. 5, the assembly of the electronic cooling elements is closely inserted into the gap between the thermal conductors of the double tubes having different concentric diameters and solder-bonded to each other. The adhesion of the assembly was good, and the difference in surface temperature between the heat medium and the assembly of the electronic cooling elements was small, and the efficiency of the cooling effect for electric input could be further improved.

【0030】[0030]

【図6】に示すように2重管の外側にさらに同心の熱伝
導体を設けこの間隙に電子冷却素子の集合体を密着挿入
して半田接合したから1層の場合に較べてHOT側,C
OLD側の温度差が大きくてもも同様の冷却性能を発揮
することが出来る。
As shown in FIG. 6, a concentric heat conductor is further provided on the outer side of the double tube, and an assembly of electronic cooling elements is closely inserted and solder-bonded in this gap. C
Even if the temperature difference on the OLD side is large, the same cooling performance can be exhibited.

【0031】[0031]

【図7】に示すように2重管の外側にさらに同心に銅管
の水ジャケットを取付けたから液体の熱媒体相互の使用
に極めて便利で熱媒体と電子冷却素子の集合体の表面温
度の差が小さくなり電気入力に対する冷却効果の効率を
さらに向上することが出来た。
As shown in FIG. 7, a water jacket of a copper tube is further concentrically attached to the outside of the double tube, so that it is very convenient to use the liquid heat medium with each other, and the surface temperature difference between the heat medium and the electronic cooling element assembly is different. Was smaller, and the efficiency of the cooling effect for electric input could be further improved.

【0032】[0032]

【図8】に示すように2重管の外側にフィンを密着固定
したから内側の管の内部に接して液体,フィンに接して
気体の熱媒体を流過するように使用すれば,極めて便利
で,かつ,熱媒体と電子冷却素子の集合体の表面温度の
差が小さくなり電気入力に対する冷却効果の効率をさら
に向上することが出来た。
[Fig. 8] As shown in Fig. 8, since the fins are closely fixed to the outside of the double pipe, it is very convenient to use it so that the inside of the pipe comes into contact with the liquid and the fin comes into contact with the heat medium of gas to flow through. In addition, the difference in surface temperature between the heat medium and the assembly of the electronic cooling elements was reduced, and the efficiency of the cooling effect for electric input could be further improved.

【0033】以上の様にして今日まで実用的な面で全く
顧みられなかった電子冷却を実用化し,脱フロンの冷却
を実現するものである。
As described above, the electronic cooling, which has been neglected in practical use up to now, is put into practical use to realize the cooling of CFCs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半完成の電子冷却素子の集合体で
ある。
FIG. 1 is an assembly of semi-finished electronic cooling elements according to the present invention.

【図2】本発明による銅帯のみを付した加工済み樹脂シ
ートである。
FIG. 2 is a processed resin sheet with only a copper strip according to the present invention.

【図3】両者を正常な位置関係に組み合わせて電子冷却
素子の集合体を形成すべく用意された状態をを示す。
FIG. 3 shows a state in which both are prepared in a normal positional relationship to form an assembly of electronic cooling elements.

【図4】本発明による平面的な伝熱面を持つ電子冷却素
子の集合体である。
FIG. 4 is an assembly of electronic cooling elements having a planar heat transfer surface according to the present invention.

【図5】本発明による円筒形の伝熱面を持つ電子冷却素
子の集合体である。
FIG. 5 is an assembly of electronic cooling elements having a cylindrical heat transfer surface according to the present invention.

【図6】本発明による2層式の円筒形の伝熱面を持つ電
子冷却素子の集合体である。
FIG. 6 is an assembly of electronic cooling elements having a two-layered cylindrical heat transfer surface according to the present invention.

【図7】本発明による液体〜液体用の熱伝導体を持つ電
子冷却素子の集合体である。
FIG. 7 is an assembly of electronic cooling elements having a liquid-to-liquid heat conductor according to the present invention.

【図8】本発明による気体〜液体用の熱伝導体を持つ電
子冷却素子の集合体である。
FIG. 8 is an assembly of electronic cooling elements having a heat conductor for gas to liquid according to the present invention.

【符号の説明】[Explanation of symbols]

1. 半完成の電子冷却素子の集合体 2. 耐熱性のポリイミドシート 3. 耐熱性接着剤の層 4. 銅帯の間隔 5. 銅帯 6. 対をなす半導体の一方の個体 7. 対をなす半導体の他方の個体 8. 対をなす半導体の個体相互の間隔 9. 隣あう対をなす半導体の間隔 10. 半田層 11. 銅帯 12. 半田層 13. 加工済みのポリイミドシート 14. 対をなす半導体の接合されるべき面 15. クリーム半田 16. 平面の伝熱面を持つHOT側の熱伝導体 17. 平面の伝熱面を持つCOLD側の熱伝導体 18. ボルト 19. ナット 20. 平面の伝熱面を持つ電子冷却素子の集合体 21. 内側の銅管 22. 外側の銅管 23. 円筒形の伝熱面を持つ電子冷却素子の集合体 24. 2層式の円筒形の伝熱面を持つ電子冷却素子の
集合体の外側の銅管 25. 2層式の円筒形の伝熱面を持つ電子冷却素子の
集合体 26. 銅管製の水用ジャケット 27. 液体〜液体用の熱伝導体を持つ電子冷却素子の
集合体 28. フィン 29. 気体〜液体用の熱伝導体を持つ電子冷却素子の
集合体
1. Assembly of semi-finished thermoelectric cooling elements 1. Heat resistant polyimide sheet 3. Heat-resistant adhesive layer 4. Copper strip spacing 5. Copper band 6. One of the paired semiconductors 7. 7. The other individual paired semiconductor Interval between paired semiconductor individuals 9. 10. Space between adjacent semiconductor pairs 10. Solder layer 11. Copper band 12. Solder layer 13. Processed polyimide sheet 14. 15. Surfaces of semiconductors to be bonded to be bonded 15. Cream solder 16. Heat conductor on the HOT side having a flat heat transfer surface 17. COLD-side heat conductor having a flat heat transfer surface 18. Bolt 19. Nut 20. 21. Assembly of electronic cooling elements having a flat heat transfer surface 21. Inner copper tube 22. Outer copper tube 23. Assembly of electronic cooling elements having cylindrical heat transfer surface 24. Copper tube on the outside of the assembly of electronic cooling elements having a two-layered cylindrical heat transfer surface 25. 26. Assembly of electronic cooling elements having a two-layer cylindrical heat transfer surface 26. Water jacket made of copper pipe 27. 27. Assembly of electronic cooling element having heat conductor for liquid to liquid 28. Fin 29. Assembly of electronic cooling elements with heat conductors for gas to liquid

Claims (2)

【特許請求の範囲】[Claims] 【請求項 1】耐熱性かつ可撓性のある樹脂の薄板に耐
熱性の接着剤を用いて一定幅の可撓性のある薄い銅帯を
前記一定幅より狭い間隔を保って平行に貼り付けるかエ
ッチングによって形成し,前記銅帯の長手にそって,直
流電圧を印加するとペルチエ効果を生じる対をなす半導
体を一定の間隔を保って同じ向きに配列して半田などで
溶着し,前記半導体を挟んで相対するように前記と同一
の銅帯を接着またはエッチングを施した樹脂の薄板を半
導体を挟んで銅帯が向かいあうように,かつ,半ピッチ
ずれて平行になるようにして半導体に接した状態で配置
し,両面から熱伝導体で挟んで圧着した状態で半導体と
銅帯の間を同様に半田などで溶着したことを特色とする
電子冷却素子の集合体。
1. A thin copper plate having a certain width is attached in parallel to a thin plate made of a heat-resistant and flexible resin by using a heat-resistant adhesive while keeping an interval narrower than the certain width. Formed by etching, and along the length of the copper strip, a pair of semiconductors that produce a Peltier effect when a DC voltage is applied are arranged in the same direction with a certain interval and welded by soldering or the like. Bonded or etched the same copper strips as above so that the copper strips face each other, and contacted the semiconductor strips so that the copper strips faced each other across the semiconductor and were offset by a half pitch and were parallel. An assembly of electronic cooling elements characterized in that they are arranged in a state, sandwiched by heat conductors from both sides and crimped together, and the semiconductor and copper strips are similarly welded together with solder or the like.
【請求項 2】熱伝導体の板を複数の前記電子冷却素子
の集合体の間に挟み,複数層として組み立てた第1項の
電子冷却素子の集合体。
2. The assembly of electronic cooling elements according to claim 1, wherein a plate of a heat conductor is sandwiched between a plurality of assemblies of said electronic cooling elements and assembled as a plurality of layers.
JP5206791A 1993-06-28 1993-06-28 Aggregate of electronic cooling element Pending JPH07202275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5206791A JPH07202275A (en) 1993-06-28 1993-06-28 Aggregate of electronic cooling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5206791A JPH07202275A (en) 1993-06-28 1993-06-28 Aggregate of electronic cooling element

Publications (1)

Publication Number Publication Date
JPH07202275A true JPH07202275A (en) 1995-08-04

Family

ID=16529159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5206791A Pending JPH07202275A (en) 1993-06-28 1993-06-28 Aggregate of electronic cooling element

Country Status (1)

Country Link
JP (1) JPH07202275A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013284A1 (en) * 1995-09-29 1997-04-10 Union Material Inc. Thermoelectric device and thermoelectric cooler/heater
WO1998025089A1 (en) * 1996-12-03 1998-06-11 Komatsu Ltd. Fluid temperature control device
JP2000286463A (en) * 1999-03-30 2000-10-13 Nhk Spring Co Ltd Thermoelectric conversion module
JP2001156343A (en) * 1999-11-30 2001-06-08 Morix Co Ltd Thermoelectric element and method of manufacturing the same
US6410971B1 (en) 2001-07-12 2002-06-25 Ferrotec (Usa) Corporation Thermoelectric module with thin film substrates
US6521991B1 (en) 1999-11-26 2003-02-18 Morix Corporation Thermoelectric module
WO2005057674A3 (en) * 2003-12-09 2005-11-10 Ferrotec Usa Corp Thermoelectric module with directly bonded heat exchanger
JP2008261747A (en) * 2007-04-12 2008-10-30 Sumitomo Heavy Ind Ltd Boiler monitoring device
JP2009267316A (en) * 2008-04-24 2009-11-12 Asset-Wits Co Ltd Thermoelectric conversion module, manufacturing method thereof, and thermoelectric generation system
JP2014508404A (en) * 2011-01-26 2014-04-03 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric module with a heat conductive layer
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
WO2018035140A1 (en) * 2016-08-17 2018-02-22 Nitto Denko Corporation Thermoelectric devices and methods of making same
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10464391B2 (en) 2007-05-25 2019-11-05 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097088A (en) * 1995-09-29 2000-08-01 Morix Co., Ltd. Thermoelectric element and cooling or heating device provided with the same
WO1997013284A1 (en) * 1995-09-29 1997-04-10 Union Material Inc. Thermoelectric device and thermoelectric cooler/heater
WO1998025089A1 (en) * 1996-12-03 1998-06-11 Komatsu Ltd. Fluid temperature control device
US6236810B1 (en) 1996-12-03 2001-05-22 Komatsu, Ltd. Fluid temperature control device
JP2000286463A (en) * 1999-03-30 2000-10-13 Nhk Spring Co Ltd Thermoelectric conversion module
US6521991B1 (en) 1999-11-26 2003-02-18 Morix Corporation Thermoelectric module
JP2001156343A (en) * 1999-11-30 2001-06-08 Morix Co Ltd Thermoelectric element and method of manufacturing the same
US6410971B1 (en) 2001-07-12 2002-06-25 Ferrotec (Usa) Corporation Thermoelectric module with thin film substrates
WO2003007391A1 (en) * 2001-07-12 2003-01-23 Ferrotec (Usa) Corporation Thermoelectric module with thin film substrates
JP2005507157A (en) * 2001-07-12 2005-03-10 フェロテック(ユーエスエー)コーポレイション Thermoelectric module having thin film substrate
JP4768961B2 (en) * 2001-07-12 2011-09-07 フェローテック(ユーエスエー)コーポレイション Thermoelectric module having thin film substrate
JP2011193013A (en) 2001-07-12 2011-09-29 Ferrotec (Usa) Corp Method of manufacturing thermoelectric module and thermoelectric module
WO2005057674A3 (en) * 2003-12-09 2005-11-10 Ferrotec Usa Corp Thermoelectric module with directly bonded heat exchanger
JP2008261747A (en) * 2007-04-12 2008-10-30 Sumitomo Heavy Ind Ltd Boiler monitoring device
US10464391B2 (en) 2007-05-25 2019-11-05 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
JP2009267316A (en) * 2008-04-24 2009-11-12 Asset-Wits Co Ltd Thermoelectric conversion module, manufacturing method thereof, and thermoelectric generation system
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
US10473365B2 (en) 2008-06-03 2019-11-12 Gentherm Incorporated Thermoelectric heat pump
JP2014508404A (en) * 2011-01-26 2014-04-03 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric module with a heat conductive layer
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10784546B2 (en) 2013-01-30 2020-09-22 Gentherm Incorporated Thermoelectric-based thermal management system
WO2018035140A1 (en) * 2016-08-17 2018-02-22 Nitto Denko Corporation Thermoelectric devices and methods of making same
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US11223004B2 (en) 2018-07-30 2022-01-11 Gentherm Incorporated Thermoelectric device having a polymeric coating
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Similar Documents

Publication Publication Date Title
JPH07202275A (en) Aggregate of electronic cooling element
US5584183A (en) Thermoelectric heat exchanger
JP3510831B2 (en) Heat exchanger
US3726100A (en) Thermoelectric apparatus composed of p-type and n-type semiconductor elements
US4499329A (en) Thermoelectric installation
CA1236175A (en) Thermoelectric module
US8378205B2 (en) Thermoelectric heat exchanger
JP2636119B2 (en) Thermoelectric element sheet and manufacturing method thereof
TW393788B (en) Method of manufacturing thermoelectric device
US9349934B2 (en) Method for manufacturing a thermoelectric device, especially intended to generate an electrical current in an automotive vehicle
JP2004104041A (en) Thermoelectric converting device and method for manufacturing the same
KR20030064292A (en) Thermoelectric module
JPH0563244A (en) Thermoelectric conversion unit
JP2006508542A (en) Integrated thermoelectric module
US4306426A (en) Thermoelectric heat exchanger assembly for transferring heat between a gas and a second fluid
US20150349233A1 (en) Carrier element and module
JP5638333B2 (en) Thermoelectric module
WO2011036854A1 (en) Heat exchanger
JP2006066822A (en) Thermoelectric conversion device
US20190035998A1 (en) Electrical connector for connecting thermoelectric elements and absorbing the stress thereof
JPH07106641A (en) Integral ring type thermoelectric conversion element and device employing same
JP2000286463A (en) Thermoelectric conversion module
US3360942A (en) Thermoelectric heat pump assembly
JP2000252528A (en) Thermoelectric generating thermoelectric conversion module block
US20230263061A1 (en) Method for producing a thermoelectric module, and thermoelectric module as interference fit assembly

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees