JPH0720010B2 - Circular polarization modified beam antenna - Google Patents

Circular polarization modified beam antenna

Info

Publication number
JPH0720010B2
JPH0720010B2 JP4638086A JP4638086A JPH0720010B2 JP H0720010 B2 JPH0720010 B2 JP H0720010B2 JP 4638086 A JP4638086 A JP 4638086A JP 4638086 A JP4638086 A JP 4638086A JP H0720010 B2 JPH0720010 B2 JP H0720010B2
Authority
JP
Japan
Prior art keywords
dielectric
plane
antenna
aperture
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4638086A
Other languages
Japanese (ja)
Other versions
JPS62204605A (en
Inventor
和雄 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP4638086A priority Critical patent/JPH0720010B2/en
Publication of JPS62204605A publication Critical patent/JPS62204605A/en
Publication of JPH0720010B2 publication Critical patent/JPH0720010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は円偏波の変形ビームを形成するアンテナに関す
る。
TECHNICAL FIELD The present invention relates to an antenna that forms a circularly polarized modified beam.

(従来の技術) 地上,海上、又は空中の目標物を探索するレーダーにお
いて、方位分解能を上げるために水平ビームは狭くし、
垂直ビームは目標物からの受信レベルを距離に対して一
定とするためにcosec2乗特性にする等の場合がある。
(Prior Art) In a radar that searches for targets on the ground, at sea, or in the air, the horizontal beam is narrowed in order to increase the azimuth resolution,
The vertical beam may have a cosec-square characteristic in order to keep the reception level from the target constant with respect to the distance.

また、上記レーダーでは、降雨からの反射波を低減する
ために円偏波を使用することがある。この様な場合、降
雨からの反射波を有効に低減させるには、変形ビームの
及ぶ比較的広範囲の角度にわたって円偏波特性が維持さ
れていることが必要である。
In addition, the above radar may use circularly polarized waves to reduce reflected waves from rainfall. In such a case, in order to effectively reduce the reflected wave from rainfall, it is necessary to maintain the circular polarization characteristic over a relatively wide range of angles covered by the modified beam.

従来の円偏波変形ビームアンテナを記載した文献として
は、 (1) 水沢、他「円偏波用ダブルカーブ形複反射鏡ア
ンテナ」,電子通信学会,宇宙航行エレクトロニクス研
究会,資料番号A.P74-81,PP25-32 (2) 謝、他「誘電体挿入H面扇型コセカントビーム
ホーンアンテナの設計とその放射特性」,電子通信学会
論文誌,'82/10vol.J−65B,No.10,PP1221-1228 がある。
Documents describing conventional circular polarized wave modified beam antennas include: (1) Mizusawa, et al. “Double curved double reflector antenna for circular polarization”, IEICE, Space Navigation Electronics Research Group, Material No. A.P74 -81, PP25-32 (2) Xie, et al. "Design and radiation characteristics of H-plane fan-type cosecant beam horn antenna with dielectric insertion", IEICE Transactions, '82 / 10 vol.J-65B, No. There are 10, PP1221-1228.

第5図は上記文献(1)に記載されているアンテナの構
成の例を説明するための図である。第5図(a)は従来
の円偏波変形ビームアンテナの例を示す図であって、1
次ホーン1と変形ビーム(COSEC2乗特性)を形成させる
ために反射鏡の上部を変形した反射鏡2から構成された
アンテナでありL1,L2,及びL3は電波の進行方向を示し、
C1とC2はそれぞれ1次ホーン1の水平偏波と垂直偏波に
対する指向性を示している。
FIG. 5 is a diagram for explaining an example of the configuration of the antenna described in the above literature (1). FIG. 5 (a) is a diagram showing an example of a conventional circular polarized wave modified beam antenna.
An antenna composed of a next horn 1 and a reflecting mirror 2 in which the upper part of the reflecting mirror is modified to form a modified beam (COSEC squared characteristic), and L1, L2, and L3 indicate the traveling directions of radio waves,
C1 and C2 indicate the directivities of the primary horn 1 for horizontal polarization and vertical polarization, respectively.

1次ホーン1は矩形開口ホーンであるため、水平と垂直
の偏波に対する開口分布が異なり、両偏波に対する指向
性も異なったものになる。このため変形ビーム内の特定
の角度方向(例えば水平方向)で円偏波が得られても、
他の角度方向では両偏波の相互の振幅関係が異なるよう
になり、円偏波が得られなくなる。
Since the primary horn 1 is a rectangular aperture horn, the aperture distributions for horizontal and vertical polarized waves are different, and the directivities for both polarized waves are also different. Therefore, even if a circularly polarized wave is obtained in a specific angular direction (for example, horizontal direction) in the deformed beam,
In other angle directions, the mutual amplitude relationship of both polarized waves becomes different, and circular polarized waves cannot be obtained.

第5図(b)は上記アンテナを改良したものであり、上
記文献(1)に記載されたアンテナと類似のアンテナを
示す図である。このアンテナは1次ホーン3、副反射鏡
4及び主反射鏡5から構成され、L4,L5,及びL6は電波の
進行方向を示している。このアンテナでは1次ホーンと
して円錐形ホーンを使用し、主,副2つの反射鏡を特殊
曲面で構成する事により、変形ビームの所定角度範囲内
で円偏波特性を得ているが、この様なアンテナにおいて
は変形ビームを形成するために、主,副2つの反射鏡を
特殊曲面にするため、設計,製作に高度な特殊技術を要
し、また、精度の確保が困難で、良好な指向性を得るこ
とが難しく、更に制作費も高くなる。
FIG. 5 (b) is a modification of the above antenna, and is a diagram showing an antenna similar to the antenna described in the above document (1). This antenna is composed of a primary horn 3, a sub-reflection mirror 4 and a main reflection mirror 5, and L4, L5, and L6 indicate the traveling directions of radio waves. With this antenna, a conical horn is used as the primary horn, and the main and sub two reflecting mirrors are constructed with special curved surfaces to obtain circular polarization characteristics within the predetermined angle range of the modified beam. In order to form a deformed beam in such an antenna, a special curved surface is used for the main and sub-reflecting mirrors, which requires a high degree of special technology for design and manufacture. It is difficult to obtain directivity, and the production cost is high.

第6図は上記文献(2)に記載されている変形ビームア
ンテナの1例を示す図であり、扇形ホーン7の中に誘電
体8を挿入し、変形ビームを得るために開口面を特殊曲
面にしたものである。このアンテナに水平と垂直の2つ
の偏波の電波を加えても、扇形ホーン7内で両偏波の伝
播姿勢が異なるため、開口面上の両偏波の分布が異な
り、同様に変形ビームの所定角度範囲内で円偏波を得る
ことが出来ない。
FIG. 6 is a diagram showing an example of the modified beam antenna described in the above-mentioned document (2), in which a dielectric 8 is inserted into a fan-shaped horn 7 and an opening surface is made into a special curved surface in order to obtain a modified beam. It is the one. Even if radio waves of two polarizations, horizontal and vertical, are applied to this antenna, the propagation attitudes of both polarizations in the fan-shaped horn 7 are different, so the distributions of both polarizations on the aperture plane are different, and similarly, the deformation beam Circularly polarized waves cannot be obtained within a predetermined angle range.

(発明が解決しようとする問題点) この様に従来のアンテナでは変形ビーム内の所定の角度
範囲内で円偏波を得ることが出来ないか、又は所定の角
度範囲内で円偏波を得ることが出来ても、設計,製作が
困難、費用がかかる等の問題があった。
(Problems to be Solved by the Invention) As described above, the conventional antenna cannot obtain circular polarization within the predetermined angle range within the modified beam, or obtains circular polarization within the predetermined angle range. However, there are problems such as difficulty in designing and manufacturing and cost.

(問題点を解決するための手段) 本発明の目的は上述の従来アンテナの欠点を除去し、変
形ビーム内の所定の角度範囲内で円偏波が得られ、かつ
設計,製作が容易な円偏波変形ビームアンテナを実現す
ることである。
(Means for Solving the Problems) The object of the present invention is to eliminate the above-mentioned drawbacks of the conventional antenna, to obtain a circularly polarized wave within a predetermined angle range within the modified beam, and to design and manufacture the circularly polarized wave easily. It is to realize a polarization modified beam antenna.

本発明を適用したアンテナの構成は、平面波を発生する
チーズアンテナの開口面付近に平行金属板格子からなる
円偏波発生装置を設け、その前面に、開口面に直交する
方向の厚さが開口面内の垂直方向に沿って変化し、水平
方向には上記厚さ一定な誘電体を設けたことを特徴とす
る円偏波変形ビームアンテナであって、さらに詳細に述
べれば、前記平行金属板格子下端からの、水平で、前記
開口面に直交する前記誘電体の後端を零とした厚み方向
X軸、誘電体の後部下端を零とし、前記開口面に沿って
垂直に上方に延びる方向をY軸、屈折率をn、電波の傾
斜角をθ、前記誘電体の出力面が前記X軸と交わる点の
X座標値をx1とした時、前記誘電体の厚みのX軸方向の
変化がXY平面上において、 で表され、前記開口面に沿った水平方向には一様に延在
する円偏波変形ビームアンテナである。
The configuration of the antenna to which the present invention is applied is such that a circularly polarized wave generating device made of a parallel metal plate grating is provided in the vicinity of the opening surface of the cheese antenna that generates a plane wave, and the front surface thereof has a thickness in the direction orthogonal to the opening surface. A circular polarized wave modified beam antenna characterized in that the dielectric material having a constant thickness is provided in the horizontal direction, which changes along the in-plane vertical direction. A thickness direction X axis from the lower end of the grid, which is horizontal and has a rear end of the dielectric member that is orthogonal to the opening face as zero, and a direction in which the rear lower end of the dielectric member has zero and extends vertically upward along the opening face. Is the Y axis, the refractive index is n, the radio wave tilt angle is θ, and the X coordinate value of the point where the output surface of the dielectric intersects the X axis is x1, the change in the thickness of the dielectric in the X axis direction. On the XY plane, Which is a circularly polarized wave modified beam antenna extending uniformly in the horizontal direction along the opening surface.

(実施例) 第1図は本発明の実施例を示す図であって、いわゆるチ
ーズアンテナに本発明を応用した例である。同図(a)
は外観を示す斜視図、同図(b)は上面断面図、同図
(c)は同図(a)のAA断面図、同図(d)はBB断面図
である。第1図の10は反射鏡部で、上部平面板10a、下
部平面板10b、及び放物円筒形の反射面10cの各金属導体
によって囲まれている。11は反射鏡部10に電波を給電す
るための1次ホーンであって、ホーン内部に放物円筒形
の反射面を持ったいわゆるホグホーン(HogHorn)型式
のもので、その開口は放物円筒形の反射面10cの焦点
(図示せず)付近に置かれ、反射面10cに対するライン
ソースとしての働きをする。同図中L10は1次ホーン11
内の電波の進行方向を示す。
(Embodiment) FIG. 1 is a view showing an embodiment of the present invention, which is an example in which the present invention is applied to a so-called cheese antenna. The same figure (a)
Is a perspective view showing the appearance, FIG. 2B is a cross-sectional top view, FIG. 1C is a cross-sectional view taken along line AA in FIG. 1A, and FIG. Reference numeral 10 in FIG. 1 denotes a reflecting mirror portion, which is surrounded by the upper flat plate 10a, the lower flat plate 10b, and the parabolic cylindrical reflecting surface 10c. Reference numeral 11 is a primary horn for supplying electric waves to the reflecting mirror section 10, which is a so-called HogHorn type having a parabolic cylindrical reflection surface inside the horn, and its opening has a parabolic cylindrical shape. It is placed near the focal point (not shown) of the reflecting surface 10c and serves as a line source for the reflecting surface 10c. In the figure, L10 is the primary horn 11
It shows the traveling direction of the radio wave inside.

第1図(d)の12は円偏波発生装置であって、その構造
を第4図に示す。第4図(a)は上面断面図、同図
(b)は正面図である。この円偏波発生装置12は発泡状
誘電体20に平行金属板格子21を上部平面板10aまたは下
部平面板10bに対し、45度の傾斜で埋めコンダ構造にな
っている。なお、第4図(a)のL20は入射する電波の
方向を示す。
Reference numeral 12 in FIG. 1 (d) is a circularly polarized wave generator, the structure of which is shown in FIG. FIG. 4 (a) is a top sectional view and FIG. 4 (b) is a front view. This circularly polarized wave generator 12 has a conductor structure in which a foamed dielectric material 20 is filled with a parallel metal plate grating 21 with respect to the upper plane plate 10a or the lower plane plate 10b at an inclination of 45 degrees. In addition, L20 in FIG. 4 (a) indicates the direction of the incident electric wave.

第1図は13は誘電体であり、開口面14に直交する方向の
厚さが第1図に示す上方向に従って変化し、同図で紙面
に直交する方向には一定の厚みを持つ。第1図(d)の
L11,L12,L13,L14は誘電体13で屈折した後の電波の進行
方向を示す。
In FIG. 1, 13 is a dielectric, and the thickness in the direction orthogonal to the opening surface 14 changes according to the upward direction shown in FIG. 1, and has a constant thickness in the direction orthogonal to the paper surface in FIG. Figure 1 (d)
L11, L12, L13, and L14 indicate the traveling directions of radio waves after refraction by the dielectric 13.

第2図は前記誘電体13の作用を説明するための図であっ
て、第1図(d)の断面と同一の面における誘電体13の
断面と座標系を表す。XとYは前記断面内の座標を表
し、XY座標の原点を誘電体13の下端の角に設け、X軸を
開口面14に直交する方向に、Y軸を開口面14に平行な方
向にそれぞれ設けている。
FIG. 2 is a view for explaining the action of the dielectric 13 and shows the cross section and the coordinate system of the dielectric 13 on the same plane as the cross section of FIG. 1 (d). X and Y represent coordinates in the cross section, the origin of the XY coordinates is provided at the lower corner of the dielectric 13, the X axis is in the direction orthogonal to the opening surface 14, and the Y axis is in the direction parallel to the opening surface 14. Each is provided.

同図中、x1は誘電体13の前面の曲線wがX軸と交わる点
のX座標の値、y2は誘電体13の上部のY座標の値、Bは
曲線wのY軸に対する傾斜が非常に緩い部分(上部)と
傾斜が大きい部分との境界を定めるY軸上の点、Pは曲
線w上の任意の点、hは前記点Pにおける法線、L21は
前記点Pに入射する電波の進行方向、L22は点Pで屈折
した外部に向かう電波の進行方向、αとβは点Pにおけ
る入射角と屈折角、θは電波の進行方向L22の水平方向
(X軸の正方向)からの角度、θ1とθ2は曲線wの下
部と上部の点における屈折電波の水平方向からの角度で
ある。
In the figure, x1 is the X coordinate value of the point where the curve w on the front surface of the dielectric 13 intersects the X axis, y2 is the Y coordinate value of the upper portion of the dielectric 13, and B is the inclination of the curve w with respect to the Y axis. A point on the Y-axis that defines the boundary between the gentle portion (upper portion) and the portion with a large inclination, P is an arbitrary point on the curve w, h is the normal line at the point P, and L21 is the radio wave incident on the point P. L22 is the traveling direction of the electric wave refracted at the point P toward the outside, α and β are the incident angle and the refraction angle at the point P, and θ is the horizontal direction of the electric wave traveling direction L22 (the positive direction of the X axis). , Θ1 and θ2 are the angles of the refracted radio waves from the horizontal direction at the lower and upper points of the curve w.

以下、第1図、第2図、第3図を用いて、本発明の動
作,作用を説明する。第1図の1次ホーン11からは、電
界が上部平面板10aまたは下部平面板10bに平行な水平偏
波で、かつ1次ホーン11の開口面上で位相が均一な電波
が放射される。この1次ホーン11からの放射電波は反射
面10cで反射し、反射後は反射面10cの放物面による集束
作用により平面波になって上部平面板10aと下部平面板1
0bとの間を開口面14に向かって伝播し、円偏波発生装置
12の直前ではその全範囲にわたって平面波となり、円偏
波発生装置12に入射する。
The operation and action of the present invention will be described below with reference to FIGS. 1, 2, and 3. From the primary horn 11 shown in FIG. 1, a radio wave whose electric field is horizontally polarized parallel to the upper flat plate 10a or the lower flat plate 10b and whose phase is uniform on the opening surface of the primary horn 11 is radiated. The radio wave radiated from the primary horn 11 is reflected by the reflecting surface 10c, and after reflection, it becomes a plane wave due to the converging action of the parabolic surface of the reflecting surface 10c, and becomes a plane wave.
A circularly polarized wave generator that propagates between
Immediately before 12, it becomes a plane wave over the entire range and enters the circularly polarized wave generator 12.

円偏波発生装置12は平行金属板格子21の板の幅と板の間
隔を適当な値に選ぶことにより板に平行な電界と板に垂
直な電界との位相差を板の出力側で90度にして、円偏波
発生装置12の出力側に円偏波(右旋円偏波)を発生す
る。
The circularly polarized wave generator 12 selects a plate width and a plate interval of the parallel metal plate grating 21 at appropriate values so that the phase difference between the electric field parallel to the plate and the electric field perpendicular to the plate is 90 at the output side of the plate. The circularly polarized wave (right-handed circularly polarized wave) is generated at the output side of the circularly polarized wave generator 12 in degrees.

この円偏波となった平面波は誘電体13に入射する。誘電
体13の入力面、即ち円偏波発生装置12に向いている方の
面は開口面14に平行な平面になっているので、円偏波発
生装置12から出力した円偏波の平面波は誘電体13の入力
面に垂直入射する。誘電体13に入射した電波は垂直入射
であるので、誘電体により進行方向を曲げられることな
く、水平,垂直偏波成分とも開口面14に直角な方向に進
行し、誘電体13の出力面に到達する。この出力面は第2
図に示したようにXY平面内で曲線wを呈する断面を有し
ているので、該出力面に到達した電波は外部へ出るとき
に屈折現象を生じ、その進行方向はXY平面内で変えられ
る。即ち、進行方向の角度は曲線wの傾斜に依存するの
で、曲線wの形を変えることにより、垂直指向性を変え
る事が出来るのである。
The plane wave that has become circularly polarized enters the dielectric 13. Since the input surface of the dielectric 13, that is, the surface facing the circularly polarized wave generating device 12 is a plane parallel to the aperture plane 14, the circularly polarized plane wave output from the circularly polarized wave generating device 12 is It is vertically incident on the input surface of the dielectric 13. Since the radio wave incident on the dielectric 13 is vertically incident, the traveling direction is not bent by the dielectric, and both the horizontal and vertical polarization components travel in the direction perpendicular to the opening surface 14 and reach the output surface of the dielectric 13. To reach. This output side is the second
As shown in the figure, since it has a section showing a curve w in the XY plane, the radio wave reaching the output surface undergoes a refraction phenomenon when it goes out, and its traveling direction can be changed in the XY plane. . That is, since the angle of the traveling direction depends on the inclination of the curve w, it is possible to change the vertical directivity by changing the shape of the curve w.

この点について電波を光学的に近似し、式を用いて説明
する。
This point will be described by using a formula by optically approximating a radio wave.

第2図の点Pにおいて屈折の法則により、垂直,水平の
両偏波成分に対して次の式が成立する。
According to the law of refraction at the point P in FIG. 2, the following equations hold for both vertical and horizontal polarization components.

ここにnは誘電体13の屈折率で、誘電体13の空気に対す
る比誘電率をεとすると である。点Pにおける幾何学的条件より次の式が偏波面
に関係なく成立する。
Where n is the refractive index of the dielectric 13 and ε is the relative dielectric constant of the dielectric 13 with respect to air. Is. From the geometrical condition at the point P, the following formula holds regardless of the plane of polarization.

β−θ=α …………(3) 次にQ(y)を誘電体13の内部でY軸に接する部分のY
軸に沿っての水平または垂直の偏波成分の電力分布とす
ると、前述の説明により誘電体13への入射時の水平と垂
直の両偏波に対する反射は等しいので、電力分布Q
(y)は両偏波に対して等しくなる。またG(θ)を水
平または垂直の偏波成分に対する垂直電力指向性とする
と、曲線wの境界での反射は曲線wのY軸に対する傾斜
があまり大きくない所では偏波面及び傾斜角に無関係に
ほぼ一定となるので、垂直電力指向性G(θ)は両偏波
成分に対して等しくなる。さらに誘電体13内の吸収損失
を小さいものとして無視すると、電力保存則より水平と
垂直の両偏波成分に対し、次の式が成立する。
β−θ = α (3) Next, Y (Y) of the portion where Q (y) contacts the Y axis inside the dielectric 13
Assuming that the power distribution of the horizontal or vertical polarization component along the axis is the same, the reflections for both the horizontal and vertical polarization upon incidence on the dielectric 13 are equal, so the power distribution Q
(Y) is equal for both polarizations. If G (θ) is the vertical power directivity with respect to the horizontal or vertical polarization component, the reflection at the boundary of the curve w is irrespective of the plane of polarization and the inclination angle where the inclination of the curve w with respect to the Y axis is not so large. Since it becomes almost constant, the vertical power directivity G (θ) becomes equal for both polarization components. Further, ignoring the absorption loss in the dielectric 13 as small, the following equation holds for both horizontal and vertical polarization components according to the law of power conservation.

上記の電力分布Q(y)は1次ホーン11の開口における
Y方向の電力分布と反射鏡部11内の伝播条件(上部平面
板10aと下部平面板10bの間隔が1次ホーン11から放射さ
れる電波の波長より十分大きい場合には、1次ホーンの
開口におけるY方向の電力分布はほぼそのままの形で上
部平面板10aと下部平面板10bとの間を伝播する。)から
求まるので、これを前記式(4)に代入し、さらに垂直
電力指向性G(θ)に変形ビームとして所望する指向性
を与えて同じく式(4)に代入すると、式(4)に左辺
は座標yの関数となり、そして式(4)の右辺は角度θ
の関数となるので、式(4)から角度θと座標yの関係
が求まる。
The above-mentioned power distribution Q (y) is the power distribution in the Y direction at the opening of the primary horn 11 and the propagation conditions in the reflecting mirror section 11 (the distance between the upper flat plate 10a and the lower flat plate 10b is radiated from the primary horn 11). If the wavelength is sufficiently larger than the wavelength of the radio wave, the power distribution in the Y direction at the opening of the primary horn propagates between the upper flat plate 10a and the lower flat plate 10b almost as it is.) Is substituted into the above equation (4), and the desired directivity as a modified beam is given to the vertical power directivity G (θ) and substituted into the above equation (4), the left side of the equation (4) is a function of the coordinate y. And the right side of equation (4) is the angle θ
Therefore, the relationship between the angle θ and the coordinate y can be obtained from the equation (4).

次に成(1),(2),(3)から なる式が得られるので、この式の両辺を積分することに
より次の式を得る。
Next, from (1), (2), and (3) Since the following equation is obtained, the following equation is obtained by integrating both sides of this equation.

前記式(6)の右辺の被積分関数に前記式(4)から求
まる角度θと座標yの関係を用いると、式(6)の左辺
は座標xの関数であり、式(6)の右辺は座標yの関数
となるので、式(6)から座標xと座標yとの関係、即
ち曲線wの形状が求まる。なお、この計算の実際の方法
としては図式手法を用いると比較的簡単に計算を行なう
ことができる。
When the relationship between the angle θ and the coordinate y obtained from the equation (4) is used for the integrand on the right side of the equation (6), the left side of the equation (6) is a function of the coordinate x, and the right side of the equation (6). Is a function of the coordinate y, the relationship between the coordinate x and the coordinate y, that is, the shape of the curve w can be obtained from the equation (6). As a practical method of this calculation, a graphic method can be used to perform the calculation relatively easily.

この様に所望の垂直電力指向性G(θ)を与える曲線w
の形状を決定することが出来る。
In this way, the curve w that gives the desired vertical power directivity G (θ)
The shape of can be determined.

また誘電体13の中では水平と垂直の偏波成分に対する伝
播位相は同一となるので、水平と垂直の両偏波成分間の
位相関係は誘電体13への入力前と誘電体13を通過した後
で変わらない。従って開口面14から十分遠方の点での水
平と垂直の偏波成分間の位相関係も誘電体13への入力前
の円偏波としての位相関係が維持されることになる。さ
らに前記説明により垂直電力指向性G(θ)は水平と垂
直の両偏波成分に対し等しいので、前記十分遠方の点に
おいて水平と垂直の偏波成分の電界レベルは等しい。
In the dielectric 13, the propagation phases for the horizontal and vertical polarization components are the same, so the phase relationship between the horizontal and vertical polarization components is that before the input to the dielectric 13 and after passing through the dielectric 13. It won't change later. Therefore, the phase relationship between the horizontal and vertical polarization components at a point sufficiently distant from the aperture plane 14 is maintained as the circular polarization before input to the dielectric 13. Further, according to the above description, the vertical power directivity G (θ) is equal to both the horizontal and vertical polarization components, so that the electric field levels of the horizontal and vertical polarization components are equal at the point far away.

このことから所定の角度範囲内で、垂直電力指向性G
(θ)を持つ円偏波として必要な水平と垂直の両偏波成
分の位相と振幅の関係が維持されることになり、円偏波
変形ビームを得ることがわかる。
Therefore, within the predetermined angle range, the vertical power directivity G
It can be seen that the phase-amplitude relationship of both the horizontal and vertical polarization components necessary for the circular polarization having (θ) is maintained, and a circular polarization modified beam is obtained.

なお、本実施例においては、希望する変形ビームとして
主ビームの片側だけcosec2乗特性にした指向性にする場
合には、曲線wの形としては第2図に示す主ビームに対
応するY軸に対する傾斜が非常に緩い、点Bから上の部
分と、cosec2乗特性ビームに対応し、Y軸に対する傾斜
がある程度大きい、点Bから下の部分に分かれたものと
なる。この様な場合には点Bから上の部分は取り去って
も指向性にはあまり関係しないので、この部分を取り去
ることも可能である。
In the present embodiment, when the desired deformed beam has a directivity in which only one side of the main beam has the cosec square characteristic, the shape of the curve w is with respect to the Y axis corresponding to the main beam shown in FIG. It is divided into an upper part from point B, which has a very gentle inclination, and a part below point B, which corresponds to the cosec-squared characteristic beam and has a large inclination to the Y axis to some extent. In such a case, even if the part above point B is removed, it is not so related to the directivity, so it is also possible to remove this part.

第3図(a)は上述の場合の誘電体13の断面を表す。さ
らにこの場合には曲線wの傾斜は緩やかに変化するの
で、折れ線で近似することも可能である。第3図(b)
は同図(a)の曲線を直線C,Dで近似した場合の誘電体1
3の断面形状を示す。この様に、本実施例では変形ビー
ムによっては開口面14付近に設ける誘電体の断面形状を
簡単にすることも可能である。
FIG. 3A shows a cross section of the dielectric 13 in the above case. Further, in this case, since the slope of the curve w changes gently, it can be approximated by a polygonal line. Fig. 3 (b)
Is the dielectric 1 when the curve (a) is approximated by straight lines C and D.
The cross-sectional shape of 3 is shown. As described above, in this embodiment, depending on the deformed beam, it is possible to simplify the sectional shape of the dielectric provided near the opening surface 14.

(発明の効果) 以上、実施例を用いて説明したように本発明によれば、
開口アンテナの開口付近に平行金属板からなる円偏波発
生装置と誘電体を設けるだけで、前記誘電体の厚さが変
化している面内における変形ビーム内の所定の角度範囲
内で円偏波を得ることができる。
(Effects of the Invention) As described above with reference to the embodiments, according to the present invention,
Only by providing a circularly polarized wave generator made of a parallel metal plate and a dielectric near the aperture of the aperture antenna, a circular polarization is generated within a predetermined angle range within the modified beam in the plane where the thickness of the dielectric is changing. You can get the waves.

また上記誘電体は開口面内の厚さが開口面内の一方向に
沿ってのみ変化し、該方向に直交する方向には厚みが一
定のほぼ板状を成しているので、設計,製作も容易でコ
スト的にも有利である。
Further, the above-mentioned dielectric has a substantially plate-like shape in which the thickness in the opening plane changes only along one direction in the opening plane and the thickness is constant in the direction orthogonal to the direction. It is also easy and cost effective.

従って本発明は地上,海上,空中における目標物を探索
する各種のレーダーに応用可能である。
Therefore, the present invention can be applied to various radars that search for targets on the ground, at sea, or in the air.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の円偏波変形ビームアンテナの実施例を
示す図、第2図は第1図の誘電体13の動作を説明するた
めの図、第3図は第2図の曲線wを直線で近似した例を
示す図、第4図は第1図の円偏波発生装置の構造を説明
するための図、第5図および第6図は各々従来の円偏波
変形ビームアンテナを説明するための図である。 10……反射鏡部、11……1次ホーン、12……円偏波発生
装置、13……誘電体、14……開口面。
FIG. 1 is a diagram showing an embodiment of a circular polarized wave modified beam antenna of the present invention, FIG. 2 is a diagram for explaining the operation of the dielectric 13 of FIG. 1, and FIG. 3 is a curve w of FIG. FIG. 4 is a diagram showing an example of linear approximation of FIG. 4, FIG. 4 is a diagram for explaining the structure of the circularly polarized wave generation device of FIG. 1, and FIGS. 5 and 6 are conventional circularly polarized wave modified beam antennas, respectively. It is a figure for explaining. 10 …… Reflector, 11 …… Primary horn, 12 …… Circular polarization generator, 13 …… Dielectric, 14 …… Aperture.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】平面波を発生する開口アンテナの開口面を
前面とし、前記開口面後部の下部平面板を水平にした場
合、前記開口面付近に、前記平面波が垂直入射する平行
金属板格子からなる円偏波発生装置を設け、前記円偏波
発生装置の前記開口面側に、前記開口面に直交する方向
の厚さXが前記開口面に平行な上下方向に沿い、誘電体
の高さYに応じて、以下に示す式 (ただし、 Y :誘電体の後部下端を零とし、前記開口面に沿って垂
直に上方に延びる方向をY軸とした場合の誘電体の高さ
を示す値。 X :前記平行金属板格子下端からの、水平で、前記開口
面に直交する前記誘電体の後端を零とした厚み方向をX
軸とした場合の前記誘電体の高さYにおける厚みを示す
値。 X1:誘電体の下端におけるX軸方向の厚み。 θ:誘電体の高さYにおける開口面に直交する水平に対
するビーム希望角度 n :誘電体の屈折率) に従って変化し、前記開口面に沿った水平方向には前記
厚さが一定な誘電体を設けたことを特徴とする円偏波変
形ビームアンテナ。
1. When the aperture plane of an aperture antenna for generating a plane wave is used as the front face and the lower plane plate at the rear of the aperture plane is horizontal, the plane wave is composed of a parallel metal plate grating in which the plane wave is vertically incident. A circularly polarized wave generator is provided, and a thickness X of the circularly polarized wave generator in the direction orthogonal to the opening surface is along the vertical direction parallel to the opening surface, and the height Y of the dielectric is on the opening surface side. Depending on the formula shown below (However, Y: a value indicating the height of the dielectric when the rear lower end of the dielectric is zero and the Y-axis is the direction vertically extending along the opening surface. X: the lower end of the parallel metal plate lattice Is horizontal and the thickness direction with the rear end of the dielectric material that is orthogonal to the opening surface being zero is X.
A value indicating the thickness at the height Y of the dielectric with the axis. X1: Thickness in the X-axis direction at the lower end of the dielectric. θ: Desired beam angle with respect to the horizontal orthogonal to the aperture plane at the height Y of the dielectric substance n: Refractive index of the dielectric substance), and the dielectric substance having the constant thickness is horizontally arranged along the aperture face. A circular polarized wave modified beam antenna characterized by being provided.
【請求項2】開口アンテナとして、チーズアンテナを使
用した特許請求の範囲第1項記載の円偏波変形ビームア
ンテナ。
2. A circular polarized wave modified beam antenna according to claim 1, wherein a cheese antenna is used as the aperture antenna.
JP4638086A 1986-03-05 1986-03-05 Circular polarization modified beam antenna Expired - Lifetime JPH0720010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4638086A JPH0720010B2 (en) 1986-03-05 1986-03-05 Circular polarization modified beam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4638086A JPH0720010B2 (en) 1986-03-05 1986-03-05 Circular polarization modified beam antenna

Publications (2)

Publication Number Publication Date
JPS62204605A JPS62204605A (en) 1987-09-09
JPH0720010B2 true JPH0720010B2 (en) 1995-03-06

Family

ID=12745534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4638086A Expired - Lifetime JPH0720010B2 (en) 1986-03-05 1986-03-05 Circular polarization modified beam antenna

Country Status (1)

Country Link
JP (1) JPH0720010B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080207B2 (en) 2006-03-24 2015-07-14 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US9217143B2 (en) 2007-07-13 2015-12-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301504B2 (en) 2004-07-14 2007-11-27 Ems Technologies, Inc. Mechanical scanning feed assembly for a spherical lens antenna
US8593369B2 (en) 2008-11-12 2013-11-26 Navico Holding As Antenna assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080207B2 (en) 2006-03-24 2015-07-14 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US9217143B2 (en) 2007-07-13 2015-12-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same

Also Published As

Publication number Publication date
JPS62204605A (en) 1987-09-09

Similar Documents

Publication Publication Date Title
US8059051B2 (en) Planar dielectric waveguide with metal grid for antenna applications
JP6057380B2 (en) Reflector array antenna with cross polarization compensation and method for manufacturing such an antenna
US4387377A (en) Apparatus for converting the polarization of electromagnetic waves
US20090079619A1 (en) Real-time, cross-correlating millimetre-wave imaging system
JPH02174402A (en) Plane batch antenna
US4665405A (en) Antenna having two crossed cylindro-parabolic reflectors
JP3113510B2 (en) Elliptical beam antenna device
JP2016502792A (en) A flat two-sided device with an equivalent radar cross-section that is adapted (maximized or minimized)
Von Hoerner The design of correcting secondary reflectors
US2872675A (en) Dielectric reflector
JPH0720010B2 (en) Circular polarization modified beam antenna
Fry et al. aerails for centimetre wave lengths
US4488157A (en) Slot array antenna assembly
Ortiz Impact of edge diffraction in dual-polarized phased array antennas
Lemaire et al. A method to overcome the limitations of GO in axis-symmetric dielectric lens shaping
EP1935056B1 (en) Cladding for a microwave antenna
JPH0720011B2 (en) Circular polarization modified beam antenna
US2842766A (en) Beam-shaping antenna systems
Ratcliffe Aerials for radar equipment
JPH0191503A (en) Radome
Sheftman et al. Experimental study of subreflector support structures in a Cassegrainian antenna
JPH0724361B2 (en) Dual polarization parabolic cylinder antenna
KR920007596Y1 (en) Cosecant antenna
Schejbal et al. Comparison of hoghorn analysis methods
JP2573321B2 (en) Beam scanning reflector antenna