JPH07191033A - Immunoassay method using liposome - Google Patents

Immunoassay method using liposome

Info

Publication number
JPH07191033A
JPH07191033A JP34855393A JP34855393A JPH07191033A JP H07191033 A JPH07191033 A JP H07191033A JP 34855393 A JP34855393 A JP 34855393A JP 34855393 A JP34855393 A JP 34855393A JP H07191033 A JPH07191033 A JP H07191033A
Authority
JP
Japan
Prior art keywords
fluorescence intensity
liposome
concentration
transmittance
fluorescent dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34855393A
Other languages
Japanese (ja)
Inventor
Ryoji Nemoto
亮二 根本
Rika Kasuga
里佳 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP34855393A priority Critical patent/JPH07191033A/en
Publication of JPH07191033A publication Critical patent/JPH07191033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To surely estimate the concentration of carboxyfluorescein (CF) in a short time by simultaneously measuring the fluorescence intensity ratio and transmittance of a CF fluorescent pigment and deciding the concentration of the pigment based on both measured values. CONSTITUTION:An argon laser 10 is used as a light source and a laser beam from the laser 10 is made incident on a cell cuvet 18 containing an injected specimen through an ND filter 14 and aperture 16. A transmittance measuring means is positioned on the opposite side of the light source with respect to the cell 18 in a linear positional relation and a fluorescence intensity measuring means is positioned in a perpendicular positional relation with respect to the light source section. The fluorescence from a CF fluorescent pigment contained in the specimen is condensed by means of a condenser 32 through a pinhole 30 and made incident on a photosensor 40 after the light other than a fluorescent component is removed through a filter 34. The fluorescence of the pigment is measured on the basis of the intensity of excited light intensity detected by means of a monitor 23. When such an optical system constitution is used, the transmittance and fluorescence intensity of the specimen can be measured simultaneously. The conversion of the fluorescence intensity measured value into the fluorescence intensity ratio is performed by using the intensity of liposome destroyed by a surface-active agent and the intensity of the liposome itself.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリポソームを用いた免疫
測定法に関する。更に詳細には、本発明は蛍光体として
カルボキシフルオレセイン蛍光色素を使用するリポソー
ムを用いた免疫測定法において、短時間に確実にカルボ
キシフルオレセイン蛍光色素濃度を決定することができ
るリポソーム免疫測定法に関する。
TECHNICAL FIELD The present invention relates to an immunoassay method using liposomes. More specifically, the present invention relates to a liposome immunoassay method capable of reliably determining a carboxyfluorescein fluorescent dye concentration in a short time in an immunoassay method using a liposome using a carboxyfluorescein fluorescent dye as a fluorophore.

【0002】[0002]

【従来の技術】抗原抗体反応による免疫測定法は、特異
性及び感度の点で非常に優れているので、理化学研究,
医学生物学研究及び臨床検査などの諸分野で広く使用さ
れている。この抗原抗体反応を基にして、検体の微量定
量を行うために、放射性同位元素によるラジオイムノア
ッセイ(RIA),酵素によるエンザイムイムノアッセ
イ(EIA)などの方法が開発されてきた。
2. Description of the Related Art Immunoassays based on the antigen-antibody reaction are extremely superior in terms of specificity and sensitivity.
It is widely used in various fields such as medical biology research and clinical examination. Based on this antigen-antibody reaction, methods such as radioimmunoassay (RIA) using a radioisotope and enzyme immunoassay (EIA) using an enzyme have been developed in order to perform microquantification of a sample.

【0003】しかし、RIAは感度の点で非常に優れて
いるが、標識物質として放射性同位元素を使用するの
で、第1種放射線取扱主任者の有資格者が必要であり、
測定は特定の放射能管理施設内でなければ実施出来ず、
更に、放射性同位元素の廃棄物処理のために特別な施設
を必要とするなどの問題点がある。
However, although the RIA is very excellent in terms of sensitivity, it uses a radioisotope as a labeling substance, so a qualified person who is the first-class radiation handling supervisor is required.
Measurement can be performed only within a specific radioactivity management facility,
Furthermore, there is a problem that a special facility is required for the treatment of radioactive isotope waste.

【0004】EIAでは標識物質として酵素を用いるた
め、RIAのような問題は生じないが、未反応の標識物
質を分離しなければならないなどの問題点があり、測定
には非常に手間がかかる。
Since EIA uses an enzyme as a labeling substance, it does not cause a problem like RIA, but it has a problem that an unreacted labeling substance has to be separated, which makes the measurement very troublesome.

【0005】これらの方法の他に、最近、リポソームを
使用する免疫測定法(LILA)が提案された。このL
ILAは従来のRIAやEIAと異なり、未反応標識物
質の分離操作を必要としない均一系で、しかも、迅速に
測定できるなどの利点がある。
In addition to these methods, an immunoassay method (LILA) using liposomes has recently been proposed. This L
Unlike conventional RIA and EIA, ILA has the advantages that it is a homogeneous system that does not require separation of unreacted labeling substance, and that it can be rapidly measured.

【0006】リポソームは、同一分子内に親水基と疎水
基の両方を有する両親媒性の複合脂質(例えば、レシチ
ン,コレステロール,ホスファチジン酸など)を一定の
温度以上で緩衝液に懸濁することで調製される脂質二重
層からなる小胞体である。このリポソーム膜に、二官能
性架橋剤を用いてタンパク抗原又は特異抗体を共有結合
する。リポソーム内に蛍光標識としてカルボキシフルオ
レセイン(CF)を封入する。CFはフルオレセイン系
の色素で、水溶性が高く、容易にリポソーム内に封入さ
れる。これに特異抗体又は抗原を反応させると、リポソ
ーム膜表面に抗原抗体複合体が形成される。この時、補
体が存在すると、補体が活性化され、膜攻撃複合体が形
成される。それがリポソーム膜に結着して脂質二重層の
透過性が上昇し、リポソーム内のCFが外部溶媒中に流
出してくる。CFは高濃度でリポソーム内に封入されて
いる時は自己消光により蛍光を発しないが、リポソーム
外に流出して外部溶媒に希釈されると蛍光を発するよう
になる。この蛍光強度を測定することにより抗原量及び
抗体量を求めることができる。
The liposome is prepared by suspending an amphipathic complex lipid having both a hydrophilic group and a hydrophobic group in the same molecule (for example, lecithin, cholesterol, phosphatidic acid) in a buffer solution at a certain temperature or higher. It is an endoplasmic reticulum composed of a prepared lipid bilayer. A protein antigen or a specific antibody is covalently bonded to this liposome membrane using a bifunctional crosslinking agent. Carboxyfluorescein (CF) is encapsulated as a fluorescent label in the liposome. CF is a fluorescein dye, has high water solubility, and is easily encapsulated in liposomes. When this is reacted with a specific antibody or an antigen, an antigen-antibody complex is formed on the surface of the liposome membrane. At this time, if complement is present, it is activated and a membrane attack complex is formed. It binds to the liposome membrane to increase the permeability of the lipid bilayer, and CF in the liposome flows out into the external solvent. When CF is encapsulated in a liposome at a high concentration, it does not fluoresce due to self-quenching, but it begins to fluoresce when it flows out of the liposome and is diluted with an external solvent. The amount of antigen and the amount of antibody can be determined by measuring this fluorescence intensity.

【0007】[0007]

【発明が解決しようとする課題】図3に示されるよう
に、CFはモル濃度の増加に従い、或る濃度(CP )ま
では蛍光強度と濃度が比例関係を保つが、CP を超える
比較的高濃度の領域では、逆に蛍光濃度が低下する特性
を示す。従って、蛍光強度IfAにおけるCFの濃度はC
1 とC2 の二種類の値が得られ、何方の濃度が正しいの
か決定できなくなってしまう。
As shown in FIG. 3, CF has a proportional relationship between the fluorescence intensity and the concentration as the molar concentration increases up to a certain concentration (C P ), but it exceeds C P. In the region of extremely high concentration, on the contrary, it exhibits the characteristic that the fluorescence concentration decreases. Therefore, the concentration of CF in the fluorescence intensity I fA is C
Two kinds of values, 1 and C 2 , are obtained, and it is impossible to determine which concentration is correct.

【0008】このため、従来は、CFの蛍光強度から濃
度を推定する検査方法において、CFの濃度領域を限定
するか、若しくは、測定対象を幾通りかに希釈して、前
後の特性から濃度を推定するなどの迂遠で冗長な方法が
採られていた。
Therefore, conventionally, in the inspection method for estimating the concentration from the fluorescence intensity of CF, the concentration region of CF is limited or the measurement object is diluted in several ways, and the concentration is determined from the characteristics before and after. A roundabout and redundant method such as estimation was adopted.

【0009】従って、本発明の目的は、従来のような迂
遠な方法を採ることなく、CFの濃度を短時間に確実に
推定できる新規な蛍光検出方法を提供することである。
Therefore, an object of the present invention is to provide a novel fluorescence detection method capable of reliably estimating the CF concentration in a short time without using a conventional roundabout method.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
に、本発明は、リポソーム内にカルボキシフルオレセイ
ン蛍光色素を封入し、このリポソーム膜にタンパク抗原
または特異抗体を共有結合させてリポソーム膜表面に抗
原抗体複合体を形成させ、これに補体を作用させること
により膜攻撃複合体を形成し、該膜攻撃複合体によりリ
ポソーム膜を破壊し、リポソーム内に封入されていたカ
ルボキシフルオレセイン蛍光色素をリポソーム外へ放出
させ、この放出されたカルボキシフルオレセイン蛍光色
素の蛍光強度を測定することにより抗原量及び抗体量を
測定することからなるリポソームを用いた免疫測定法に
おいて、カルボキシフルオレセイン蛍光色素の蛍光強度
比と共に透過率も同時に測定し、得られた両測定値に基
づいてカルボキシフルオレセイン蛍光色素の濃度を決定
することを特徴とするリポソームを用いた免疫測定法を
提供する。
In order to solve the above-mentioned problems, the present invention encloses a carboxyfluorescein fluorescent dye in a liposome and covalently bonds a protein antigen or a specific antibody to the liposome membrane to form a liposome membrane surface. An antigen-antibody complex is formed, and a complement is allowed to act on the complex to form a membrane attack complex. The membrane attack complex destroys the liposome membrane, and the carboxyfluorescein fluorescent dye encapsulated in the liposome is transferred to the liposome. In an immunoassay using a liposome, which comprises measuring the amount of antigen and the amount of antibody by measuring the fluorescence intensity of the released carboxyfluorescein fluorescent dye, the fluorescence intensity ratio of the carboxyfluorescein fluorescent dye The transmittance was also measured at the same time, and the carboxy was measured based on the both measured values. Providing immunoassay using liposomes and determining the concentration of Ruoresein fluorescent dye.

【0011】[0011]

【作用】前記のように、本発明の方法によれば、カルボ
キシフルオレセイン蛍光色素の蛍光強度比と共に透過率
も同時に測定する。カルボキシフルオレセイン蛍光色素
の透過率は濃度に反比例する。すなわち、カルボキシフ
ルオレセイン蛍光色素の濃度の増大につれて透過率は低
下する。従って、既知のカルボキシフルオレセイン蛍光
色素の濃度について蛍光強度比及び透過率の検量線を作
成しておくことにより、得られた未知検体のカルボキシ
フルオレセイン蛍光色素の蛍光強度比及び透過率測定値
を検量線に当てはめることにより検体内のカルボキシフ
ルオレセイン蛍光色素濃度を短時間に確実に決定するこ
とができる。
As described above, according to the method of the present invention, the transmittance is simultaneously measured together with the fluorescence intensity ratio of the carboxyfluorescein fluorescent dye. The transmittance of the carboxyfluorescein fluorescent dye is inversely proportional to the concentration. That is, the transmittance decreases as the concentration of the carboxyfluorescein fluorescent dye increases. Therefore, by creating a calibration curve of the fluorescence intensity ratio and the transmittance for the concentration of a known carboxyfluorescein fluorescent dye, the fluorescence intensity ratio and the transmittance measurement value of the obtained carboxyfluorescein fluorescent dye of the unknown sample are measured by the calibration curve. The concentration of the carboxyfluorescein fluorescent dye in the sample can be reliably determined in a short time by applying

【0012】このようにして、カルボキシフルオレセイ
ン蛍光色素濃度が短時間に確実に決定されるので、結果
的に、抗原量及び抗体量も短時間に確実に推定すること
ができ、臨床検査ばかりか様々な理化学基礎研究の推進
にも大いに役立つことができる。
In this way, the concentration of the carboxyfluorescein fluorescent dye is reliably determined in a short time, and as a result, the amount of antigen and the amount of antibody can be reliably estimated in a short time. It can also be very useful in promoting basic physics and chemistry research.

【0013】なお、この明細書で使用される“蛍光強度
比”という用語は、リポソームに封入されている全CF
量に対する蛍光強度を意味する。また、”透過率”とい
う用語は、照射光量に対するセル内の物質によって散乱
されずに透過した光量の比率を意味する。
The term "fluorescence intensity ratio" used in this specification means that the total CF encapsulated in liposomes is
It means the fluorescence intensity with respect to the amount. The term “transmittance” means the ratio of the amount of light transmitted without being scattered by the substance in the cell to the amount of irradiation light.

【0014】[0014]

【実施例】以下、図面を参照しながら本発明を更に詳細
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to the drawings.

【0015】リポソームを用いた免疫測定法自体は公知
である。例えば、“製薬工場”,Vol.7,No.5
(1987)421頁〜425頁,“生体の科学”,V
ol.38,No.5(1987年10月)498頁〜
500頁及び“臨床検査”,Vol.34,No.7
(1990年7月)868頁〜871頁に詳細に説明さ
れている。
The immunoassay method itself using liposomes is known. For example, “Pharmaceutical Factory”, Vol. 7, No. 5
(1987) 421-425, "Biological Sciences", V
ol. 38, No. 5 (Oct. 1987) 498-
Page 500 and "Clinical Examination", Vol. 34, No. 7
(July 1990) pp. 868-871.

【0016】図1は本発明の方法を実施するのに使用で
きる光学測定系の一例の概要斜視図である。図示されて
いるように、光源には波長488nmのアルゴンレーザ
10を使用する。光源にはフラッシュキセノンなども使
用できる。アルゴンレーザ10から出たビームはビーム
エクスパンダーを通り、NDフィルタ14からアパーチ
ャ16を経て、検体の注入された石英製のセルキュベッ
ト18に入射される。このセル18を挟んで、光源と直
線的位置関係に透過率測定手段を配置し、光源と直交す
るように蛍光強度測定手段を配置する。透過率測定手段
は例えば、フィルタ(λ=488nmバンドパスフィル
タ)20と出力モニタ22とから構成されている。一
方、セル18の検体中のカルボキシフルオレセイン蛍光
色素(CF)から発せられた蛍光はピンホール30を通
り、コンデンサ(集光器)32,32により集光され、
フィルタ(λ=514nm)34で蛍光成分以外の光を
除去し、波長514nmの蛍光を集光レンズ36で集
め、フィールドストップ38を通してホトセンサ40に
入射させる。また、レーザ励起光の出力の変動は、蛍光
強度比及び透過率の測定値にも影響する。このため、セ
ル18に入射される直前の励起光出力を測定するための
モニタ23とこのモニタに励起光を入射させるためのハ
ーフミラー24が設けられている。このモニタ23で検
出された励起光強度を基準にする。このような構成の光
学系を使用することにより検体の透過率と蛍光強度を同
時に測定することができる。得られた蛍光強度の測定値
を蛍光強度比の形に変換するには、リポソームを界面活
性剤により破壊して得られた蛍光強度を100%とし、
リポソーム自身の蛍光強度を0%として各測定値を変換
すればよい。
FIG. 1 is a schematic perspective view of an example of an optical measurement system that can be used to carry out the method of the present invention. As shown, the light source is an argon laser 10 having a wavelength of 488 nm. Flash xenon can be used as the light source. The beam emitted from the argon laser 10 passes through the beam expander, passes through the aperture 16 from the ND filter 14, and is incident on the quartz cell cuvette 18 into which the sample is injected. The transmittance measuring means is arranged in a linear positional relationship with the light source with the cell 18 interposed therebetween, and the fluorescence intensity measuring means is arranged so as to be orthogonal to the light source. The transmittance measuring means is composed of, for example, a filter (λ = 488 nm bandpass filter) 20 and an output monitor 22. On the other hand, the fluorescence emitted from the carboxyfluorescein fluorescent dye (CF) in the sample of the cell 18 passes through the pinhole 30 and is condensed by the condensers (concentrators) 32 and 32.
Light other than the fluorescent component is removed by the filter (λ = 514 nm) 34, the fluorescent light having a wavelength of 514 nm is collected by the condenser lens 36, and is made incident on the photosensor 40 through the field stop 38. The fluctuation of the output of the laser excitation light also affects the measured values of the fluorescence intensity ratio and the transmittance. Therefore, a monitor 23 for measuring the excitation light output immediately before entering the cell 18 and a half mirror 24 for making the excitation light incident on this monitor are provided. The excitation light intensity detected by the monitor 23 is used as a reference. By using the optical system having such a configuration, the transmittance and fluorescence intensity of the sample can be measured at the same time. In order to convert the obtained measured value of the fluorescence intensity into the form of the fluorescence intensity ratio, the fluorescence intensity obtained by destroying the liposome with a surfactant is set to 100%,
Each measurement value may be converted with the fluorescence intensity of the liposome itself being 0%.

【0017】図2は図1に示された光学測定系を用いて
作成された抗原濃度(mg/ml)に対する蛍光強度比
と488nmの透過率の関係を示す標準検量線である。
補体依存性膜損傷反応を利用する免疫測定法には、リリ
ース法,競合法及びサンドイッチ法の3種類があるが、
本発明の検量線はサンドイッチ法を用いて作成されてい
る。サンドイッチ法とは、抗原をリポソーム表面中の抗
体と、フリーの抗体(二次抗体)でサンドイッチ状態に
し、補体を活性化することからなる。
FIG. 2 is a standard calibration curve showing the relationship between the fluorescence intensity ratio and the transmittance at 488 nm with respect to the antigen concentration (mg / ml) prepared by using the optical measurement system shown in FIG.
There are three types of immunoassays that utilize the complement-dependent membrane damage reaction: the release method, the competition method, and the sandwich method.
The calibration curve of the present invention is prepared using the sandwich method. The sandwich method consists of activating complement by sandwiching an antigen with an antibody on the surface of a liposome and a free antibody (secondary antibody).

【0018】以下にサンドイッチ法における検量線作成
の実例として、血清中に含まれ、炎症時にその含有量が
増加することが知られているC−反応性タンパク質(以
下「CRP」という)を対象とした検量線の作成方法を
示す。使用するリポソームは材質としてコレステロー
ル,ジパルミトイルフォスファチジルコリンなど数種の
リン脂質を混合して用いる。これにCFを封入して多重
層リポソームを調製する。一次抗体は、抗ヒトCRPマ
ウスモノクローナル抗体を用い、結合基を作るために過
ヨウ素酸で処理し、リポソームと結合させる。この一次
抗体が結合したリポソームは、反応を安定させる為の吸
収剤を添加した10ミリモルのTES緩衝液を用いて適
当な濃度に希釈し、これをリポソーム試薬とする。ま
た、この緩衝液はリポソームの自然崩壊を防ぐ機能も有
している。検量線を作成するための各定点に用いる蛍光
強度測定用の標準血清は、精製CRP抗原を各定点の濃
度になるように、上記緩衝液を用いて数段階に希釈した
ものを用いる。上記のものを準備した上で、検量線の求
め方は、以下の要領により行う。リポソーム試薬を上記
標準血清を一定量ずつ混合し、ヒト体温に近い37℃で
1時間反応させた。この混合液に二次抗体(例えば、抗
ヒトCRPウサギ抗体)溶液と、補体(例えば、モルモ
ット血清)溶液を一定量添加し、更に1時間反応させて
反応が安定化した後、各混合液の蛍光強度と透過率を測
定し、図2に示されるような検量線を作成する。
As an example of preparing a calibration curve in the sandwich method, a C-reactive protein (hereinafter referred to as “CRP”) contained in serum and known to increase in content during inflammation will be described below. The method for creating the calibration curve is shown below. The liposome used is a mixture of several phospholipids such as cholesterol and dipalmitoylphosphatidylcholine. CF is encapsulated in this to prepare multilamellar liposomes. The primary antibody is an anti-human CRP mouse monoclonal antibody, which is treated with periodic acid to create a binding group and then bound to a liposome. The liposome to which the primary antibody is bound is diluted to an appropriate concentration with 10 mM TES buffer solution containing an absorbent for stabilizing the reaction, and this is used as a liposome reagent. The buffer also has a function of preventing spontaneous disintegration of liposomes. The standard serum for measuring fluorescence intensity used at each fixed point for preparing a calibration curve is prepared by diluting the purified CRP antigen in several stages with the above buffer solution so that the concentration of each fixed point is obtained. After preparing the above, the method for obtaining the calibration curve is as follows. A fixed amount of the above-mentioned standard serum was mixed with the liposome reagent, and the mixture was allowed to react at 37 ° C. near human body temperature for 1 hour. A secondary antibody (for example, anti-human CRP rabbit antibody) solution and a complement (for example, guinea pig serum) solution are added to this mixed solution in a fixed amount, and the mixture is further reacted for 1 hour to stabilize the reaction. The fluorescence intensity and the transmittance are measured to prepare a calibration curve as shown in FIG.

【0019】例えば、検体の透過率の測定値が78%で
蛍光強度比が45%の場合、図2より、検体内のCRP
濃度は0.1mg/mlであると決定できる。従来のよ
うに蛍光強度比だけからCRP濃度を決定する場合、蛍
光強度比が45%に対応するCRP濃度は0.1mg/
mlの他に4mg/mlの両方が得られ、何れが正しい
濃度なのか即座には決定できない。透過率の曲線はCR
P濃度の増大につれて指数関数的に減衰するので、所定
の透過率に対応するCRP濃度の交点は一つしかない。
従って、仮に検体の透過率の測定値と蛍光強度比の測定
値に対応するCRP濃度が完全に一致しなくても、透過
率の測定値に対応するCRP濃度に最も近い、蛍光強度
比の測定値に対応するCRP濃度をもって検体のCRP
濃度であると決定することもできる。
For example, when the measured transmittance of the sample is 78% and the fluorescence intensity ratio is 45%, the CRP in the sample is shown in FIG.
The concentration can be determined to be 0.1 mg / ml. When the CRP concentration is determined only from the fluorescence intensity ratio as in the conventional case, the CRP concentration corresponding to the fluorescence intensity ratio of 45% is 0.1 mg /
Both 4 mg / ml were obtained in addition to ml and it was not possible to immediately determine which was the correct concentration. The transmittance curve is CR
Since there is an exponential decay with increasing P concentration, there is only one intersection of CRP concentrations corresponding to a given transmittance.
Therefore, even if the CRP concentration corresponding to the measured value of the transmittance of the sample and the measured value of the fluorescence intensity ratio do not completely match, the measurement of the fluorescence intensity ratio closest to the CRP concentration corresponding to the measured value of the transmittance is performed. CRP of sample with CRP concentration corresponding to the value
It can also be determined to be the concentration.

【0020】このように、検体の透過率の測定値を同時
に測定することにより、この透過率測定値に基づき、蛍
光強度比測定値に対応する真正な抗原濃度を短時間に確
実に決定することができる。従って、従来のCFの蛍光
強度から濃度を推定する測定方法におけるような、濃度
領域を限定したり、あるいは、測定対象を幾通りかに希
釈して前後の特性から濃度推定を行う迂遠で冗長な操作
は全て不要になる。
Thus, by simultaneously measuring the measured values of the transmittance of the sample, it is possible to reliably determine the true antigen concentration corresponding to the measured value of the fluorescence intensity ratio in a short time based on the measured values of the transmittance. You can Therefore, as in the conventional measuring method for estimating the concentration from the fluorescence intensity of CF, the concentration region is limited, or the measurement target is diluted in several ways and the concentration is estimated from the front and back characteristics, which is redundant and redundant. All operations are unnecessary.

【0021】以下、具体例により本発明の方法の実効性
を例証する。
Hereinafter, the effectiveness of the method of the present invention will be illustrated by the following specific examples.

【0022】実施例 補体依存性膜損傷反応を利用した抗体測定の具体例につ
いて説明する。試薬及び方法は前記と同様な試薬と方法
を使用した。,検体としては、病院より供与されたCR
P陽性血清について、吸収剤添加10ミリモルTES緩
衝液により100倍に希釈したものを検体として、その
蛍光強度を測定することにより各検体中のCRP濃度を
得た。従来から使用され、信頼性の高い抗原抗体反応時
の沈降反応や凝集反応を光学的に検出するTIA法によ
っても上記と同じ検体のCRP測定を行い、両方法の相
関を調べた。その結果、図4に示すような相関が得ら
れ、相関計数も0.98と良好で、本方法の信頼性が確
認された。
Example A specific example of antibody measurement using the complement-dependent membrane damage reaction will be described. Reagents and methods used were the same as those described above. , CR as a sample provided by the hospital
The P-positive serum was diluted 100-fold with a 10 mM TES buffer solution containing an absorbent, and the fluorescence intensity of the sample was measured to obtain the CRP concentration in each sample. The CRP measurement of the same sample as above was carried out by the TIA method which has been conventionally used and which optically detects the precipitation reaction and the agglutination reaction during the highly reliable antigen-antibody reaction, and the correlation between the two methods was investigated. As a result, the correlation shown in FIG. 4 was obtained, and the correlation coefficient was as good as 0.98, confirming the reliability of this method.

【0023】[0023]

【発明の効果】以上説明したように、本発明の方法によ
れば、カルボキシフルオレセイン蛍光色素の蛍光強度比
と共に透過率も同時に測定する。既知のカルボキシフル
オレセイン蛍光色素の濃度について蛍光強度比及び透過
率の検量線を作成しておくことにより、得られた未知検
体のカルボキシフルオレセイン蛍光色素の蛍光強度比及
び透過率測定値を検量線に当てはめることにより検体内
のカルボキシフルオレセイン蛍光色素濃度を短時間に確
実に決定することができる。このようにして、カルボキ
シフルオレセイン蛍光色素濃度が短時間に確実に決定さ
れるので、結果的に、抗原量及び抗体量も短時間に確実
に推定することができ、臨床検査ばかりか様々な理化学
基礎研究の推進にも大いに役立つことができる。
As described above, according to the method of the present invention, the transmittance is simultaneously measured together with the fluorescence intensity ratio of the carboxyfluorescein fluorescent dye. Apply a calibration curve of fluorescence intensity ratio and transmittance for known carboxyfluorescein fluorescent dye concentrations, and apply the measured fluorescence intensity ratio and transmittance of carboxyfluorescein fluorescent dye of an unknown sample to the calibration curve. As a result, the concentration of the carboxyfluorescein fluorescent dye in the sample can be reliably determined in a short time. In this way, the concentration of the carboxyfluorescein fluorescent dye is reliably determined in a short time, and as a result, the amount of antigen and the amount of antibody can be reliably estimated in a short time. It can also be very useful in promoting research.

【0024】このように、蛍光強度比と共に検体の透過
率を同時に測定することにより、この透過率測定値に基
づき、蛍光強度比測定値に対応する真正なCF濃度を短
時間に確実に決定することができる。従って、従来のC
Fの蛍光強度から濃度を推定する測定方法におけるよう
な、濃度領域を限定したり、あるいは、測定対象を幾通
りかに希釈して前後の特性から濃度推定を行う迂遠で冗
長な操作は全て不要になる。
By simultaneously measuring the transmittance of the sample together with the fluorescence intensity ratio, the true CF concentration corresponding to the measured value of the fluorescence intensity ratio can be reliably determined in a short time based on the measured transmittance value. be able to. Therefore, the conventional C
There is no need for a roundabout and redundant operation such as limiting the concentration region, or diluting the measurement object several times and estimating the concentration from the front and back, as in the measurement method that estimates the concentration from the fluorescence intensity of F. become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するのに使用できる光学測
定系の一例の概要斜視図である。
FIG. 1 is a schematic perspective view of an example of an optical measurement system that can be used to carry out the method of the present invention.

【図2】図1の装置を用いて作成された蛍光強度比と透
過率との検量線を示す線図である。
FIG. 2 is a diagram showing a calibration curve of fluorescence intensity ratio and transmittance created by using the apparatus of FIG.

【図3】カルボキシフルオレセイン蛍光色素濃度と出力
電圧値に換算した蛍光強度の関係を示す特性曲線の線図
である。
FIG. 3 is a diagram of a characteristic curve showing a relationship between carboxyfluorescein fluorescent dye concentration and fluorescence intensity converted into an output voltage value.

【図4】本発明の方法により得られたCRP濃度測定値
と従来のTIA法により得られたCRP濃度測定値の相
関関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a correlation between a CRP concentration measurement value obtained by the method of the present invention and a CRP concentration measurement value obtained by a conventional TIA method.

【符号の説明】[Explanation of symbols]

10 光源 12 ビームエクスパンダー 14 NDフィルタ 16 アパーチャ 18 セル 20 フィルタ 22 出力モニタ 30 ピンホール 32 コンデンサ 34 フィルタ 36 集光レンズ 38 フィールドストップ 40 ホトセンサ 10 Light Source 12 Beam Expander 14 ND Filter 16 Aperture 18 Cell 20 Filter 22 Output Monitor 30 Pinhole 32 Condenser 34 Filter 36 Condenser Lens 38 Field Stop 40 Photo Sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リポソーム内にカルボキシフルオレセイ
ン蛍光色素を封入し、このリポソーム膜にタンパク抗原
または特異抗体を共有結合させてリポソーム膜表面に抗
原抗体複合体を形成させ、これに補体を作用させること
により膜攻撃複合体を形成し、該膜攻撃複合体によりリ
ポソーム膜を破壊し、リポソーム内に封入されていたカ
ルボキシフルオレセイン蛍光色素をリポソーム外へ放出
させ、この放出されたカルボキシフルオレセイン蛍光色
素の蛍光強度を測定することにより抗原量及び抗体量を
測定することからなるリポソームを用いた免疫測定法に
おいて、カルボキシフルオレセイン蛍光色素の蛍光強度
比と共に透過率も同時に測定し、得られた両測定値に基
づいてカルボキシフルオレセイン蛍光色素の濃度を決定
することを特徴とするリポソームを用いた免疫測定法。
1. Encapsulating a carboxyfluorescein fluorescent dye in a liposome, covalently binding a protein antigen or a specific antibody to the liposome membrane to form an antigen-antibody complex on the surface of the liposome membrane, and allowing the complement to act on the complex. To form a membrane attack complex, and the membrane attack complex destroys the liposome membrane to release the carboxyfluorescein fluorescent dye encapsulated in the liposome to the outside of the liposome, and the fluorescence intensity of the released carboxyfluorescein fluorescent dye. In an immunoassay using a liposome, which consists of measuring the amount of antigen and the amount of antibody by measuring, the transmittance is also measured at the same time as the fluorescence intensity ratio of the carboxyfluorescein fluorescent dye, and based on the both measured values obtained Characterized by determining the concentration of carboxyfluorescein fluorescent dye Immunoassay using liposomes.
【請求項2】 既知の濃度のカルボキシフルオレセイン
蛍光色素について予め蛍光強度比と透過率との検量線を
作成しておき、未知検体について測定された蛍光強度比
及び透過率の測定値を前記検量線に当てはめることによ
り、未知検体中のカルボキシフルオレセイン蛍光色素濃
度を決定することからなる請求項1の方法。
2. A calibration curve of the fluorescence intensity ratio and the transmittance is prepared in advance for a known concentration of carboxyfluorescein fluorescent dye, and the measured values of the fluorescence intensity ratio and the transmittance measured for an unknown sample are used as the calibration curve. The method of claim 1 comprising determining the concentration of the carboxyfluorescein fluorescent dye in the unknown analyte by applying
JP34855393A 1993-12-27 1993-12-27 Immunoassay method using liposome Pending JPH07191033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34855393A JPH07191033A (en) 1993-12-27 1993-12-27 Immunoassay method using liposome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34855393A JPH07191033A (en) 1993-12-27 1993-12-27 Immunoassay method using liposome

Publications (1)

Publication Number Publication Date
JPH07191033A true JPH07191033A (en) 1995-07-28

Family

ID=18397798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34855393A Pending JPH07191033A (en) 1993-12-27 1993-12-27 Immunoassay method using liposome

Country Status (1)

Country Link
JP (1) JPH07191033A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073718A1 (en) * 2004-01-28 2005-08-11 Ltt Bio-Pharma Co., Ltd. Method of screening compound safe to gastric mucosa
JP2009532167A (en) * 2006-04-03 2009-09-10 ギブン イメージング リミテッド Apparatus, system and method for in vivo analysis
WO2016104601A1 (en) * 2014-12-26 2016-06-30 立山マシン株式会社 Method for analyzing nucleic acid, and fluorescence/turbidity measurement device used therein
CN111289743A (en) * 2020-03-13 2020-06-16 南京中医药大学 Composite phospholipid liposome with low leakage rate and surface capable of being connected with escherichia coli antibody and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073718A1 (en) * 2004-01-28 2005-08-11 Ltt Bio-Pharma Co., Ltd. Method of screening compound safe to gastric mucosa
JPWO2005073718A1 (en) * 2004-01-28 2008-01-10 株式会社Lttバイオファーマ Screening method for compounds safe for gastric mucosa
JP2009532167A (en) * 2006-04-03 2009-09-10 ギブン イメージング リミテッド Apparatus, system and method for in vivo analysis
WO2016104601A1 (en) * 2014-12-26 2016-06-30 立山マシン株式会社 Method for analyzing nucleic acid, and fluorescence/turbidity measurement device used therein
JPWO2016104601A1 (en) * 2014-12-26 2017-10-12 立山マシン株式会社 Nucleic acid analysis method and fluorescence / turbidity measuring apparatus used therefor
CN111289743A (en) * 2020-03-13 2020-06-16 南京中医药大学 Composite phospholipid liposome with low leakage rate and surface capable of being connected with escherichia coli antibody and application thereof

Similar Documents

Publication Publication Date Title
JP3249919B2 (en) Immunoassay method
US5266498A (en) Ligand binding assay for an analyte using surface-enhanced scattering (SERS) signal
Dandliker et al. Fluorescence polarization in immunochemistry
US4582809A (en) Apparatus including optical fiber for fluorescence immunoassay
CA2141451C (en) Photoactivatable chemiluminescent matrices
JPH0750109B2 (en) Assay method and device
JPS61191965A (en) Method and device for optically confirming parameter of seedin liquefied material to be analyzed
WO2008066607A2 (en) Device for detection of molecules in biological fluids
EP0222341B1 (en) A method for immunoassay and reagents therefor
KR101027213B1 (en) Fluorescence analysis method with the use of fluorescent antibody
Fievet-Desreumaux et al. Immunochemical determination of human apolipoprotein B by laser nephelometry
US7541197B2 (en) Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris
US6437099B1 (en) Fluorescene—activating antisera and IgG fraction therefrom
IL100841A (en) Immunoassay involving photoirradiation and detection of optical density or fluorescence
JPH07191033A (en) Immunoassay method using liposome
JPH0792460B2 (en) Kit for detecting microorganisms associated with periodontal disease using surfactant mixture as extraction composition and method for detecting the same
US7326579B2 (en) Immunoassay method for lyzed whole blood
CN109917141A (en) A kind of detection people's abo blood group test strips, preparation method, detection method and application
JP2001296292A (en) Method of immunoassay
JP2003520963A (en) Lipoprotein assay method
JPH09509480A (en) Ultrasensitive competitive immunoassay using optical waveguide
JP2631885B2 (en) Quantitative method for α1-acid glycoprotein
Yoshida et al. Development of fiber optic fluoroimmunoassay: proximal vs. distal end collection geometries of a fiber sensor
KR20040097406A (en) On-site biosensor and instrument for the detection of microsystins
Lin et al. Ultrasensitive evanescent wave fluoro-immunosensors using polystyrene integrated lens optical fiber