JPH07190741A - Measuring error correction method - Google Patents

Measuring error correction method

Info

Publication number
JPH07190741A
JPH07190741A JP33301793A JP33301793A JPH07190741A JP H07190741 A JPH07190741 A JP H07190741A JP 33301793 A JP33301793 A JP 33301793A JP 33301793 A JP33301793 A JP 33301793A JP H07190741 A JPH07190741 A JP H07190741A
Authority
JP
Japan
Prior art keywords
stage
measured
axis
measuring
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33301793A
Other languages
Japanese (ja)
Inventor
Kunio Koyabu
国夫 小薮
Koji Matsunaga
光司 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP33301793A priority Critical patent/JPH07190741A/en
Publication of JPH07190741A publication Critical patent/JPH07190741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enhance measuring accuracy in a simple constitution by measuring in advance a relation between the position of each stage, and each image at the aforesaid positions, or each error in posture for a measured object, and thereby removing errors made at the time of measurement based on the aforesaid relation. CONSTITUTION:Each coordinate of three marks MA through MC in the Z direction out of marks for the four corners of a two dimensional measuring reference scale 4, is obtained with X and Y axis stages 8 and 6 driven, based on the obtained coordinates, a parallel adjustment for the X Y scanning surface of the scale 4 and a photographing optical system is carried out, and the adjustment of a rotating angle around a Z axis for a Z axis (a Y axis) is also carried out, so that the relative error in posture between the stages 6 and 8 is thereby corrected. Next, the positional coordinate of each mark in the X direction from the mark MA is measured the difference between each aforesaid measured coordinate and the coordinate of each mark which is accurately measured in advance, is stored as measuring errors which depend on the posture of each stage 6 and 8 at the positions of the respective marks. In a practical measurement, a corrected value where each corresponding measuring error is added to each measured value at the measuring positions of the stages 6 and measured value where each measuring error due to the posture of each stage 6 and 8 is removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は画像処理とステージを組
み合わせた光学的測定法において、簡易な装置構成によ
り高精度測定を可能にするための測定誤差補正法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measurement method combining image processing and a stage, and relates to a measurement error correction method for enabling highly accurate measurement with a simple apparatus configuration.

【0002】[0002]

【従来の技術】従来、高精度で広い範囲を対象とする測
定装置では、被測定物の像情報等を得る測定手段(例え
ば撮像用光学系と画像処理を行う光学的方法)と被測定
物又は測定手段を移動するための高精度ステージの組合
せは必須で、さらに測定を自動化するためにパソコン等
を用いた構成となっている。このような装置の高精度測
定では、レーザ干渉計やリニアエンコーダでステージの
移動方向における移動量を高精度で測定する方法が採用
されていたが、ステージの移動に伴う姿勢の変化に依存
した測定誤差の影響については、その補正が行われてい
なかった。
2. Description of the Related Art Conventionally, in a measuring device for a wide range with high accuracy, a measuring means (for example, an image pickup optical system and an optical method for performing image processing) for obtaining image information of an object to be measured and an object to be measured. Alternatively, a combination of high-precision stages for moving the measuring means is indispensable, and a personal computer or the like is used to further automate the measurement. The high-precision measurement of such a device has adopted a method of measuring the amount of movement in the moving direction of the stage with high accuracy using a laser interferometer or linear encoder.However, the measurement depends on the change in the posture accompanying the movement of the stage. The effect of the error was not corrected.

【0003】[0003]

【発明が解決しようとする課題】ステージの移動で生じ
るステージ姿勢の変化による測定誤差への影響を図2に
示す。ここで、ステージ2の姿勢ベクトルをP、撮像用
光学系1の光軸姿勢ベクトルをSとし、移動前と移動後
に対応する各ベクトルにはそれぞれ添字(A )(B )を
つけて表示した。
FIG. 2 shows the influence on the measurement error due to the change of the stage posture caused by the movement of the stage. Here, the posture vector of the stage 2 is P, the optical axis posture vector of the imaging optical system 1 is S, and the corresponding vectors before and after the movement are shown with subscripts ( A ) and ( B ) respectively.

【0004】撮像用光学系1を搭載したステージ2は、
被測定物3のマークMA が撮像用光学系1の光軸SA
一致するように位置Aで静止していて、ステージ2の姿
勢ベクトルPA はY軸と平行とする。次に、二つのマー
クMA とMB に対して、MAとMB の間隔と同じ距離だ
け平行にステージ2が移動して位置Bで静止したとき、
姿勢ベクトルPB は姿勢ベクトルPA に対して角度θ傾
いているので、光軸ベクトルSB はマークMB と一致し
ない。この原因はステージ構成部品の加工精度や組立精
度の影響、荷重重心に対する駆動力の作用位置のずれ、
摺動部での摩擦力の不均一性、等の機械的要因に基づく
ステージ移動の非直線性によるものである。
The stage 2 equipped with the image pickup optical system 1 is
The mark M A of the DUT 3 is stationary at the position A so as to coincide with the optical axis S A of the imaging optical system 1, and the posture vector P A of the stage 2 is parallel to the Y axis. Next, when the stage 2 moves parallel to the two marks M A and M B by the same distance as the distance between M A and M B and stands still at the position B,
Since the posture vector P B is inclined by the angle θ with respect to the posture vector P A , the optical axis vector S B does not match the mark M B. The causes of this are the influence of the processing accuracy and assembly accuracy of stage components, the shift of the operating position of the driving force with respect to the center of gravity of the load,
This is due to the non-linearity of stage movement due to mechanical factors such as non-uniformity of frictional force in the sliding portion.

【0005】このときの姿勢変化による測定誤差をベク
トルで表したものを図3に示す。いま、移動前の姿勢ベ
クトルPA はY軸と、光軸ベクトルSA はZ軸とそれぞ
れ一致しており、ステージ2の移動後の姿勢ベクトルP
B はベクトルPA に対して角度θ傾き、この結果として
光軸ベクトルSB もベクトルSA に対して同じ角度傾斜
したとすると、マークMB は、姿勢ベクトルPB と光軸
ベクトルSB との合成で決まる位置に存在するように見
える。すなわち、マークMB の測定誤差は座標原点Oと
合成ベクトルの先端を結ぶ誤差ベクトルRに等しく、こ
のときのX,Y,Z方向のずれ量は次式で与えられる。
FIG. 3 shows a vector representing the measurement error due to the change in posture at this time. Now, the posture vector P A before the movement coincides with the Y axis and the optical axis vector S A coincides with the Z axis, respectively, and the posture vector P A after the movement of the stage 2
If B is tilted by an angle θ with respect to the vector P A , and as a result, the optical axis vector S B is also tilted by the same angle with respect to the vector S A , then the mark M B has a posture vector P B and an optical axis vector S B. It appears to exist in a position determined by the composition of. That is, the measurement error of the mark M B is equal to the error vector R connecting the coordinate origin O and the tip of the composite vector, and the deviation amounts in the X, Y, and Z directions at this time are given by the following equations.

【0006】 RX =R cosβ sinα …(1) RY =R cosβ …(2) RZ =R cosβ cosα …(3) ここで、角度βは誤差ベクトルRとXZ面の交差角を、
角度αは誤差ベクトルRのXZ面への写像ベクトルR′
と光軸ベクトルSA の交差角である。
R X = R cos β sin α (1) R Y = R cos β (2) R Z = R cos β cos α (3) where the angle β is the intersection angle between the error vector R and the XZ plane,
The angle α is the mapping vector R ′ of the error vector R onto the XZ plane.
And the optical axis vector S A.

【0007】一方、撮像用光学系を固定して被測定物を
移動させても、ステージの移動に伴う被測定物の姿勢変
化は起きる。撮像用光学系の移動と被測定物を移動させ
たときの相違は、ステージの回転中心(図2のP点)か
ら被測定対象までの距離(前述の誤差ベクトルRの長さ
に対応する)が異なり、それは前者の方が後者よりも長
くなることである。測定誤差の観点からは被測定物を移
動させる方が有利であるが、反面、被測定物を移動する
ことが好ましくない場合もあるので、一概にどちらが良
いとは言えない。いずれにしても、ステージの移動に伴
う姿勢変化の影響による測定誤差は避けられない。
On the other hand, even if the object to be measured is moved with the imaging optical system fixed, the posture of the object to be measured changes with the movement of the stage. The difference between the movement of the imaging optical system and the movement of the measured object is the distance from the rotation center of the stage (point P in FIG. 2) to the measured object (corresponding to the length of the error vector R described above). The difference is that the former is longer than the latter. From the viewpoint of measurement error, it is advantageous to move the object to be measured, but on the other hand, it may not be preferable to move the object to be measured. In any case, a measurement error due to the influence of the posture change accompanying the movement of the stage is inevitable.

【0008】本発明は上記の事情に鑑みてなされたもの
で、リニアエンコーダとステージを組み合わせた従来の
簡易構成のまま、新たに高精度の基準スケールを用いて
ステージの停止位置とその位置に対応したステージの姿
勢変化を読み取ってその値をパソコンに記憶しておき、
実際の測定ではこの値を使って測定誤差を補正する測定
誤差補正法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and corresponds to the stop position of the stage and its position by newly using a highly accurate reference scale with the conventional simple structure in which the linear encoder and the stage are combined. Read the posture change of the stage, and store the value in the personal computer,
In the actual measurement, it is an object to provide a measurement error correction method that uses this value to correct the measurement error.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明は、撮像用光学系、ステージおよび制御用パソ
コンを含んで構成される光学的測定法において、該撮像
用光学系もしくは被測定物を搭載したステージの移動で
生じる該撮像用光学系で捕らえた像もしくは被測定物の
姿勢誤差に対し、該ステージの位置とその位置における
像もしくは被測定物の姿勢誤差の関係を予め測定し、こ
の関係により測定における誤差を制御用パソコンで除去
することを特徴とする。
In order to achieve the above object, the present invention provides an optical measuring method including an optical system for imaging, a stage and a personal computer for control, the optical system for imaging or the object to be measured. The relationship between the position of the stage and the attitude error of the image or the measured object at that position is measured in advance with respect to the attitude error of the image or the measured object captured by the imaging optical system caused by the movement of the stage on which the object is mounted. According to this relationship, the error in measurement is removed by the control personal computer.

【0010】[0010]

【作用】上記手段により本発明は、マークMB の測定誤
差は、Rと角度α,βの値が明らかになれば(1)〜
(3)式から計算で求められるが、これらの値を実測で
求めることは困難である。そこで、複数のマークを有す
る基準スケールを置いてこのマーク位置を測定すること
により、予め他の方法で高精度に測定された既知のマー
ク位置と本装置で測定したマーク位置を比較した両者の
差が、ステージの停止位置での姿勢による測定誤差とし
て求められる。
According to the present invention, the measurement error of the mark M B is (1) to (1) if the values of R and the angles α and β are clarified.
Although it can be obtained by calculation from equation (3), it is difficult to obtain these values by actual measurement. Therefore, by measuring this mark position by placing a reference scale having a plurality of marks, the difference between the known mark position previously measured with high accuracy by another method and the mark position measured by this device is compared. Is obtained as a measurement error due to the attitude of the stage at the stop position.

【0011】この方法では、測定のために停止するステ
ージの位置とその位置におけるステージの姿勢が1対1
に対応しているので、ステージ停止位置をできるだけ小
さな間隔で測定することが重要である。
According to this method, the position of the stage stopped for measurement and the posture of the stage at that position are in a one-to-one correspondence.
Therefore, it is important to measure the stage stop position at the smallest possible interval.

【0012】[0012]

【実施例】以下図面を参照して本発明の一実施例を詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0013】図1は二次元配列の位置測定を行うための
装置構成で、4は二次元測定用基準スケール、5は互い
に直交する三つの角度を調整できるゴニオステージ、1
は撮像用光学系、6はY軸ステージ、7はY軸リニアエ
ンコーダ、8はX軸ステージ、9はX軸リニアエンコー
ダ、10はZ軸ステージ、11はZ軸リニアエンコー
ダ、である。
FIG. 1 shows an apparatus configuration for measuring the position of a two-dimensional array. Reference numeral 4 is a two-dimensional measurement reference scale, 5 is a goniometer stage capable of adjusting three mutually orthogonal angles, 1
Is an imaging optical system, 6 is a Y-axis stage, 7 is a Y-axis linear encoder, 8 is an X-axis stage, 9 is an X-axis linear encoder, 10 is a Z-axis stage, and 11 is a Z-axis linear encoder.

【0014】ステージの姿勢誤差補正を行うには、まず
始めに二次元測定用基準スケール3と撮像用光学系1の
XY走査面との平行調整、およびX軸(又はY軸)のZ
軸(撮像用光学系1と平行)回りの回転角の調整を行
い、両者の相対的な姿勢誤差を補正する必要がある。
In order to correct the attitude error of the stage, first, the two-dimensional measurement reference scale 3 and the XY scanning plane of the imaging optical system 1 are adjusted in parallel, and the X-axis (or Y-axis) Z is adjusted.
It is necessary to adjust the rotation angle around the axis (parallel to the imaging optical system 1) to correct the relative attitude error between the two.

【0015】平行度の調整は、X軸ステージ8とY軸ス
テージ6を駆動して二次元測定用基準スケール4の四隅
に形成された四つのうち三つのマーク(MA ,MB ,M
c :マーク間隔は30mm)について、Z方向の位置座
標を求める。もしマークが撮像用光学系1の焦点深度か
ら外れている場合には焦点深度内にマークをとらえるよ
うにZ軸ステージを移動し、その移動量をZ軸リニアエ
ンコーダで読み取る。この3つのマークのZ座標から、
撮像用光学系1のXY走査面に対する二次元測定用基準
スケール4の平行度の誤差とその方向を知ることができ
る。一方、Z軸回りの回転角も、三つのマーク測定で3
0mmのX方向(又はY方向)の移動で生じるY方向
(又はX方向)の位置ずれから求められる。
The parallelism is adjusted by driving the X-axis stage 8 and the Y-axis stage 6 to form three marks (M A , M B , M) out of the four marks formed at the four corners of the two-dimensional measurement reference scale 4.
c : The position coordinate in the Z direction is calculated for the mark interval of 30 mm). If the mark is out of the depth of focus of the imaging optical system 1, the Z-axis stage is moved so as to capture the mark within the depth of focus, and the amount of movement is read by the Z-axis linear encoder. From the Z coordinates of these three marks,
It is possible to know the error in the parallelism of the two-dimensional measurement reference scale 4 with respect to the XY scanning plane of the imaging optical system 1 and its direction. On the other hand, the rotation angle around the Z-axis is also 3 for the three mark measurements.
It is obtained from the positional deviation in the Y direction (or X direction) caused by the movement of 0 mm in the X direction (or Y direction).

【0016】このようにして求められた平行度の誤差と
Z軸回りの回転角は、ゴニオステージ5を駆動して二次
元測定用基準スケール4の姿勢を直接調整する。この測
定装置には、撮像用光学系1の焦点深度が約20μm、
ステージの最大姿勢誤差は約2μm程度存在するので、
この調整段階で平行度が0.7mrad(20/300
00)、回転角は0.02mrad(2/30000)
の誤差を含むことになる。
The parallelism error and the rotation angle about the Z axis thus obtained drive the gonio stage 5 to directly adjust the attitude of the two-dimensional measurement reference scale 4. In this measuring device, the depth of focus of the imaging optical system 1 is about 20 μm,
Since the maximum attitude error of the stage is about 2 μm,
In this adjustment stage, the parallelism is 0.7 mrad (20/300
00), the rotation angle is 0.02 mrad (2/30000)
Error will be included.

【0017】次に、マークMA からX(+)方向に沿っ
てマークを測定していき、端のマークMB に到達すると
Y方向にマーク一つ移動して、今度はX(−)方向に再
びマーク位置を測定する。この操作を順次繰り返し、全
てのマーク位置を測定することによって、それぞれのマ
ークに対応した位置におけるステージの姿勢に依存した
測定誤差が求められる。
Next, the mark is measured along the X (+) direction from the mark M A , and when the mark M B at the end is reached, one mark is moved in the Y direction, and this time, in the X (−) direction. Measure the mark position again. By repeating this operation in sequence and measuring all mark positions, the measurement error depending on the posture of the stage at the position corresponding to each mark can be obtained.

【0018】ここで用いた二次元測定用基準スケール
は、LSI半導体プロセスで使われているホトマスクと
同じ方法で作製し、250μm間隔で二次元に配列され
ているマークの位置は高精度のレーザ干渉計で0.1μ
mの精度で測定されたものである。この基準スケールを
用いたステージの姿勢による具体的な測定誤差の求め方
は、次のようにして行う。
The two-dimensional measurement reference scale used here is manufactured by the same method as the photomask used in the LSI semiconductor process, and the positions of the marks two-dimensionally arranged at 250 μm intervals are high-precision laser interference. 0.1μ in total
It is measured with an accuracy of m. The method for obtaining a specific measurement error due to the posture of the stage using this reference scale is performed as follows.

【0019】最初のマークMA が撮像用光学系1の中心
と一致するように位置決めして、この位置における測定
誤差のない基準点とする。次に2番目のマークM2 を測
定するためにステージはX(+)方向に250μm移動
して、撮像用光学系1でマークM2 の位置座標(X2
2 )を測定する。この位置座標(X2 ,Y2 )には、
Z軸回りの回転角の調整で除去できなかった誤差0.0
2mradの影響が含まれているが、その量は約0.0
2μm(250μm×2/30000)と小さく問題に
はならない。マークM2 の位置座標(X2 ,Y2 )を二
次元測定用基準スケールを予め高精度のレーザ干渉計で
測定しておいた座標(x2 ,y2 )と比較し、両者の差
Δx2(=X2 −x2 ),Δy2(=Y2 −y2 )が前記
(1)〜(3)式で説明したステージの姿勢による測定
誤差Rx ,Ry と同じである。3番目以降のマークにつ
いても同様にして、それぞれの位置(Xn ,Yn )とそ
の位置に対応した測定誤差(ΔXn,ΔYn)が求められ
る。この位置座標(Xn ,Yn)と測定誤差(ΔXn,Δ
Yn)を1セットにして、全てのマークについてこれらの
値をパソコンに記憶する。
The first mark M A is positioned so that it coincides with the center of the image pickup optical system 1, and is set as a reference point having no measurement error at this position. Then the stage for measuring the second mark M 2 to 250μm moved in X (+) direction, the position coordinates (X 2 of the mark M 2 by the imaging optical system 1,
Y 2 ) is measured. At this position coordinate (X 2 , Y 2 ),
Error 0.0 that could not be removed by adjusting the rotation angle around the Z axis
The effect of 2 mrad is included, but the amount is about 0.0
It is as small as 2 μm (250 μm × 2/30000) and does not pose a problem. The position coordinate (X 2 , Y 2 ) of the mark M 2 is compared with the coordinate (x 2 , y 2 ) measured in advance by the high-precision laser interferometer on the two-dimensional measurement reference scale, and the difference Δ between the two. x2 (= X 2 -x 2) , the same as the Δ y2 (= Y 2 -y 2 ) is the (1) to (3) measurement error R x according to the posture of the stage described by the formula, R y. The positions (X n , Y n ) and the measurement errors (Δ Xn , Δ Yn ) corresponding to the respective positions are similarly obtained for the third and subsequent marks. This position coordinate (X n , Y n ) and measurement error (Δ Xn , Δ
Yn ) is set as one set, and these values are stored in the personal computer for all marks.

【0020】この後は実際に測定を行い、例えばステー
ジが位置座標(Xj ,Yj )で測定値(xj ,yj )を
得たとすると、この位置座標に対応する測定誤差
(ΔXj,ΔYj)を測定値(xj ,yj )に加えた補正値
(xj +ΔXj,yj +ΔYj)が、ステージの姿勢による
測定誤差を除去した測定値となる。ステージが測定のた
めに停止する位置が、予め測定したマークの位置座標と
一致しない場合、例えば実際の測定位置座標(Xi ,Y
i )がマークMj [(Xj ,Yj )(ΔXj,ΔYj)]と
K [(Xk ,Yk )(ΔXk,ΔYk)]の間で、マーク
j とMk の間隔をm対nに内分する位置であるとすれ
ば、内挿法により測定位置座標(Xi ,Yi )の測定誤
差(ΔXi,ΔYi)は次の式で与えられる。
After that, actual measurement is performed. For example, if the stage obtains measured values (x j , y j ) at position coordinates (X j , Y j ), a measurement error (Δ Xj , Δ Yj ) is added to the measurement value (x j , y j ) to obtain a correction value (x j + Δ Xj , y j + Δ Yj ) which is a measurement value from which the measurement error due to the posture of the stage is removed. If the position where the stage stops for measurement does not match the position coordinate of the mark measured in advance, for example, the actual measurement position coordinate (X i , Y
i ) is between the marks M j [(X j , Y j ) (Δ Xj , Δ Yj )] and M K [(X k , Y k ) (Δ Xk , Δ Yk )], the marks M j and M. if the distance k between the position which internally divides m pairs n, the measurement error (Δ Xi, Δ Yi) of the measurement position coordinates by interpolation (X i, Y i) is given by the following equation.

【0021】ΔXi={m/(m+n)}×ΔXk+{n/
(m+n)}×ΔXj …(4)ΔYi={m/(m+
n)}×ΔYk+{n/(m+n)}×ΔYj …(5)
図4は試作した測定装置の姿勢変化による測定誤差の影
響を補正した場合としない場合の二次元配列(図は一次
元表示で、X方向の移動に対するY成分の測定値)の測
定結果の一例である。ステージの姿勢による測定誤差の
補正を行わない場合の精度は±1μmであるが、本補正
法では±0.3μmの精度が得られ、測定精度の改善効
果が確認された。
Δ Xi = {m / (m + n)} × Δ Xk + {n /
(M + n)} × Δ Xj (4) Δ Yi = {m / (m +
n)} × Δ Yk + {n / (m + n)} × Δ Yj (5)
FIG. 4 shows an example of the measurement result of a two-dimensional array (the one-dimensional display shows the measurement value of the Y component with respect to the movement in the X direction) when the influence of the measurement error due to the attitude change of the prototype measurement device is corrected and not corrected. Is. The accuracy when the measurement error due to the attitude of the stage is not corrected is ± 1 μm, but the accuracy of this correction method is ± 0.3 μm, and the effect of improving the measurement accuracy was confirmed.

【0022】[0022]

【発明の効果】以上、説明したように本発明の補正法を
用いれば、ステージとリニアエンコーダを組み合わせた
簡単な構成で測定精度を大幅に改善することが可能で、
これは装置の小型化や製作費の軽減に効果が期待でき
る。
As described above, by using the correction method of the present invention, it is possible to greatly improve the measurement accuracy with a simple structure in which a stage and a linear encoder are combined.
This can be expected to be effective in downsizing the device and reducing manufacturing costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係り、二次元配列の測定で
姿勢変化による測定誤差補正法を検討するために試作し
た装置構成を示す斜視図である。
FIG. 1 is a perspective view showing a configuration of a prototype device according to an embodiment of the present invention for examining a measurement error correction method due to a posture change in measurement of a two-dimensional array.

【図2】従来の測定装置に係り、ステージの移動に伴う
姿勢変化による測定誤差への影響を示す斜視図である。
FIG. 2 is a perspective view showing a conventional measuring apparatus and showing an influence on a measurement error due to a change in posture caused by movement of a stage.

【図3】従来の姿勢変化による測定誤差をベクトルで表
示した説明図である。
FIG. 3 is an explanatory diagram in which a measurement error due to a conventional posture change is displayed as a vector.

【図4】補正法の有無による測定結果を比較した特性図
である。
FIG. 4 is a characteristic diagram comparing the measurement results with and without the correction method.

【符号の説明】[Explanation of symbols]

1…撮像用光学系、2…ステージ、3…被測定物、4…
二次元測定用基準スケール、5…ゴニオステージ、6…
Y軸ステージ、7…Y軸リニアエンコーダ、8…X軸ス
テージ、9…X軸リニアエンコーダ、10…Z軸ステー
ジ、11…Z軸リニアエンコーダ。
1 ... Optical system for imaging, 2 ... Stage, 3 ... Object to be measured, 4 ...
Reference scale for two-dimensional measurement, 5 ... Goniometer stage, 6 ...
Y-axis stage, 7 ... Y-axis linear encoder, 8 ... X-axis stage, 9 ... X-axis linear encoder, 10 ... Z-axis stage, 11 ... Z-axis linear encoder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 撮像用光学系、ステージおよび制御用パ
ソコンを含んで構成される光学的測定法において、該撮
像用光学系もしくは被測定物を搭載したステージの移動
で生じる該撮像用光学系で捕らえた像もしくは被測定物
の姿勢誤差に対し、該ステージの位置とその位置におけ
る像もしくは被測定物の姿勢誤差の関係を予め測定し、
この関係により測定における誤差を制御用パソコンで除
去することを特徴とする測定誤差補正法。
1. An optical measuring method comprising an imaging optical system, a stage and a control personal computer, wherein the imaging optical system or the imaging optical system generated by movement of a stage carrying an object to be measured. For the captured image or the attitude error of the object to be measured, the relationship between the position of the stage and the attitude error of the image or the object to be measured at that position is measured in advance,
Due to this relationship, the measurement error correction method is characterized in that the measurement error is removed by the control PC.
JP33301793A 1993-12-27 1993-12-27 Measuring error correction method Pending JPH07190741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33301793A JPH07190741A (en) 1993-12-27 1993-12-27 Measuring error correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33301793A JPH07190741A (en) 1993-12-27 1993-12-27 Measuring error correction method

Publications (1)

Publication Number Publication Date
JPH07190741A true JPH07190741A (en) 1995-07-28

Family

ID=18261363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33301793A Pending JPH07190741A (en) 1993-12-27 1993-12-27 Measuring error correction method

Country Status (1)

Country Link
JP (1) JPH07190741A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899536A2 (en) * 1997-09-01 1999-03-03 Carl Zeiss Coordinate measuring apparatus or working machine
WO2008026732A1 (en) * 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
WO2008026739A1 (en) * 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008029758A1 (en) * 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
WO2008029757A1 (en) * 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
JPWO2008026742A1 (en) * 2006-08-31 2010-01-21 株式会社ニコン Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, and device manufacturing method
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
CN102252633A (en) * 2011-05-05 2011-11-23 陕西威蓝工业自动化有限公司 Method for measuring track direction and horizontal irregularity based on plot points
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
KR101444735B1 (en) * 2013-05-23 2014-09-26 한국전기연구원 Jig device for measuring displacement of rotor
JP2016502070A (en) * 2012-10-24 2016-01-21 エーエスエムエル ネザーランズ ビー.ブイ. Object positioning system, lithographic apparatus, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408530B1 (en) 1997-01-09 2002-06-25 Carl-Zeiss-Stiftung Coordinate measuring instrument or machining equipment
EP0899536A3 (en) * 1997-09-01 1999-11-03 Carl Zeiss Coordinate measuring apparatus or working machine
EP0899536A2 (en) * 1997-09-01 1999-03-03 Carl Zeiss Coordinate measuring apparatus or working machine
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10185227B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10133195B2 (en) 2006-01-19 2018-11-20 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10185228B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10203613B2 (en) 2006-01-19 2019-02-12 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10345121B2 (en) 2006-02-21 2019-07-09 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10409173B2 (en) 2006-02-21 2019-09-10 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US9958792B2 (en) 2006-08-31 2018-05-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
CN104375390A (en) * 2006-08-31 2015-02-25 株式会社尼康 Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure apparatus and method and assembly manufacturing method
WO2008026732A1 (en) * 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
US10353302B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10353301B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20160006803A (en) * 2006-08-31 2016-01-19 가부시키가이샤 니콘 Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
WO2008026739A1 (en) * 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20160043123A (en) * 2006-08-31 2016-04-20 가부시키가이샤 니콘 Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
US8947639B2 (en) 2006-08-31 2015-02-03 Nikon Corporation Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section
US10338482B2 (en) 2006-08-31 2019-07-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
JPWO2008026732A1 (en) * 2006-08-31 2010-01-21 株式会社ニコン MOBILE BODY DRIVING SYSTEM AND MOBILE BODY DRIVING METHOD, PATTERN FORMING APPARATUS AND METHOD, EXPOSURE APPARATUS AND METHOD, DEVICE MANUFACTURING METHOD, AND DETERMINING METHOD
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
JPWO2008026742A1 (en) * 2006-08-31 2010-01-21 株式会社ニコン Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, and device manufacturing method
US10162274B2 (en) 2006-08-31 2018-12-25 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
KR101493661B1 (en) * 2006-08-31 2015-02-13 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
JP2012147012A (en) * 2006-08-31 2012-08-02 Nikon Corp Movable body driving system and movable body driving method, apparatus and method of forming pattern, exposure apparatus and exposure method, device manufacturing method, and determination method
KR101479347B1 (en) * 2006-08-31 2015-01-05 가부시키가이샤 니콘 Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
US10101673B2 (en) 2006-08-31 2018-10-16 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
JP5035245B2 (en) * 2006-08-31 2012-09-26 株式会社ニコン Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, and device manufacturing method
US10073359B2 (en) 2006-08-31 2018-09-11 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
JP2013048288A (en) * 2006-08-31 2013-03-07 Nikon Corp System and method of driving movable body, device and method for forming pattern, equipment and method for exposure, device manufacturing method, and determination method
TWI609252B (en) * 2006-08-31 2017-12-21 Nikon Corp Moving body driving system and moving body driving method, pattern forming apparatus and method, exposure apparatus and method, element manufacturing method, and determination method
JP2013065866A (en) * 2006-08-31 2013-04-11 Nikon Corp Mobile drive method and mobile drive system, patterning method and device, exposure method and device, and device manufacturing method
US9983486B2 (en) 2006-08-31 2018-05-29 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
JP2015008306A (en) * 2006-09-01 2015-01-15 株式会社ニコン Exposure method, exposure apparatus and device manufacturing method
JPWO2008029758A1 (en) * 2006-09-01 2010-01-21 株式会社ニコン Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, and device manufacturing method
KR101442449B1 (en) * 2006-09-01 2014-09-22 가부시키가이샤 니콘 Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
JP5486189B2 (en) * 2006-09-01 2014-05-07 株式会社ニコン MOBILE BODY DRIVING METHOD, MOBILE BODY DRIVING SYSTEM, PATTERN FORMING METHOD AND APPARATUS, EXPOSURE METHOD AND APPARATUS, AND DEVICE MANUFACTURING METHOD
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9971253B2 (en) 2006-09-01 2018-05-15 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
KR101444632B1 (en) * 2006-09-01 2014-09-26 가부시키가이샤 니콘 Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
KR101511929B1 (en) * 2006-09-01 2015-04-13 가부시키가이샤 니콘 Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
US9846374B2 (en) 2006-09-01 2017-12-19 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
JP2013034014A (en) * 2006-09-01 2013-02-14 Nikon Corp Mobile body drive method
CN102749813A (en) * 2006-09-01 2012-10-24 株式会社尼康 Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9760021B2 (en) 2006-09-01 2017-09-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
KR101452524B1 (en) * 2006-09-01 2014-10-21 가부시키가이샤 니콘 Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
JP5035247B2 (en) * 2006-09-01 2012-09-26 株式会社ニコン Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9740114B2 (en) 2006-09-01 2017-08-22 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
JP2015111695A (en) * 2006-09-01 2015-06-18 株式会社ニコン Exposure method and exposure device, and method of manufacturing device
JP2012169655A (en) * 2006-09-01 2012-09-06 Nikon Corp Mobile body driving method
JP2015180967A (en) * 2006-09-01 2015-10-15 株式会社ニコン Exposure method and exposure device, and method of manufacturing device
CN102360169A (en) * 2006-09-01 2012-02-22 株式会社尼康 Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9625834B2 (en) 2006-09-01 2017-04-18 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10289010B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10289012B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10197924B2 (en) 2006-09-01 2019-02-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
JPWO2008029757A1 (en) * 2006-09-01 2010-01-21 株式会社ニコン Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
WO2008029758A1 (en) * 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
WO2008029757A1 (en) * 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN102252633A (en) * 2011-05-05 2011-11-23 陕西威蓝工业自动化有限公司 Method for measuring track direction and horizontal irregularity based on plot points
US9470988B2 (en) 2012-10-24 2016-10-18 Asml Netherlands B.V. Substrate positioning system, lithographic apparatus and device manufacturing method
JP2016502070A (en) * 2012-10-24 2016-01-21 エーエスエムエル ネザーランズ ビー.ブイ. Object positioning system, lithographic apparatus, and device manufacturing method
KR101444735B1 (en) * 2013-05-23 2014-09-26 한국전기연구원 Jig device for measuring displacement of rotor

Similar Documents

Publication Publication Date Title
JPH07190741A (en) Measuring error correction method
US10751883B2 (en) Robot system with supplementary metrology position coordinates determination system
US6067165A (en) Position calibrating method for optical measuring apparatus
JP4504818B2 (en) Workpiece inspection method
CN105073348A (en) A robot system and method for calibration
US10913156B2 (en) Robot system with end tool metrology position coordinates determination system
TWI457534B (en) Vision inspection system and method for converting coordinates using the same
JP5948729B2 (en) Shape measuring device
CN111811496B (en) Oblique non-contact three-dimensional linear velocity and double-shaft dynamic angle measuring system and method
CN111504183A (en) Calibration method for relative position of linear laser three-dimensional measurement sensor and robot
TWI667090B (en) Laser processing device
Zhang et al. Summary on calibration method of line-structured light sensor
JP2006258612A (en) Inter-shaft angle correction method
CN115371545A (en) Attitude measurement and calibration device and method for laser tracker
TWI747079B (en) Measurement system and method for positioning precision of a robot arm
CN110706292B (en) Two-dimensional workbench error self-calibration method based on machine vision
CN110458894B (en) Calibration method for camera and contact type measuring head of measuring machine
JP2002310641A (en) Coordinate system calibrating method for three- dimensional shape measuring instrument
JP3051948B2 (en) 3D shape measurement method
Miyashita et al. Real-Time Inspection of Rod Straightness and Appearance by Non-Telecentric Camera Array
JPH0522814Y2 (en)
JP2006138698A (en) Three-dimensional measurement method and apparatus
JP2005069775A (en) Three dimensional-shape measuring method
JPS5958504A (en) Origin offset adjusting method for arthrosis type robot
JPS61213708A (en) Image detection apparatus