JPH07190712A - Interferometer - Google Patents

Interferometer

Info

Publication number
JPH07190712A
JPH07190712A JP5348841A JP34884193A JPH07190712A JP H07190712 A JPH07190712 A JP H07190712A JP 5348841 A JP5348841 A JP 5348841A JP 34884193 A JP34884193 A JP 34884193A JP H07190712 A JPH07190712 A JP H07190712A
Authority
JP
Japan
Prior art keywords
light
optical path
measurement
light source
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5348841A
Other languages
Japanese (ja)
Inventor
Yutaka Ichihara
裕 市原
Makoto Nara
誠 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5348841A priority Critical patent/JPH07190712A/en
Publication of JPH07190712A publication Critical patent/JPH07190712A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the quantity of displacement of a measured object simply with high accuracy by providing a second laser beam source which is low in coherence while being different in wave length at the oscillating center, and making the position of the measured object a reference position when an interference signal due to reflection light from the measured object and a second reference object is outputted. CONSTITUTION:A reference position optical system is constituted by using a light source 2 with a wave length lambda2 at an oscillating center low in time coherence. Output beam from the light source 2 is synthesized with output beam from a light source 1 over its light path using a mirror 4 and a beam splitter 3 so as to allow the synthesized light to be incident on a polarization beam splitter 5, it is then divided into a referencing light path and a measuring light path, and reflection light from a reflecting mirror (a second reference object) 9 and reflection light from a moving mirror (measured object) 8 are coaxially synthesized with a measuring beam, so that detection beam is thereby extracted. After that, the position of the moving mirror 8 is made a reference point B0, when the difference in light path length between the reference light path and the measuring light path is zero, an interference signal outputted at that time is inputted into a processing circuit 26 so as to be converted into a pulse signal, so that it is thereby utilized as a zero point signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高度な変位計測精度が
要求される測長機器等に応用される干渉計に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer which is applied to a length measuring instrument or the like which requires a high degree of displacement measurement accuracy.

【0002】[0002]

【従来の技術】従来から、干渉縞計数法を用いた変位計
測方式として、被測定物からの測定光と参照光とから、
DCレベルが零で振幅が等しい90°位相差を持つ二つ
の干渉出力信号を作り出し、これらの相互干渉状態から
被測定物の変位を求める干渉計が知られている。
2. Description of the Related Art Conventionally, as a displacement measuring method using an interference fringe counting method, a measuring light from an object to be measured and a reference light are used.
An interferometer is known in which two interference output signals having a 90 ° phase difference in which the DC level is zero and the amplitudes are equal to each other are produced, and the displacement of the object to be measured is obtained from the mutual interference state of these signals.

【0003】図6に、このような干渉計の一例として半
導体レ−ザを光源に用いた測長用のマイケルソン型干渉
計を示す。図6において、半導体レ−ザ光源101から
出射されたコヒ−レントな光はビ−ムスプリッタ103
に入射し、透過あるいは反射によって2分岐される。ビ
ームスプリッタ103によって反射された一方の光は、
参照用光路へ入り、参照用固定鏡107にて折り返され
て再びビ−ムスプリッタ103に戻る。この反射光は参
照用固定鏡107とビームスプリッタ103との間を往
復する際にλ/8板105を2度通過するため、互いに
偏光方向の直交する2偏光成分どうしが90°の位相差
を生じる事になる。
FIG. 6 shows a Michelson interferometer for length measurement using a semiconductor laser as a light source as an example of such an interferometer. In FIG. 6, the coherent light emitted from the semiconductor laser light source 101 is a beam splitter 103.
And is branched into two by transmission or reflection. One of the lights reflected by the beam splitter 103 is
The light enters the reference optical path, is folded back by the reference fixed mirror 107, and returns to the beam splitter 103 again. Since this reflected light passes through the λ / 8 plate 105 twice when reciprocating between the reference fixed mirror 107 and the beam splitter 103, the two polarization components whose polarization directions are orthogonal to each other have a phase difference of 90 °. Will happen.

【0004】またビ−ムスプリッタ103を透過した光
は、測長用光路を進み、被測定物に相当する移動鏡10
8に達し、ここで折り返されて再びビ−ムスプリッタ1
03へ入射する。この様にして分割され再び戻ってきた
2方向からの光は、ビ−ムスプリッタ103にてそれぞ
れ反射、透過されることによって同軸上に合成された状
態で測長用ビームとして射出される。
Further, the light transmitted through the beam splitter 103 travels along the optical path for length measurement, and the movable mirror 10 corresponding to the object to be measured.
It reaches 8 and is folded back here again to the beam splitter 1
Incident on 03. The lights from the two directions that have been split and returned again in this manner are reflected and transmitted by the beam splitter 103 to be emitted coaxially as a beam for length measurement.

【0005】この射出用ビームは、偏光ビ−スプリッタ
110に入射し、ここでS偏光成分が反射されP偏光成
分が透過されて2光束に分離される。2光束は、それぞ
れ検出器111にて干渉信号のsin成分、検出器11
3にて干渉信号のcos成分が検出され、フリンジカウ
ンタ120へ出力される。フリンジカウンタ120で
は、入力された2つの信号から干渉縞を積算することに
より被測定物用移動鏡108の変位量Lが求められる。
This emission beam is incident on the polarization beam splitter 110, where the S-polarized component is reflected and the P-polarized component is transmitted to be separated into two light beams. The two light fluxes are respectively detected by the detector 111 as the sin component of the interference signal and the detector 11
At 3, the cos component of the interference signal is detected and output to the fringe counter 120. In the fringe counter 120, the displacement amount L of the movable mirror 108 for the object to be measured is obtained by integrating the interference fringes from the two input signals.

【0006】[0006]

【発明が解決しようとする課題】しかしながら,上記の
如き従来技術による干渉計では、移動鏡の変位量測定可
能範囲内の光路上において、同軸上に基準となる点がな
かった。従って、変位量の測定は相対的なものであり、
測定可能範囲全体を有効に使うことができず不便であっ
た。特に、光源として気体レーザに比べてコヒーレンス
長の短い半導体レーザを用いた干渉計の場合、図5
(a)に示すように干渉縞信号の測定可能な強度範囲に
相当する移動鏡の変位量測定可能範囲(光路差)が制限
されてしまうのでより使い勝手が悪いという問題があっ
た。
However, in the interferometer according to the prior art as described above, there is no coaxial reference point on the optical path within the displacement measurable range of the movable mirror. Therefore, the measurement of displacement is relative,
It was inconvenient because the entire measurable range could not be used effectively. In particular, in the case of an interferometer using a semiconductor laser having a shorter coherence length than a gas laser as a light source, FIG.
As shown in (a), the movable range of the movable mirror, which corresponds to the measurable intensity range of the interference fringe signal (measurable optical path difference), is limited, which is not convenient.

【0007】また、装置内に機械的な基準点設定手段を
設けることも考えられるが、この場合、光学系周辺の温
度や湿度、空気の揺らぎ等の環境変化に対応することが
できないため、このような機械的基準点を利用しての高
精度な変位量測定は期待できない。
Further, it is conceivable to provide a mechanical reference point setting means in the apparatus, but in this case, it is not possible to cope with environmental changes such as temperature and humidity around the optical system, fluctuations of air, etc. Highly accurate displacement measurement cannot be expected using such mechanical reference points.

【0008】本発明は、上記従来技術の問題点を解消
し、従来に比べて使い易く、簡便により高い精度で被測
定物の変位量が測定できるような干渉計を提供すること
を目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an interferometer which is easier to use than the prior art and which can easily measure the displacement amount of an object to be measured with higher accuracy. .

【0009】[0009]

【課題を解決するための手段】上記目的を達成させるた
め、請求項1に記載の発明に係る干渉計では、第1のレ
ーザ光源からの出力ビームを参照用光路と測定用光路と
に分岐し、前記参照用光路上の第1の参照対象物からの
反射光と前記測定用光路上の被測定物からの反射光とを
同軸上に合成して測定用ビームを取り出す測定用干渉光
学系と、前記第1のレーザー光源に対して発振中心波長
が異なる低コヒーレンスの第2のレーザ光源と、該第2
のレーザ光源からの出力ビームを前記参照用光路と測定
用光路とに分岐し、前記参照用光路上の第2の参照対象
物からの反射光と前記被測定物からの反射光とを前記測
定用ビームと同軸上に合成して検出ビームを取り出す検
出光学系と、前記検出ビームより、前記被測定物からの
反射光と前記第2の参照対象物からの反射光とによる干
渉信号を検出し、該干渉信号が出力されるときの前記被
測定物の位置を基準位置とする検出手段とを有する基準
位置検出光学系と、を備えたものである。
In order to achieve the above object, in an interferometer according to a first aspect of the present invention, an output beam from a first laser light source is split into a reference optical path and a measurement optical path. A measurement interference optical system for coaxially synthesizing reflected light from the first reference object on the reference optical path and reflected light from the object to be measured on the measurement optical path to extract a measurement beam. A second laser light source of low coherence having an oscillation center wavelength different from that of the first laser light source;
The output beam from the laser light source is branched into the reference optical path and the measurement optical path, and the reflected light from the second reference object and the reflected light from the measured object on the reference optical path are measured. A detection optical system for extracting the detection beam by synthesizing coaxially with the working beam, and detecting an interference signal due to the reflected light from the DUT and the reflected light from the second reference object from the detection beam. A reference position detection optical system having a detection unit that uses the position of the object to be measured when the interference signal is output as a reference position.

【0010】また、請求項2に記載の発明に係る干渉計
では、請求項1に記載の干渉計において、前記第1の参
照対象物が、第1のレーザ光源からの出力ビームの前記
第1の参照対象物への入射方向が前記測定用光路と略平
行であると共に、前記分岐点からの距離が、該分岐点か
ら前記測定用ビームからの干渉縞信号の検出可能な強度
範囲に相当する前記被測定物の前記測定用光路上での移
動可能範囲の中心までの距離とほぼ一致するよう配置さ
れたものである。
Further, in the interferometer according to the invention described in claim 2, in the interferometer according to claim 1, the first reference object is the first beam of the output beam from the first laser light source. The direction of incidence on the reference object is substantially parallel to the measurement optical path, and the distance from the branch point corresponds to the detectable intensity range of the interference fringe signal from the measurement beam from the branch point. The distance is substantially equal to the distance to the center of the movable range of the measured object on the measuring optical path.

【0011】[0011]

【作用】本発明では、測定用干渉光学系において第1の
レーザ光源からの出力ビームを参照用光路と測定用光路
とに分岐し、参照用光路上の第1の参照対象物からの反
射光と前記測定用光路上の被測定物からの反射光とを同
軸上に合成して測定用ビームを取り出し、位相差を持つ
干渉出力信号を検出してこれらの相互干渉状態から被測
定物の変位を求める干渉計に、第1のレーザー光源に対
して発振中心波長が異なる低コヒーレンスの第2のレー
ザ光源と、該第2のレーザ光源からの出力ビームを参照
用光路と測定用光路とに分岐し、参照用光路上の第2の
参照対象物からの反射光と被測定物からの反射光とを測
定用ビームと同軸上に合成して検出ビームを取り出す基
準位置検出光学系を備えたものである。
In the present invention, the output beam from the first laser light source is split into the reference optical path and the measurement optical path in the measuring interference optical system, and the reflected light from the first reference object on the reference optical path is split. And the reflected light from the object to be measured on the optical path for measurement are combined on the same axis to extract the beam for measurement, detect an interference output signal having a phase difference, and displace the object to be measured from these mutual interference states. In the interferometer for determining the, a second laser light source having a low coherence having an oscillation center wavelength different from that of the first laser light source, and an output beam from the second laser light source is branched into a reference optical path and a measurement optical path. And a reference position detecting optical system for extracting the detection beam by synthesizing the reflected light from the second reference object and the reflected light from the measured object on the reference optical path coaxially with the measuring beam. Is.

【0012】以上の構成において、第2のレーザ光源と
して用いた低コヒーレンスによる干渉光学系では、図4
に示すように、参照用光路と測定用光路との光路長がほ
ぼ等しい時のみに干渉信号が得られる。コヒ−レンス長
lc は、中心波長をλ、光源のスペクトル幅をΔλとす
ると、λ/Δλで表される。よって、第2の光源のスペ
クトル幅を選択し光路長を調製することにより、干渉信
号が出力され得る極めて狭い特定の位置を任意に設定す
ることができる。
In the above configuration, the interference optical system with low coherence used as the second laser light source is shown in FIG.
As shown in, the interference signal is obtained only when the optical path lengths of the reference optical path and the measurement optical path are substantially equal. The coherence length lc is expressed by λ / Δλ, where λ is the central wavelength and Δλ is the spectral width of the light source. Therefore, by selecting the spectral width of the second light source and adjusting the optical path length, it is possible to arbitrarily set a very narrow specific position where the interference signal can be output.

【0013】本発明では、第2のレーザ光源を用いた検
出光学系の測定用光路が第1のレーザ光源を用いた測定
用光学系の測定用光路と同軸上であるため、前記の特定
の位置を、移動鏡変位量測定可能範囲における基準点、
例えば零点に設定することができる。従って、本発明に
よる干渉計では、変位量測定範囲内で常に基準点が確認
でき、変位量測定毎に基準状態を設定してそこから変位
を測定できるので、変位量測定可能範囲全体を有効に活
用した測定が簡便に行える。また、この基準点は、被検
物が移動する測定用光路と同軸上に設定されるため、光
学系に対して環境変化が生じても、同じ影響下にあるの
で対応可能であり、より高精度の変位量測定ができる。
In the present invention, since the measuring optical path of the detecting optical system using the second laser light source is coaxial with the measuring optical path of the measuring optical system using the first laser light source, The position is a reference point in the movable mirror displacement amount measurable range,
For example, it can be set to the zero point. Therefore, in the interferometer according to the present invention, the reference point can always be confirmed within the displacement amount measurement range, and the displacement can be measured from the reference state set for each displacement amount measurement. Utilized measurement can be done easily. Moreover, since this reference point is set coaxially with the measurement optical path along which the test object moves, even if environmental changes occur in the optical system, they are under the same influence and can be handled. Accurate displacement measurement is possible.

【0014】また、本発明では、第1の参照対象物を、
第1のレーザ光源からの出力ビームの第1の参照対象物
への入射方向が測定用光路と略平行であると共に、前記
分岐点からの距離が、該分岐点から前記測定用ビームか
らの干渉縞信号の検出可能な強度範囲に相当する前記被
測定物の測定用光路上での移動可能範囲の中心までの距
離とほぼ一致するよう配置したため、図5(b)に示す
ごとく、移動鏡の変位量測定可能範囲(−L〜L)は従
来の半導体レーザを光源に用いた変位量測定可能範囲の
倍に拡大され、比較的大きい変位量であっても容易に測
定できる。このとき、上記のような構成によって、第1
の参照対象物を、測定用光路に近く空気の揺らぎ等の条
件がほぼ同様な位置に配置することができる。
In the present invention, the first reference object is
The incident direction of the output beam from the first laser light source to the first reference object is substantially parallel to the measurement optical path, and the distance from the branch point is the interference from the measurement beam from the branch point. Since the distance to the center of the movable range of the object to be measured on the optical path for measurement corresponding to the detectable intensity range of the fringe signal is arranged so as to be substantially the same, as shown in FIG. The displacement amount measurable range (-L to L) is expanded to twice the displacement amount measurable range using a conventional semiconductor laser as a light source, and even a relatively large displacement amount can be easily measured. At this time, according to the above configuration, the first
The reference object can be placed near the measurement optical path at a position where conditions such as air fluctuations are almost the same.

【0015】なお、本発明においては、分岐後の第1の
レーザ光源からの出力レーザと第2のレーザ光源からの
出力レーザとが参照用の同一光路を進むが、これらのレ
ーザは互いに発振中心波長が異なるものであるため、例
えばダイクロイックプリズム等の波長選択手段を用いて
分離し、各々の参照対象物へ入射させることができる。
In the present invention, the output laser from the first laser light source and the output laser from the second laser light source after branching follow the same optical path for reference, but these lasers are the oscillation centers of each other. Since the wavelengths are different, it is possible to separate them by using a wavelength selection means such as a dichroic prism and make them incident on the respective reference objects.

【0016】[0016]

【実施例】以下に、本発明を実施例を以て説明する。図
1は本発明の第1の実施例による測長用干渉計を示す構
成図である。本実施例は、マイケルソン干渉計を用いた
レ−ザ−変位計に応用したものであり、第1の光源1と
して半導体レ−ザ−を用いた周波数安定化レ−ザ光源を
もつ測定用干渉光学系と、第2の光源2としてス−パ−
ルミネッセントダイオ−ドや多モ−ド発振形の半導体レ
−ザ−の比較的高パワ−を有する低コヒ−レンス光源を
用いた基準位置検出光学系から構成されている。
EXAMPLES The present invention will be described below with reference to examples. FIG. 1 is a block diagram showing an interferometer for length measurement according to a first embodiment of the present invention. The present embodiment is applied to a laser displacement meter using a Michelson interferometer, and has a frequency stabilizing laser light source using a semiconductor laser as the first light source 1 for measurement. Interferometer optical system and super as the second light source 2.
It is composed of a reference position detection optical system using a low coherence light source having a relatively high power of a luminescent diode or a multimode oscillation type semiconductor laser.

【0017】測定用干渉光学系において、第1の光源1
からの出力ビームは、偏光ビームスプリッタ5に入射
し、ここで透過と反射によって互いに直交する偏光成分
に分離されて夫々参照光と測長光とに利用する。本実施
例では、P偏光成分を測長光(透過光)に利用し、S偏
光成分を参照光(反射光)に利用しているが、これらの
選択は任意である。
In the interference optical system for measurement, the first light source 1
The output beam from is incident on the polarization beam splitter 5, where it is separated into polarization components orthogonal to each other by transmission and reflection and used as reference light and length measurement light, respectively. In the present embodiment, the P-polarized component is used for the length measuring light (transmitted light) and the S-polarized component is used for the reference light (reflected light), but these selections are arbitrary.

【0018】偏光ビームスプリッタ5を透過し射出した
測長光は、測定用光路を進み、該光路上の被測定物用移
動鏡8(コーナーキューブ)で反射される。移動鏡8
は、開き角を90度とした二枚の反射部を備えた折り返
しミラーから構成されているため、測長光を入射方向と
正確に逆向きで別経路に折り返すよう反射して再度偏光
ビームスプリッタ5に導く。
The length-measuring light that has passed through the polarization beam splitter 5 and exits travels along the measurement optical path and is reflected by the movable mirror 8 (corner cube) for the object under measurement on the optical path. Moving mirror 8
Is composed of a folding mirror having two reflecting portions with an opening angle of 90 degrees, it reflects the length measuring light so as to be reflected in a different path exactly in the opposite direction to the incident direction, and then again returns to the polarization beam splitter. Lead to 5.

【0019】偏光ビ−ムスプリッタ5で反射された参照
光は、参照用光路に入射し、波長λ1 の光に対して反射
作用を有するダイクロイックプリズム6によって光路を
曲げられ、固定鏡(コ−ナ−キュ−ブ)7へ入射する。
ここで固定鏡7へ入射方向は測定用光路と平行になるよ
う構成されている。固定鏡7は、移動鏡8と同様に折り
返しミラーから構成されており、参照光を入射方向と逆
向きに別経路で折り返すよう反射し、ダイクロイックプ
リズム6を介して再び偏光ビームスプリッター5に導
く。
The reference light reflected by the polarization beam splitter 5 enters the reference optical path and is bent by a dichroic prism 6 which has a reflecting action on the light of wavelength λ 1 , and a fixed mirror (co-reflector) is used. It is incident on the nave 7).
Here, the incident direction to the fixed mirror 7 is configured to be parallel to the measurement optical path. The fixed mirror 7 is composed of a folding mirror similarly to the movable mirror 8, reflects the reference light so as to be reflected by another path in the direction opposite to the incident direction, and guides it to the polarization beam splitter 5 again via the dichroic prism 6.

【0020】偏光ビームスプリッタ5では、夫々反射さ
れてきた測長光と参照光とが同軸に合成されて測定用出
力ビームとして出射される。本実施例では、偏光ビーム
スプリッター5の偏光選択性能(ここではS偏光を反射
してP偏光を透過させる)を利用して、偏光分割面の同
じ位置に測長光と参照光とを導いて、ここで反射された
S偏光成分の参照光と、透過するP偏光成分の測定光と
を合成するものとしている。偏光ビ−スプリッタ5から
の測定用ビームは、ビ−ムスプリッタ10を通った後、
波長λ1 の光波成分のみ透過させる光学的フィルタ11
に入射し、透過されて90°位相差DC干渉光学系から
なる検出計に導かれる。
In the polarization beam splitter 5, the length-measuring light and the reference light, which are respectively reflected, are coaxially combined and emitted as an output beam for measurement. In this embodiment, the polarization selection performance of the polarization beam splitter 5 (here, S polarization is reflected and P polarization is transmitted) is used to guide the length measurement light and the reference light to the same position on the polarization splitting surface. The reference light of the S-polarized component reflected here and the measuring light of the P-polarized component that is transmitted are combined. The measurement beam from the polarization beam splitter 5 passes through the beam splitter 10 and then
Optical filter 11 that transmits only the light wave component of wavelength λ 1
Is incident on, is transmitted, and is guided to a detector composed of a 90 ° phase difference DC interference optical system.

【0021】90°位相差DC干渉計は、直交偏光成分
から位相差が90°異なる4つの光信号を出力させるも
のであり、光検出器21、22、23、24でこれらの
光信号を光電変換させ、干渉縞信号を計数する処理回路
26及び表示器27で構成されている。
The 90 ° phase difference DC interferometer outputs four optical signals having a 90 ° phase difference from the orthogonal polarization components. The photodetectors 21, 22, 23 and 24 photoelectrically output these optical signals. It is composed of a processing circuit 26 for converting and counting the interference fringe signal and a display 27.

【0022】検出計において、互いに直交する偏光成分
からなる検査光としての測定用ビームは、λ/2板12
によりビ−ムスプリッタ13の入射面に対して偏光軸を
45°傾けて入射する。ビームスプリッタ13では、反
射および透過によって二方向に等しい強度で分離され
る。反射成分は偏光ビ−ムスプリッタ14に入射する。
In the detector, the measurement beam as inspection light composed of polarization components orthogonal to each other is a λ / 2 plate 12
As a result, the polarization axis is inclined by 45 ° with respect to the incident surface of the beam splitter 13, and the light is incident. The beam splitter 13 splits the light in two directions with equal intensity by reflection and transmission. The reflected component enters the polarization beam splitter 14.

【0023】偏光ビームスプリッター14に入射した出
力ビームは、偏光面が偏光分離面に対して45度傾いた
状態で導かれるので、ここで測長光と参照光とが、それ
ぞれ透過成分と反射成分とに分離される。そして、ここ
で分離された透過光と反射光とは、それぞれ偏光干渉し
て透過干渉光並びに反射干渉光となって検出器21、検
出器22へ導かれる。そして、各検出器21、22は、
利得可変な光電変換器から構成されており、夫々干渉光
を検出して光電変換し、検出信号を処理回路26へ出力
する。透過干渉光及び反射干渉光は偏光方位が互いに直
交しているので、干渉強度は逆相になり、0°と180
°の位相差を持つ干渉信号が得られる。
The output beam incident on the polarization beam splitter 14 is guided in a state where the polarization plane is inclined by 45 degrees with respect to the polarization separation plane. Therefore, the length measuring light and the reference light are transmitted and reflected components, respectively. And separated. Then, the transmitted light and the reflected light separated here are polarized and interfere with each other to be transmitted interference light and reflected interference light, and are guided to the detector 21 and the detector 22. And each detector 21, 22 is
It is composed of a variable-gain photoelectric converter, which detects the interference light and photoelectrically converts it, and outputs a detection signal to the processing circuit 26. Since the polarization directions of the transmitted interference light and the reflected interference light are orthogonal to each other, the interference intensities are in opposite phases and are 0 ° and 180 °.
An interference signal with a phase difference of ° can be obtained.

【0024】一方、ビームスプリッタ13からの透過光
は、λ/4板16によって、反射光に対して位相を90
°回転された後、偏光ビ−ムスプリッタ17に入射す
る。偏光ビ−ムスプリッタ17によって偏光分離された
透過光と反射光は、それぞれ透過干渉光と反射干渉光と
なって検出器23、検出器24へ導かれる。これらの検
出器は、各干渉光を検出して光電変換し、検出信号をそ
れぞれ処理回路26へ出力する。ここでは透過干渉光と
反射干渉光とではそれぞれ位相差が90°と270°の
干渉信号が得られる。
On the other hand, the transmitted light from the beam splitter 13 has a phase of 90 ° with respect to the reflected light by the λ / 4 plate 16.
After being rotated by an angle, it enters the polarization beam splitter 17. The transmitted light and the reflected light that are polarized and separated by the polarization beam splitter 17 are guided to the detector 23 and the detector 24 as transmitted interference light and reflected interference light, respectively. These detectors detect the respective interference lights, photoelectrically convert the interference lights, and output detection signals to the processing circuit 26. Here, interference signals having a phase difference of 90 ° and 270 ° are obtained between the transmitted interference light and the reflected interference light, respectively.

【0025】一方、基準位置検出光学系は、例えば、ス
−パ−ルミネッセントダイオ−ドの様に発振スペクトル
幅の広い、即ち時間コヒーレンスの低下した発振中心波
長λ2 の第2の光源2用いて構成されたものである。こ
こでは、参照用光路と測定用光路との光路長差が零の時
のみ干渉出力が得られる。そこで、ここではこの時の移
動鏡8の位置を基準点B0 とし、変位量測定可能範囲の
零点と設定した。即ち、測定用光路の移動鏡8の移動に
伴い両光路の光路長差が零の時に出力される干渉信号を
零点パルス発生器に入力させ、零点パルス信号を出力さ
せるようにした。
On the other hand, the reference position detecting optical system has a second light source 2 having an oscillation center wavelength λ 2 having a wide oscillation spectrum width, that is, a temporal coherence lowered, such as a super luminescent diode. It is configured by using. Here, the interference output is obtained only when the optical path length difference between the reference optical path and the measurement optical path is zero. Therefore, here, the position of the movable mirror 8 at this time is set as the reference point B 0 and set as the zero point of the displacement measurable range. That is, the interference signal output when the optical path length difference between both optical paths is zero due to the movement of the movable mirror 8 in the measurement optical path is input to the zero-point pulse generator, and the zero-point pulse signal is output.

【0026】このような基準位置検出光学系において、
第2の光源2からの出力ビームは、ミラー4、ビームス
プリッタ3によって第1の光源1からの出力ビームと同
一光路上に合成された後、偏光ビームスプリッタ5に入
射する。
In such a reference position detecting optical system,
The output beam from the second light source 2 is combined with the output beam from the first light source 1 on the same optical path by the mirror 4 and the beam splitter 3, and then enters the polarization beam splitter 5.

【0027】偏光ビームスプリッタ5で反射されS偏光
成分は参照光として参照用光路へ進み、波長λ2 の光を
透過するダイクロイックプリズム6を透過して反射鏡9
に入射する。反射鏡9は折り返しミラーから構成されて
おり、参照光を入射方向と逆向きに別経路で折り返すよ
う反射し、ダイクロイックプリズム6を介して再び偏光
ビームスプリッター5に導く。
The S-polarized light component reflected by the polarization beam splitter 5 travels as a reference light to the reference optical path and is transmitted through a dichroic prism 6 which transmits light of wavelength λ 2 and a reflecting mirror 9.
Incident on. The reflecting mirror 9 is composed of a folding mirror, reflects the reference light so as to be reflected by another path in the direction opposite to the incident direction, and guides it to the polarization beam splitter 5 again via the dichroic prism 6.

【0028】偏光ビ−ムスプリッタ5を透過したP偏光
成分測定光として測定用光路を進み、移動鏡8に入射
し、ここで入射方向と逆向きに別経路で折り返すよう反
射されて再び偏光ビームスプリッター5に導かれる。
The P-polarized component measuring light that has passed through the polarization beam splitter 5 travels along the optical path for measurement and is incident on the movable mirror 8, where it is reflected so as to be reflected by another path in the opposite direction to the incident direction, and again the polarized beam is emitted. It is guided to the splitter 5.

【0029】2つの直線偏光成分は偏光ビ−ムスプリッ
タ5でそれぞれ反射、透過されて合成された後、ビ−ム
スプリッタ10で反射され、波長λ2 の光波成分のみを
透過させる光学的フィルタ19を透過する。さらに方位
角45°の検光子20を介して干渉信号となり、検出器
25に入射し、ここで光電変換され、処理回路26へ出
力される。
The two linearly polarized light components are reflected and transmitted by the polarization beam splitter 5, respectively, and are combined, and then reflected by the beam splitter 10 to transmit only the light wave component of wavelength λ 2 through the optical filter 19. Through. Further, it becomes an interference signal through the analyzer 20 having an azimuth angle of 45 °, enters the detector 25, is photoelectrically converted therein, and is output to the processing circuit 26.

【0030】図2は、本実施例の電気処理系の概要を示
したものである。処理回路26において、各検出器2
1、22、23、24で光電変換された4位相信号は、
増幅器28で適宜増幅された後、それぞれ位相差が18
0°異なる信号を差分器29に導かれ、位相差0°−1
80°と、90°−270°との逆位相同志の差分信号
に変換され、位相が90°異なる2つの電気信号が得ら
れる。
FIG. 2 shows an outline of the electric processing system of this embodiment. In the processing circuit 26, each detector 2
The four-phase signals photoelectrically converted by 1, 22, 23, and 24 are
After being appropriately amplified by the amplifier 28, the phase difference is 18
Signals different by 0 ° are guided to the differentiator 29, and phase difference 0 ° -1
It is converted into a differential signal having opposite phases of 80 ° and 90 ° -270 °, and two electric signals having phases different by 90 ° are obtained.

【0031】この電気信号をフリンジカウンタ30に入
力し、移動鏡8の移動に伴って発生した干渉縞信号を計
算、積算する。この結果から、距離あるいは変位量は表
示器27にて演算され表示される。さらに、外部インタ
ーフェースを介して外部計算器等に変位情報を伝送させ
ることもできる。
This electric signal is input to the fringe counter 30 to calculate and integrate the interference fringe signal generated as the movable mirror 8 moves. From this result, the distance or the displacement amount is calculated and displayed on the display 27. Further, the displacement information can be transmitted to an external calculator or the like via the external interface.

【0032】一方 、基準位置検出光学系からの干渉信
号は、増幅器28で適宜増幅された後、零点パルス発生
器31にてパルス信号に変換され、フリンジカウンタ3
0への零点信号に利用される。
On the other hand, the interference signal from the reference position detection optical system is appropriately amplified by the amplifier 28, then converted into a pulse signal by the zero-point pulse generator 31, and the fringe counter 3
Used for zero signal to zero.

【0033】上記第1の実施例においては、干渉測長機
の図5(b)に干渉縞信号強度(可視度)特性を示した
ように、参照用光路の固定鏡を、参照用光路と測定用光
路との分岐からの距離が、該分岐点から変位測定可能範
囲の中点までの距離とほぼ一致させるよう配置したので
測長可能な距離は、従来のものの2倍に拡大しており、
より大きい変位量も容易に測定できる。また、本実施例
の測長機では、常にあるいは変位測定毎に零点位置が検
出されるので、従来の装置似比べて測定操作が容易で正
確である。さらに、固定鏡は、参照光路を折り曲げて測
定用光路と近い配置(両光路は平行)とすることによ
り、空気の揺ぎ等の環境条件がほぼ同様であり、精度の
高い変位量測定値が得られる。
In the first embodiment, as shown in the interference fringe signal intensity (visibility) characteristic of the interferometer as shown in FIG. 5B, the fixed mirror of the reference optical path is changed to the reference optical path. Since the distance from the branch to the measuring optical path is arranged to be almost the same as the distance from the branch point to the middle point of the displacement measurable range, the measurable distance is doubled from the conventional one. ,
Larger displacements can be easily measured. Further, in the length measuring machine of the present embodiment, the zero point position is always detected or each time the displacement is measured, so that the measuring operation is easier and more accurate than the conventional apparatus. Furthermore, by bending the reference optical path and arranging it so that it is close to the measurement optical path (both optical paths are parallel), environmental conditions such as air sway are almost the same, and highly accurate displacement measurement values are obtained. can get.

【0034】なお、本発明は、参照光と測長光との干渉
光を形成する方式や、これらの参照光と測長光とを同軸
上に合成する方式、また90°位相差を持つ二つの干渉
出力信号の相互干渉状態から被測定物の変位を求める干
渉縞計測方法等は、本実施例に示す方式に限定されるも
のではなく、ここに示す方式以外のものであっても本発
明を応用できる。
In the present invention, a method of forming interference light between the reference light and the length measuring light, a method of synthesizing the reference light and the length measuring light coaxially, and a method having a 90 ° phase difference. The interference fringe measuring method for obtaining the displacement of the object to be measured from the mutual interference state of the two interference output signals is not limited to the method shown in the present embodiment, and a method other than the method shown here is also applicable to the present invention. Can be applied.

【0035】次に、第2の実施例として本発明による測
長用干渉計を閉鎖系で構成し装置化したものを図3に示
した。この装置は、ケース40内の一端部に、光源、送
光・受光光学系及び検出器からなる測定用干渉光学系4
1を、ここから所定距離離れた位置に参照用固定鏡を、
さらに測定用移動鏡8をケ−ス内にて長手方向に設置し
たガイドレール44上の固定板45に載置した状態で収
納したものである。
Next, as a second embodiment, FIG. 3 shows the interferometer for length measurement according to the present invention, which is constructed as a closed system and made into a device. This device includes a measuring interference optical system 4 including a light source, a light-transmitting / receiving optical system, and a detector at one end of a case 40.
1, a reference fixed mirror at a position apart from this by a predetermined distance,
Further, the measuring movable mirror 8 is housed in a state that it is mounted on a fixed plate 45 on a guide rail 44 installed in the longitudinal direction in the case.

【0036】固定鏡(不図示)は、測長可能範囲の中点
に固定配置されており、移動鏡8は、載置されている固
定板45のガイドレール上の移動によってケース内を長
手方向の測定用光路上で移動可能となっている。レ−ザ
−ビ−ムはゴムシ−ル43により外部から隔離され、ゴ
ミ、油、切り屑等の影響を受けない構成となっている。
移動鏡48と被測定物との接続は取付金具46を用い
る。表示器47は、ケース40の端部から測定用干渉光
学系41に接続されており、検出器からの出力によって
干渉縞信号を計数、積算し変位量を演算する。
The fixed mirror (not shown) is fixedly arranged at the midpoint of the measurable range, and the movable mirror 8 moves in the longitudinal direction inside the case by the movement of the fixed plate 45 mounted on the guide rail. It is possible to move on the measurement optical path. The laser beam is isolated from the outside by the rubber seal 43, and is constructed so as not to be affected by dust, oil, chips and the like.
A mounting bracket 46 is used to connect the movable mirror 48 and the object to be measured. The display 47 is connected to the measuring interference optical system 41 from the end of the case 40, and counts and integrates the interference fringe signals by the output from the detector to calculate the displacement amount.

【0037】上記の如き構成の装置において、測定用干
渉光学系および基準位置検出光学計は実施例1に示した
ものと同様の機能、作用を持つものである。このよう
に、装置化された干渉計であれば、いつでも、どこでも
簡便に被検物の変位量あるいは距離を容易に測定するこ
とができる。
In the apparatus having the above construction, the measuring interference optical system and the reference position detecting optical meter have the same functions and actions as those shown in the first embodiment. In this way, the deviceized interferometer makes it possible to easily measure the displacement amount or distance of the object to be inspected, anytime, anywhere.

【0038】なお、上記実施例においては、基準位置検
出用の反射鏡9を参照用の固定鏡7と別個に設け、基準
位置を変位量測定可能領域の分岐点よりの端部の零点と
設定したが、固定鏡7を基準位置検出用の反射鏡9とし
て兼用しても良い。この場合、基準点は、変位量測定可
能領域の中点となる。
In the above embodiment, the reflecting mirror 9 for detecting the reference position is provided separately from the fixed mirror 7 for reference, and the reference position is set as the zero point at the end of the branch point of the displacement amount measurable region. However, the fixed mirror 7 may also be used as the reflecting mirror 9 for detecting the reference position. In this case, the reference point is the midpoint of the displacement amount measurable region.

【0039】[0039]

【発明の効果】以上に説明したように、本発明によれ
ば、従来より大きな変位量測定可能範囲と絶対的な基準
位置を利用して、より高精度な変位量測定が容易な操作
で簡便に行うことができる。さらに、本発明の構成によ
れば、被測定物の変位量、距離等を手軽に容易に測定し
得る干渉計の装置化が実現できる。
As described above, according to the present invention, the displacement amount measurable range and the absolute reference position which are larger than those of the conventional ones are used, and the displacement amount can be measured with higher accuracy and easily. Can be done. Further, according to the configuration of the present invention, it is possible to realize an interferometer capable of easily measuring the displacement amount, distance, etc. of the object to be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による測長用干渉計を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an interferometer for length measurement according to a first embodiment of the present invention.

【図2】第1の実施例で示した干渉計の電気処理系を説
明するブロック図である。
FIG. 2 is a block diagram illustrating an electrical processing system of the interferometer shown in the first embodiment.

【図3】本発明の第2の実施例による干渉計装置を示す
概略構成図である。
FIG. 3 is a schematic configuration diagram showing an interferometer device according to a second embodiment of the present invention.

【図4】低コヒ−レンス光源を用いた干渉計の光路長差
に対する干渉出力を示す線図である。
FIG. 4 is a diagram showing an interference output with respect to an optical path length difference of an interferometer using a low coherence light source.

【図5】半導体レ−ザ−を光源に用いた干渉計の光路差
(変位量測定可能範囲長)と干渉縞信号強度の関係を示
す線図であり、(a)は従来技術による干渉計の場合、
(b)は本発明による干渉計の場合を示すものである。
FIG. 5 is a diagram showing the relationship between the optical path difference (displacement amount measurable range length) and the interference fringe signal intensity of an interferometer using a semiconductor laser as a light source, and FIG. in the case of,
(B) shows the case of the interferometer according to the present invention.

【図6】従来技術による半導体レ−ザ−を用いた干渉計
を示す概略構成図である。
FIG. 6 is a schematic configuration diagram showing an interferometer using a semiconductor laser according to a conventional technique.

【符号の説明】[Explanation of symbols]

1,101:周波数安定化レ−ザ−光源(第1の光源) 2:低コヒ−レンス光源(第2の光源) 3,10,13,103:ビ−ムスプリッタ 4:ミラ− 5,14,17,110:偏光ビ−ムスプリッタ 6:ダイクロイックプリズム 7,9,107:固定鏡(コ−ナ−キュ−ブ) 8,48,108:移動鏡(コ−ナ−キュ−ブ) 11,19:光学的フィルタ 12:λ/2板 15,18:プリズム 16:λ/4板 20:検光子 21,22,23,24,25,111,113:光検
出器 26:処理回路 27,47:表示器 28:増幅器 29:差分器 30,120:フリンジカウンタ 31:零点パルス発生器 40:ケース 41:測定用干渉光学系 42:ヒ−トシンク 43:ゴムシール 44:ガイドレ−ル 45:固定板 46:取付金具 105:λ/8板
1, 101: frequency stabilizing laser light source (first light source) 2: low coherence light source (second light source) 3, 10, 13, 103: beam splitter 4: mirror 5, 14 , 17, 110: Polarizing beam splitter 6: Dichroic prism 7, 9, 107: Fixed mirror (corner tube) 8, 48, 108: Moving mirror (corner tube) 11, 19: Optical filter 12: λ / 2 plate 15, 18: Prism 16: λ / 4 plate 20: Analyzer 21, 22, 23, 24, 25, 111, 113: Photodetector 26: Processing circuit 27, 47 : Display 28: Amplifier 29: Differencer 30, 120: Fringe counter 31: Zero pulse generator 40: Case 41: Interfering optical system for measurement 42: Heat sink 43: Rubber seal 44: Guide rail 45: Fixing plate 46 : Mounting gold 105: λ / 8 plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1のレーザ光源からの出力ビームを参
照用光路と測定用光路とに分岐し、前記参照用光路上の
第1の参照対象物からの反射光と前記測定用光路上の被
測定物からの反射光とを同軸上に合成して測定用ビーム
を取り出す測定用干渉光学系と、 前記第1のレーザー光源に対して発振中心波長が異なる
低コヒーレンスの第2のレーザ光源と、該第2のレーザ
光源からの出力ビームを前記参照用光路と測定用光路と
に分岐し、前記参照用光路上の第2の参照対象物からの
反射光と前記被測定物からの反射光とを前記測定用ビー
ムと同軸上に合成して検出ビームを取り出す検出光学系
と、前記検出ビームより、前記被測定物からの反射光と
前記第2の参照対象物からの反射光とによる干渉信号を
検出し、該干渉信号が出力されるときの前記被測定物の
位置を基準位置とする検出手段とを有する基準位置検出
光学系と、を備えたことを特徴とする干渉計。
1. An output beam from a first laser light source is branched into a reference optical path and a measurement optical path, and reflected light from a first reference object on the reference optical path and on the measurement optical path. A measuring interference optical system for coaxially synthesizing reflected light from an object to be measured to extract a measuring beam, and a second laser light source of low coherence having an oscillation center wavelength different from that of the first laser light source. An output beam from the second laser light source is branched into a reference optical path and a measurement optical path, and reflected light from a second reference object on the reference optical path and reflected light from the measured object. And a detection optical system for coaxially synthesizing the measurement beam with the measurement beam to extract a detection beam, and interference of reflected light from the object to be measured and reflected light from the second reference object from the detection beam. When a signal is detected and the interference signal is output Serial interferometer, characterized in that it and a reference position detecting optical system having a detection means as a reference position a position of the object to be measured.
【請求項2】前記第1の参照対象物は、第1のレーザ光
源からの出力ビームの前記第1の参照対象物への入射方
向が前記測定用光路と略平行であると共に、前記分岐点
からの距離が、該分岐点から前記測定用ビームからの干
渉縞信号の検出可能な強度範囲に相当する前記被測定物
の前記測定用光路上での移動可能範囲の中心までの距離
とほぼ一致するよう配置されたことを特徴とする請求項
1に記載の干渉計。
2. The first reference object is such that an incident direction of an output beam from a first laser light source on the first reference object is substantially parallel to the measurement optical path, and the branch point. Is substantially equal to the distance from the branch point to the center of the movable range on the measurement optical path of the DUT corresponding to the detectable intensity range of the interference fringe signal from the measurement beam. The interferometer according to claim 1, wherein the interferometer is arranged so that
JP5348841A 1993-12-27 1993-12-27 Interferometer Pending JPH07190712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5348841A JPH07190712A (en) 1993-12-27 1993-12-27 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5348841A JPH07190712A (en) 1993-12-27 1993-12-27 Interferometer

Publications (1)

Publication Number Publication Date
JPH07190712A true JPH07190712A (en) 1995-07-28

Family

ID=18399745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5348841A Pending JPH07190712A (en) 1993-12-27 1993-12-27 Interferometer

Country Status (1)

Country Link
JP (1) JPH07190712A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033318A (en) * 2005-07-28 2007-02-08 Canon Inc Interference measuring apparatus
JP2007033317A (en) * 2005-07-28 2007-02-08 Canon Inc Interference measuring apparatus
WO2009066781A1 (en) * 2007-11-22 2009-05-28 Canon Kabushiki Kaisha Absolute position measurement apparatus and method
JP2009115596A (en) * 2007-11-06 2009-05-28 Mitsutoyo Corp Interferometer
US7639366B2 (en) 2005-05-17 2009-12-29 Dr. Johannes Heidenhain Gmbh Position-measuring device for determining the position of two objects movable with respect to each other along a measuring direction, and method for forming a reference pulse for such a position-measuring device
US8018601B2 (en) * 2008-10-08 2011-09-13 Industrial Technology Research Institute Method for determining vibration displacement and vibrating frequency and apparatus using the same
JP2012022012A (en) * 2011-11-02 2012-02-02 Canon Inc Interference measuring apparatus and method for determining measurement origin
WO2019009404A1 (en) * 2017-07-06 2019-01-10 浜松ホトニクス株式会社 Optical module

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639366B2 (en) 2005-05-17 2009-12-29 Dr. Johannes Heidenhain Gmbh Position-measuring device for determining the position of two objects movable with respect to each other along a measuring direction, and method for forming a reference pulse for such a position-measuring device
DE102005023489B4 (en) * 2005-05-17 2014-01-30 Dr. Johannes Heidenhain Gmbh Position measuring device for determining the position of two along a measuring direction to each other movable objects and method for forming a reference pulse for such a position measuring device
JP2007033318A (en) * 2005-07-28 2007-02-08 Canon Inc Interference measuring apparatus
JP2007033317A (en) * 2005-07-28 2007-02-08 Canon Inc Interference measuring apparatus
JP2009115596A (en) * 2007-11-06 2009-05-28 Mitsutoyo Corp Interferometer
WO2009066781A1 (en) * 2007-11-22 2009-05-28 Canon Kabushiki Kaisha Absolute position measurement apparatus and method
JP2009128148A (en) * 2007-11-22 2009-06-11 Canon Inc Measuring device and measuring method of absolute position
US9043182B2 (en) 2007-11-22 2015-05-26 Canon Kabushiki Kaisha Absolute position measurement apparatus and method
US8018601B2 (en) * 2008-10-08 2011-09-13 Industrial Technology Research Institute Method for determining vibration displacement and vibrating frequency and apparatus using the same
JP2012022012A (en) * 2011-11-02 2012-02-02 Canon Inc Interference measuring apparatus and method for determining measurement origin
WO2019009404A1 (en) * 2017-07-06 2019-01-10 浜松ホトニクス株式会社 Optical module
WO2019009401A1 (en) * 2017-07-06 2019-01-10 浜松ホトニクス株式会社 Optical module
JP6496463B1 (en) * 2017-07-06 2019-04-03 浜松ホトニクス株式会社 Optical module
JPWO2019009401A1 (en) * 2017-07-06 2020-04-30 浜松ホトニクス株式会社 Optical module
US11054309B2 (en) 2017-07-06 2021-07-06 Hamamatsu Photonics K.K. Optical module
US11067380B2 (en) 2017-07-06 2021-07-20 Hamamatsu Photonics K.K. Optical module
US11187579B2 (en) 2017-07-06 2021-11-30 Hamamatsu Photonics K.K. Optical device
US11209260B2 (en) 2017-07-06 2021-12-28 Hamamatsu Photonics K.K. Optical module having high-accuracy spectral analysis
US11624605B2 (en) 2017-07-06 2023-04-11 Hamamatsu Photonics K.K. Mirror unit and optical module
US11629947B2 (en) 2017-07-06 2023-04-18 Hamamatsu Photonics K.K. Optical device
US11629946B2 (en) 2017-07-06 2023-04-18 Hamamatsu Photonics K.K. Mirror unit and optical module
US11635290B2 (en) 2017-07-06 2023-04-25 Hamamatsu Photonics K.K. Optical module
US11879731B2 (en) 2017-07-06 2024-01-23 Hamamatsu Photonics K.K. Mirror unit and optical module

Similar Documents

Publication Publication Date Title
KR100322938B1 (en) Superheterodyne interferometry and method for compensating the refractive index of air using electronic frequency multiplication
US5764362A (en) Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
US10895477B2 (en) Sine-cosine optical frequency encoder devices based on optical polarization properties
JPH0543961B2 (en)
US6738140B2 (en) Wavelength detector and method of detecting wavelength of an optical signal
US5583638A (en) Angular michelson interferometer and optical wavemeter based on a rotating periscope
US6014216A (en) Architecture for air-turbulence-compensated dual-wavelength heterodyne interferometer
CN110530531B (en) Michelson interference-based fountain type atomic gravimeter light beam phase change measuring device and method
JPH03180704A (en) Laser interference gauge
JPH07190712A (en) Interferometer
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
US5546185A (en) Angle detecting apparatus for detecting angle of inclination of scanning mirror provided on michelson interferometer
JP2007132727A (en) Interference measuring apparatus
US4611915A (en) Absolute distance sensor
JPH11183116A (en) Method and device for light wave interference measurement
CN101825435A (en) All-fiber-optic displacement measuring method and device thereof
JPH067071B2 (en) Optical spectrum measuring device
CN108627084A (en) A kind of laser wavelength calibration system based on static Michelson's interferometer
JP5088915B2 (en) Displacement measuring device
JPH11325815A (en) Interference length measuring apparatus
JPH0723708Y2 (en) Laser frequency meter
JPH07167606A (en) Interference measuring device
JP2000121322A (en) Laser length measuring machine
JPS60173429A (en) Method and device for measuring dispersion of polarized wave