JPH07183853A - Remote control device of air conditioner - Google Patents

Remote control device of air conditioner

Info

Publication number
JPH07183853A
JPH07183853A JP5323007A JP32300793A JPH07183853A JP H07183853 A JPH07183853 A JP H07183853A JP 5323007 A JP5323007 A JP 5323007A JP 32300793 A JP32300793 A JP 32300793A JP H07183853 A JPH07183853 A JP H07183853A
Authority
JP
Japan
Prior art keywords
voltage
signal
power supply
voltage monitoring
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5323007A
Other languages
Japanese (ja)
Inventor
Kunio Hina
邦夫 日名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5323007A priority Critical patent/JPH07183853A/en
Publication of JPH07183853A publication Critical patent/JPH07183853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To stabilize the intensity of an optical signal even if a battery is consumed in the remote control device of an air conditioner using the optical signal. CONSTITUTION:The intensity of an optical signal is made almost constant even if a battery is consumed by monitoring the voltage of a power source circuit 1 supplying power by a battery by a voltage monitoring means 2 and outputting a voltage monitoring signal to a control means 3, by deciding the range of the voltage of the power source circuit 1 when a light emitting element 4 transmitting an optical signal by the voltage monitoring signal is energized by the control means 3, by controlling a driving circuit 5 so as to drive the light emitting element 4 by stepwise changing the resistance value of a current control resistance which is serial to the light emitting element 4, corresponding to the range of the voltage of the power source circuit 1 and changing the resistance value of the current control resistance so as to be smaller as the range of voltage becomes lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和機の遠隔操作
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote control device for an air conditioner.

【0002】[0002]

【従来の技術】近年、空気調和機は遠隔操作装置により
操作できるようになっており、使い勝手がよくなってい
るが、駆動電源である電池の消耗による操作機能の低下
が課題である。
2. Description of the Related Art In recent years, an air conditioner has been made operable by a remote control device and has improved usability, but a problem is that the operating function is deteriorated due to exhaustion of a battery as a driving power source.

【0003】以下、従来の赤外線光信号を送出する空気
調和機の遠隔操作装置について図面を参照しながら説明
する。図11は従来の空気調和機の遠隔操作装置の構成
を示す回路図である。図において、31は遠隔操作を行
うための赤外光の信号を送出する送信回路であって、赤
外光を発生する発光ダイオード(以下、LEDと称す)
32と、LED32の電流を制限するための電流制御抵
抗33と、遠隔操作のための信号を発生する制御手段3
4により制御されて、LED32と電流制御抵抗33と
の直列回路の電流を開閉するトランジスタ35とで構成
される。また、36は装置を駆動する電池である。
A conventional remote control device for an air conditioner for transmitting an infrared light signal will be described below with reference to the drawings. FIG. 11 is a circuit diagram showing a configuration of a conventional remote control device for an air conditioner. In the figure, reference numeral 31 denotes a transmission circuit for transmitting an infrared light signal for remote control, and a light emitting diode (hereinafter, referred to as LED) for generating infrared light.
32, a current control resistor 33 for limiting the current of the LED 32, and a control means 3 for generating a signal for remote operation.
4 and a transistor 35 that opens and closes the current of the series circuit of the LED 32 and the current control resistor 33. Further, 36 is a battery for driving the device.

【0004】上記構成においてその動作を説明すると、
制御手段34は空気調和機を遠隔操作するためのディジ
タル信号を発生してトランジスタ35を開閉駆動する。
前記ディジタル信号によりトランジスタ35が導通する
とき、電池36からLED32と電流制御抵抗33との
直列回路に電流が流れるが、このときの電流の大きさは
LED32の両端の電圧と電流制御抵抗33の電圧降下
との和が電池36の電圧となるような値になるが、LE
D32の両端の電圧はほぼ一定であるから、流れる電流
の大きさは電池36の電圧と電流制御抵抗33とで決ま
ることになる。したがって、電流制御抵抗33の抵抗値
を決めた場合、LED32に流れる電流は電池36の電
圧に依存する。図12は電流制御抵抗33の抵抗値をあ
る値に設定したときのLED32の電流の大きさと電池
電圧との関係を特性図で示す。なお、実際には電池36
の内部抵抗が電流制御抵抗33の1部に含まれる。
The operation of the above structure will be described below.
The control means 34 generates a digital signal for remotely operating the air conditioner to open / close the transistor 35.
When the transistor 35 is turned on by the digital signal, a current flows from the battery 36 to the series circuit of the LED 32 and the current control resistor 33. The magnitude of the current at this time is the voltage across the LED 32 and the voltage of the current control resistor 33. The sum of the voltage drop and the voltage of the battery 36 gives a value
Since the voltage across D32 is substantially constant, the magnitude of the flowing current is determined by the voltage of the battery 36 and the current control resistor 33. Therefore, when the resistance value of the current control resistor 33 is determined, the current flowing through the LED 32 depends on the voltage of the battery 36. FIG. 12 is a characteristic diagram showing the relationship between the magnitude of the current of the LED 32 and the battery voltage when the resistance value of the current control resistor 33 is set to a certain value. Note that the battery 36 is actually
The internal resistance of is included in a part of the current control resistor 33.

【0005】[0005]

【発明が解決しようとする課題】このような従来の空気
調和機の遠隔操作装置では、送信手段である送信回路3
1におけるLED32の電流の大きさを決める電流制御
抵抗33が1つの抵抗値で固定されているので、電池3
6の消耗度により送信時にLED32に流れる電流値が
大きく変動する。図12はその状態を示す特性図であ
る。したがって、電池36が新しいときには送信距離が
非常に長く、電池が古くなってくると送信距離が常に短
くなり、空気調和機の遠隔操作装置としては非常に扱い
難いものになると言う問題があった。
In such a conventional remote control device for an air conditioner, the transmitting circuit 3 serving as transmitting means is used.
Since the current control resistor 33 that determines the magnitude of the current of the LED 32 in 1 is fixed to one resistance value, the battery 3
Due to the consumption level of 6, the current value flowing through the LED 32 during transmission fluctuates greatly. FIG. 12 is a characteristic diagram showing that state. Therefore, when the battery 36 is new, the transmission distance is very long, and when the battery is old, the transmission distance is always short, which is very difficult to handle as a remote control device for an air conditioner.

【0006】本発明は上記の課題を解決するもので、送
信距離が電池の消耗度に関係なく安定した空気調和機の
遠隔操作装置を提供することを目的とする。
An object of the present invention is to solve the above problems, and an object thereof is to provide a remote control device for an air conditioner in which the transmission distance is stable irrespective of the battery consumption.

【0007】[0007]

【課題を解決するための手段】請求項1に係わる本発明
は、電池により電力を供給する電源回路と、前記電源回
路の電圧を監視して電圧監視信号を出力する電圧監視手
段と、遠隔制御のための光信号を出力する発光素子と、
前記光信号を発生させるための電気信号を生成するとと
もに装置の動作を制御する制御手段と、前記発光素子に
電流制御抵抗を直列に挿入して前記電源回路に接続し、
駆動電流を流す駆動回路とを備え、前記制御手段は前記
電圧監視信号を入力し、前記発光素子が通電していると
きの前記電源回路の電圧の範囲に対応して前記電流制御
抵抗の抵抗値を段階的に変え、前記電源電圧が低い範囲
になるにしたがって順次抵抗値の小さい電流制御抵抗を
選択することにより、前記電池の消耗に対応して光信号
の強度をほぼ一定に保つように制御する空気調和機の遠
隔操作装置であり、また、請求項2に係わる本発明は、
電池により電力を供給する電源回路と、前記電源回路の
電圧を監視して電圧監視信号を出力する電圧監視手段
と、遠隔制御のための光信号を出力する発光素子と、前
記光信号を発生させるための電気信号を生成するととも
に装置の動作を制御する制御手段と、前記発光素子に電
流制御抵抗を直列に挿入して前記電源回路に接続し、駆
動電流を流す駆動回路と、前回の操作で記憶した電圧監
視信号を前記制御手段に出力するとともに今回の操作で
前記電圧監視手段が出力する電圧監視信号を記憶する記
憶手段とを備え、前記制御手段は前記記憶手段が前回の
操作で記憶した電圧監視信号を入力し、前記発光素子が
前回の操作において通電していたときの前記電源回路の
電圧の範囲に対応して前記電流制御抵抗の抵抗値を段階
的に変え、前記電源回路の電圧が低い範囲になるにした
がって順次抵抗値の小さい電流制御抵抗を選択すること
により、前記電池の消耗に対応して光信号の強度をほぼ
一定に保つように制御するようにした空気調和機の遠隔
操作装置であり、また、請求項3に係わる本発明は、電
池により電力を供給する電源回路と、前記電源回路の電
圧を監視して電圧監視信号を出力する電圧監視手段と、
遠隔制御のための光信号を出力する発光素子と、前記光
信号を発生させるための電気信号を生成するとともに装
置の動作を制御する制御手段と、前記発光素子に電流制
御抵抗を直列に挿入して前記電源回路に接続し、駆動電
流を流す駆動回路と、前記発光素子に疑似光信号を送出
させる指示を所定の周期で前記制御手段に与える監視用
送信指示手段と、前記疑似光信号を送出しているときに
前記発光素子の通電時の前記電圧監視信号を記憶する記
憶手段とを備え、前記制御手段は前記記憶手段が記憶し
た電圧監視信号を入力し、前記疑似光信号を送出して前
記発光素子が通電しているときの前記電源回路の電圧の
範囲に対応して前記電流制御抵抗の抵抗値を段階的に変
え、前記電源電圧が低い範囲になるにしたがって順次抵
抗値の小さい電流制御抵抗を選択することにより、前記
電池の消耗に対応して光信号の強度をほぼ一定に保つよ
うに制御するようにした空気調和機の遠隔操作装置であ
る。
According to a first aspect of the present invention, there is provided a power supply circuit for supplying power by a battery, a voltage monitoring means for monitoring the voltage of the power supply circuit and outputting a voltage monitoring signal, and a remote control. A light emitting element that outputs an optical signal for
Control means for controlling the operation of the device while generating an electric signal for generating the optical signal, and a current control resistor is inserted in series to the light emitting element and connected to the power supply circuit,
A drive circuit for supplying a drive current, wherein the control means inputs the voltage monitoring signal, and the resistance value of the current control resistor corresponds to the voltage range of the power supply circuit when the light emitting element is energized. By gradually changing the power supply voltage to a lower range and selecting a current control resistor having a smaller resistance value in order to keep the optical signal intensity substantially constant in response to the consumption of the battery. The present invention according to claim 2 is a remote control device for an air conditioner,
A power supply circuit that supplies power by a battery, a voltage monitoring unit that monitors the voltage of the power supply circuit and outputs a voltage monitoring signal, a light emitting element that outputs an optical signal for remote control, and the optical signal is generated. A control unit for generating an electric signal for controlling the operation of the device and a current control resistor connected in series to the light emitting element and connected to the power supply circuit for supplying a drive current, and a previous operation. The storage means outputs the stored voltage monitoring signal to the control means and stores the voltage monitoring signal output by the voltage monitoring means in the current operation, and the control means stores the voltage monitoring signal in the previous operation. By inputting a voltage monitoring signal, the resistance value of the current control resistor is changed stepwise in accordance with the voltage range of the power supply circuit when the light emitting element was energized in the previous operation, An air conditioner in which the intensity of the optical signal is controlled to be kept substantially constant in response to the consumption of the battery by selecting current control resistors whose resistance values are successively reduced as the line voltage becomes lower. The present invention according to claim 3 is a remote control device for a machine, and a power supply circuit for supplying electric power by a battery, and a voltage monitoring means for monitoring the voltage of the power supply circuit and outputting a voltage monitoring signal.
A light emitting element for outputting an optical signal for remote control, a control means for generating an electric signal for generating the optical signal and controlling the operation of the device, and a current control resistor inserted in series in the light emitting element. Connected to the power supply circuit to supply a driving current, a transmission instruction means for monitoring for giving an instruction to send a pseudo optical signal to the light emitting element to the control means in a predetermined cycle, and the pseudo optical signal. And a storage unit that stores the voltage monitoring signal when the light emitting element is energized, the control unit inputs the voltage monitoring signal stored by the storage unit, and outputs the pseudo optical signal. The resistance value of the current control resistor is changed stepwise in accordance with the range of the voltage of the power supply circuit when the light emitting element is energized, and the current having a sequentially smaller resistance value as the power supply voltage becomes lower. By selecting the control resistor, a remote control device for an air conditioner which is adapted to control so as to keep substantially constant the intensity of the optical signal in response to exhaustion of the battery.

【0008】[0008]

【作用】請求項1に係わる本発明において、電圧監視手
段が電源回路の電圧を検出して電圧監視信号を制御手段
に出力する。制御手段は電圧監視信号により、発光素子
が通電しているときの電源回路の電圧の範囲を判定し、
駆動回路における電流制御抵抗の抵抗値を電源回路の電
圧の範囲に対応して変えて発光素子を駆動させる。この
場合、電池の消耗により発光素子が通電しているときの
電源回路の電圧が低い範囲になるに従って電流制御抵抗
の抵抗値を段階的に変えるようにして、発光素子の光量
をほぼ一定に保つ。また、請求項2に係わる本発明にお
いて、記憶手段は前回の操作において記憶した電圧監視
信号を制御手段に出力するとともに今回の操作における
電圧監視信号を記憶し、制御手段は記憶手段が前回の操
作で記憶した電圧監視信号により前回の操作で発光素子
が通電していたときの電源回路の電圧の範囲を判定して
制御する。他の動作は請求項1に係わる本発明の動作と
同じである。また、請求項3に係わる本発明において、
監視用送信指示手段は所定周期で監視指示信号を制御手
段に出力し、その信号を入力した制御手段は電源回路の
電圧を監視するために、送信信号に疑似した疑似信号を
駆動回路に出力し、駆動回路は疑似光信号を送出する。
電圧監視手段は発光素子が疑似光信号を送出して通電し
ているときの電源回路の電圧を監視して電圧監視信号を
出力する。記憶手段はその電圧監視信号を記憶する。制
御手段は記憶手段に記憶した電圧監視信号により発光素
子の通電しているときの電源回路の電圧の範囲を判定し
て電流制御抵抗の抵抗値を変えて駆動する。他の動作は
請求項1に係わる本発明の動作と同じである。
In the present invention according to claim 1, the voltage monitoring means detects the voltage of the power supply circuit and outputs the voltage monitoring signal to the control means. The control means determines the voltage range of the power supply circuit when the light emitting element is energized by the voltage monitoring signal,
The light emitting element is driven by changing the resistance value of the current control resistor in the drive circuit according to the voltage range of the power supply circuit. In this case, the light amount of the light emitting element is kept substantially constant by gradually changing the resistance value of the current control resistor as the voltage of the power supply circuit becomes lower when the light emitting element is energized due to the consumption of the battery. . In the present invention according to claim 2, the storage means outputs the voltage monitoring signal stored in the previous operation to the control means and stores the voltage monitoring signal in the current operation, and the control means stores the previous voltage operation signal in the storage means. The voltage range of the power supply circuit when the light emitting element is energized by the previous operation is determined and controlled by the voltage monitoring signal stored in. Other operations are the same as the operations of the present invention according to claim 1. In the present invention according to claim 3,
The monitoring transmission instruction means outputs a monitoring instruction signal to the control means at a predetermined cycle, and the control means which has received the signal outputs a pseudo signal simulating the transmission signal to the drive circuit in order to monitor the voltage of the power supply circuit. , The drive circuit sends out a pseudo optical signal.
The voltage monitoring means monitors the voltage of the power supply circuit when the light emitting element sends out a pseudo optical signal and is energized, and outputs a voltage monitoring signal. The storage means stores the voltage monitoring signal. The control means determines the range of the voltage of the power supply circuit when the light emitting element is energized by the voltage monitoring signal stored in the storage means, and changes the resistance value of the current control resistor to drive. Other operations are the same as the operations of the present invention according to claim 1.

【0009】[0009]

【実施例】【Example】

(実施例1)以下、請求項1に係わる本発明の空気調和
機の遠隔操作装置の一実施例について図面を参照しなが
ら説明する。図1は本実施例の構成を示すブロック図で
ある。図において、1は電池により電力を供給する電源
回路、2は電源回路1の電圧を監視し、電圧に対応する
監視信号を出力する電圧監視手段、3は遠隔制御のため
の電気信号を発生するとともに、装置の動作を制御する
制御手段であって、電圧監視手段2が出力する監視信号
を入力して、発光素子4が光信号を発生する電流が通電
しているときの電源回路の電圧の範囲を判定し、判定結
果に対応して発光素子4に直列な電流制御抵抗を段階的
に変えて駆動するように駆動回路5を制御する。なお、
本実施例において発光素子4は赤外光を出力するものと
して説明するが他の光出力であってもよいことは言うま
でもない。
(Embodiment 1) An embodiment of a remote control device for an air conditioner according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of this embodiment. In the figure, 1 is a power supply circuit for supplying electric power from a battery, 2 is a voltage monitoring means for monitoring the voltage of the power supply circuit 1, and outputs a monitoring signal corresponding to the voltage, and 3 is an electric signal for remote control. At the same time, it is a control means for controlling the operation of the device, and receives the monitoring signal output from the voltage monitoring means 2 to input the monitoring signal of the voltage of the power supply circuit when the light emitting element 4 is energized by the current generating the optical signal. The range is determined, and the drive circuit 5 is controlled so that the current control resistor in series with the light emitting element 4 is changed stepwise according to the determination result to drive. In addition,
In this embodiment, the light emitting element 4 is described as outputting infrared light, but it goes without saying that other light output may be used.

【0010】図4は電圧監視手段2が電源回路1の電圧
の範囲を2段階に検出し、制御手段3が発光素子4に直
列な電流制御抵抗を2段階に変えて駆動するように制御
する場合の本実施例の構成を示す回路図である。なお、
図1と同じ構成要素には同一番号を付与している。図に
おいて、電圧監視手段2は電源回路1の電圧が所定の設
定値よりも低くなったときに電圧監視信号を出力する。
制御手段3はその電圧監視信号を入力したとき、電源回
路1の電圧が所定の設定値より低くなったことを検出
し、電源電圧が所定設定値以上に高いときは駆動回路5
の抵抗12およびトランジスタ14を介してトランジス
タ16に制御信号を与え、また、電源電圧が前記設定値
より低いときは駆動回路5の抵抗13およびトランジス
タ15を介してトランジスタ17に制御信号を与える。
この制御信号は遠隔制御のためのディジタルの電気信号
を与え、それを与えられたトランジスタ16またはトラ
ンジスタ17のいづれか一方だけが動作する。駆動回路
5は、電流制御抵抗10とトランジスタ16の直列回路
と、電流制御抵抗11とトランジスタ17の直列回路と
が並列に接続されて構成され、発光素子4の一端に接続
される。また、電流制御抵抗11の抵抗値は電流制御抵
抗10の抵抗値よりも大きい値に設定される。トランジ
スタ16は制御手段3から抵抗12およびトランジスタ
14を介して制御信号を入力し、トランジスタ17は制
御手段3から抵抗13およびトランジスタ15を介して
制御信号を入力し、その制御信号によりオンオフ動作を
行い、発光素子4に電流制御抵抗10または電流制御抵
抗11を介して電流が流れるように動作する。
In FIG. 4, the voltage monitoring means 2 detects the voltage range of the power supply circuit 1 in two steps, and the control means 3 controls the current control resistor in series with the light emitting element 4 so as to drive it in two steps. It is a circuit diagram which shows the structure of a present Example in a case. In addition,
The same numbers are given to the same components as in FIG. In the figure, the voltage monitoring means 2 outputs a voltage monitoring signal when the voltage of the power supply circuit 1 becomes lower than a predetermined set value.
When the voltage monitoring signal is input, the control means 3 detects that the voltage of the power supply circuit 1 has become lower than a predetermined set value, and when the power supply voltage is higher than the predetermined set value, the drive circuit 5
The control signal is applied to the transistor 16 via the resistor 12 and the transistor 14 of FIG. 1, and the control signal is applied to the transistor 17 via the resistor 13 and the transistor 15 of the drive circuit 5 when the power supply voltage is lower than the set value.
This control signal provides a digital electrical signal for remote control such that either transistor 16 or transistor 17 provided with it will operate. The drive circuit 5 is configured by connecting a series circuit of the current control resistor 10 and the transistor 16 and a series circuit of the current control resistor 11 and the transistor 17 in parallel, and is connected to one end of the light emitting element 4. Further, the resistance value of the current control resistor 11 is set to a value larger than the resistance value of the current control resistor 10. The transistor 16 inputs a control signal from the control means 3 via the resistor 12 and the transistor 14, the transistor 17 inputs the control signal from the control means 3 via the resistor 13 and the transistor 15, and performs on / off operation according to the control signal. The light emitting element 4 operates so that a current flows through the current control resistor 10 or the current control resistor 11.

【0011】上記構成においてその動作を説明する。ま
ず、電圧監視手段の動作について説明する。図6は電源
回路の電圧と電池の消耗度との関係を発光素子4の電流
波形に対応して示す。なお、操作時の電流波形を模式的
に示しており、実際には図の波形の中に光信号を生成す
るための細かい電流のオンオフが含まれる。図におい
て、設定電圧Aは電圧監視手段2が電圧の範囲を検出し
て電圧監視信号を出力するために参照する電圧である。
図に示したように、電源回路1の電圧は電池の消耗度に
従って減少し、また、遠隔操作を実行するたびに電圧が
低下する。その理由は、電源回路1には内部抵抗がある
ため、発光素子4が通電して赤外光を送出しているとき
は、内部抵抗による電圧降下が発生して非通電時とは低
下するからである。しがたって、電圧監視手段2は発光
素子4が赤外光を送出しているときに電圧が所定設定値
Aより低くなったときに電圧監視信号を出力するように
動作する。なお、電圧監視手段2に設定する所定設定値
Aは、電池が新しい間は発光素子が赤外光を送出してい
るときでも電圧監視信号が出力されないような値に設定
し、電池の消耗が進行した状態になって電圧監視信号が
出力されるようにする。
The operation of the above configuration will be described. First, the operation of the voltage monitoring means will be described. FIG. 6 shows the relationship between the voltage of the power supply circuit and the degree of battery consumption, corresponding to the current waveform of the light emitting element 4. It should be noted that the current waveform during operation is schematically shown. Actually, the waveform shown in the figure includes on / off of a fine current for generating an optical signal. In the figure, a set voltage A is a voltage referred to by the voltage monitoring means 2 for detecting a voltage range and outputting a voltage monitoring signal.
As shown in the figure, the voltage of the power supply circuit 1 decreases according to the degree of consumption of the battery, and also decreases every time the remote operation is performed. The reason is that since the power supply circuit 1 has an internal resistance, when the light emitting element 4 is energized to send out infrared light, a voltage drop occurs due to the internal resistance, which is lower than that when it is not energized. Is. Therefore, the voltage monitoring means 2 operates so as to output the voltage monitoring signal when the voltage becomes lower than the predetermined set value A while the light emitting element 4 is emitting infrared light. It should be noted that the predetermined set value A set in the voltage monitoring means 2 is set to a value such that the voltage monitoring signal is not output even when the light emitting element is emitting infrared light while the battery is new, so that the battery is consumed. The voltage monitoring signal is output in the advanced state.

【0012】したがって、電池が消耗していないときは
発光素子4に電流が流れたときでも電圧は所定の設定値
Aよりも低くならず、電圧監視手段2は電圧監視信号を
出力しない。しかし、電池の消耗がやや進行したとき
は、発光素子4の電流が流れたときに限って電圧は設定
値Aよりも低くなり、そのとき電圧監視手段2は電圧監
視信号を出力するようになる。電池の消耗がさらに進行
したときは、発光素子に電流が流れなくても電圧は設定
値Aよりも低くなり、電圧監視手段2は常に電圧監視信
号を出力するようになる。
Therefore, when the battery is not exhausted, the voltage does not become lower than the predetermined set value A even when the current flows through the light emitting element 4, and the voltage monitoring means 2 does not output the voltage monitoring signal. However, when the battery is slightly consumed, the voltage becomes lower than the set value A only when the current of the light emitting element 4 flows, and at that time, the voltage monitoring means 2 outputs the voltage monitoring signal. . When the battery is further consumed, the voltage becomes lower than the set value A even if no current flows through the light emitting element, and the voltage monitoring means 2 always outputs the voltage monitoring signal.

【0013】以下、制御手段3と駆動回路5の動作につ
いて説明する。制御手段3は発光素子4から遠隔操作の
ための光信号を出力させる電気信号を生成し、駆動回路
5の抵抗値が大きい方の電流制御抵抗10に接続されて
いるトランジスタ17に制御信号として出力するととも
に、電圧監視手段2から電圧監視信号が入力するか否か
をチェックし、電源回路1の電圧が設定値Aより低下す
るか否かを判定する。トランジスタ17は制御信号によ
り電流制御抵抗11を介して発光素子4にオンオフ電流
を流し、光信号を出力させる。このとき電圧監視手段2
は電源回路1の電圧を監視し、その状態に対応して電圧
監視信号を制御手段3に出力する。制御手段3は、電圧
監視信号が入力しない場合、発光素子に通電が有る無し
にかかわらず電源電圧が設定値Aより高いと判断し、制
御信号をトランジスタ17に与える状態を変えない。
The operation of the control means 3 and the drive circuit 5 will be described below. The control means 3 generates an electric signal for outputting an optical signal for remote control from the light emitting element 4, and outputs it as a control signal to the transistor 17 connected to the current control resistor 10 having a larger resistance value of the drive circuit 5. At the same time, it is checked whether or not a voltage monitoring signal is input from the voltage monitoring means 2 to determine whether or not the voltage of the power supply circuit 1 is lower than the set value A. The transistor 17 causes an on / off current to flow through the light emitting element 4 via the current control resistor 11 according to a control signal, and outputs an optical signal. At this time, the voltage monitoring means 2
Monitors the voltage of the power supply circuit 1 and outputs a voltage monitoring signal to the control means 3 in accordance with the state. When the voltage monitoring signal is not input, the control unit 3 determines that the power supply voltage is higher than the set value A regardless of whether the light emitting element is energized, and does not change the state in which the control signal is applied to the transistor 17.

【0014】また、電圧監視手段2から電圧監視信号を
入力した場合、少なくとも発光素子4が通電していると
きの電源電圧が設定値Aよりも低くなることを検知し、
電池が消耗していると判断し、トランジスタ17に与え
ていた制御信号をトランジスタ16に切り換えて出力す
る。この場合、トランジスタ17の動作は停止し、トラ
ンジスタ16がオンオフ電流を電流制御抵抗11を介し
て発光素子4に流す。この場合、トランジスタ16に接
続された電流制御抵抗10の抵抗値は電流制御抵抗11
の抵抗値よりも小さく設定されているので、発光素子4
に流れるオンオフ電流の大きさが増加し、電池の消耗に
より減少していた光信号の強度が強化される。なお、図
6において、発光素子の通電による電圧降下が電池消耗
度の少ないときより大きいのは、電池の内部抵抗が消耗
に応じて増加しているからであって、電流が増加したた
めではない。
When a voltage monitoring signal is input from the voltage monitoring means 2, it is detected that the power supply voltage becomes lower than the set value A at least when the light emitting element 4 is energized,
It is determined that the battery is exhausted, and the control signal provided to the transistor 17 is switched to the transistor 16 and output. In this case, the operation of the transistor 17 is stopped, and the transistor 16 causes the on / off current to flow to the light emitting element 4 via the current control resistor 11. In this case, the resistance value of the current control resistor 10 connected to the transistor 16 is the current control resistor 11
Since it is set smaller than the resistance value of
The magnitude of the on / off current flowing through the cell increases, and the intensity of the optical signal that has been reduced due to the exhaustion of the battery is enhanced. In FIG. 6, the reason why the voltage drop due to energization of the light emitting element is larger than that when the battery consumption is small is that the internal resistance of the battery is increased in accordance with the consumption, and not because the current is increased.

【0015】図7は上記動作における発光素子4の電流
の大きさと電池の消耗度との関係を示す。図に示したよ
うに、発光素子4の電流は電池の消耗に従って次第に減
少するが、抵抗値の小さい電流制御抵抗10に切り換わ
った時点で一旦増加し、その状態からまた次第に減少す
るようになり、等価的に電池の消耗度が回復し、寿命が
延びたことになる。なお、駆動回路5における各電流制
御抵抗の抵抗値は発光素子の駆動電流と電池寿命とを勘
案して所定値に決定されることは言うまでもない。
FIG. 7 shows the relationship between the magnitude of the current of the light emitting element 4 and the degree of battery consumption in the above operation. As shown in the figure, the current of the light emitting element 4 gradually decreases as the battery is exhausted, but once it switches to the current control resistor 10 having a small resistance value, it increases once and then gradually decreases from that state. Equivalently, the consumption of the battery is recovered and the life is extended. Needless to say, the resistance value of each current control resistor in the drive circuit 5 is determined to be a predetermined value in consideration of the drive current of the light emitting element and the battery life.

【0016】図5は駆動回路5に他の構成を用いた構成
を示す回路である。図において、電流制御抵抗10とト
ランジスタ16の直列回路と、電流制御抵抗11とトラ
ンジスタ17の直列回路とを備え、電流制御抵抗10と
電流制御抵抗11とが直列接続される。この構成におい
て、トランジスタ16に制御信号を与える場合は、発光
素子4の電流は電流制御抵抗10を介して流れ、トラン
ジスタ17に制御信号を与える場合は、発光素子4の電
流は電流制御抵抗10と電流制御抵抗11との直列回路
を介して流れる。したがって、電池の消耗度の小さい場
合、すなわち、電源回路1の電圧の範囲が設定値Aより
高い範囲になるときはトランジスタ17に制御信号を与
え、設定値A以下の範囲になるときはトランジスタ16
に制御信号を与えることにより、電流制御抵抗の抵抗値
を大きい値から小さい値に切り換えて駆動することにな
り、図4に示した構成と同じ動作を実行させることがで
きる。
FIG. 5 is a circuit showing a structure using another structure for the drive circuit 5. In the figure, a series circuit of a current control resistor 10 and a transistor 16 and a series circuit of a current control resistor 11 and a transistor 17 are provided, and the current control resistor 10 and the current control resistor 11 are connected in series. In this configuration, when the control signal is applied to the transistor 16, the current of the light emitting element 4 flows through the current control resistor 10, and when the control signal is applied to the transistor 17, the current of the light emitting element 4 is exchanged with the current control resistor 10. It flows through a series circuit with the current control resistor 11. Therefore, when the degree of battery consumption is low, that is, when the range of the voltage of the power supply circuit 1 is higher than the set value A, a control signal is given to the transistor 17, and when it is in the range of the set value A or less, the transistor 16 is supplied.
By applying a control signal to the drive circuit, the resistance value of the current control resistance is switched from a large value to a small value for driving, and the same operation as the configuration shown in FIG. 4 can be executed.

【0017】図8は電圧監視手段2が電源回路1の電圧
の範囲を3段階に区分して検出し、制御手段3は前記電
圧範囲に対応して電流制御抵抗を3段階に変えて発光素
子4を駆動するように駆動回路5を制御する場合の構成
を示す回路図である。
In FIG. 8, the voltage monitoring means 2 detects the voltage range of the power supply circuit 1 by dividing the voltage range into three levels, and the control means 3 changes the current control resistance in three levels in accordance with the voltage range to emit light. 4 is a circuit diagram showing a configuration in the case of controlling a drive circuit 5 so as to drive 4 of FIG.

【0018】図において、電圧監視手段2は電源回路1
の電圧が所定の設定値A以下になったときに第1の電圧
監視信号を出力する第1の電圧監視回路2−1と、設定
値Aより低い所定の設定値B以下になったときに第2の
電圧監視信号を出力する第2の電圧監視回路2−2とを
備える。また、駆動回路5は電流制御抵抗10とトラン
ジスタ16との直列回路と、電流制御抵抗11とトラン
ジスタ17との直列回路と、電流制御抵抗19とトラン
ジスタ20との直列回路を並列に接続して備え、この駆
動回路5は図4に示した2段階の場合の構成に電流制御
抵抗19とトランジスタ20との直列回路を並列に追加
して構成される。なお、電流制御抵抗の抵抗値は電流制
御抵抗10<電流制御抵抗11<電流制御抵抗19なる
所定値に設定される。
In the figure, the voltage monitoring means 2 is a power supply circuit 1
The first voltage monitoring circuit 2-1 that outputs a first voltage monitoring signal when the voltage of the voltage is less than or equal to the predetermined set value A, and when the voltage is less than or equal to the predetermined set value B that is lower than the set value A. And a second voltage monitoring circuit 2-2 which outputs a second voltage monitoring signal. The drive circuit 5 includes a series circuit of the current control resistor 10 and the transistor 16, a series circuit of the current control resistor 11 and the transistor 17, and a series circuit of the current control resistor 19 and the transistor 20 connected in parallel. The drive circuit 5 is configured by adding a series circuit of a current control resistor 19 and a transistor 20 in parallel to the configuration of the two stages shown in FIG. The resistance value of the current control resistor is set to a predetermined value of current control resistor 10 <current control resistor 11 <current control resistor 19.

【0019】上記構成において、その動作を説明する。
電圧監視手段2は設定値Aと設定値Bとにより電源回路
1の電圧を3つの範囲に区分して検出する。図9は電源
回路1の電圧と電池消耗度の関係を発光素子4の電流波
形に対応して示す特性図である。すでに説明したよう
に、電池に内部抵抗があって、操作するごとに発光素子
4の駆動電流による電圧降下が発生する。電池が新しく
て消耗度が殆どない場合、駆動電流の有無にかかわらず
第1の電圧監視信号も第2の電圧監視信号も出力しな
い。電池の消耗が進行すると、発光素子4の電流が流れ
たときに電圧が設定値Aより低くなって、第1の電圧監
視信号だけが出力されるようになる。さらに電池の消耗
が進行すると、発光素子4の電流が流れたときに電圧が
設定値Bより低くなって、第1の電圧監視信号と第2の
電圧監視信号との両方が出力されるようになる。したが
って、第1の電圧監視信号と第2の電圧監視信号との組
合せにより電源回路1の電圧の範囲を3区分して判断で
きる。制御手段3は第1の電圧監視信号と第2の電圧監
視信号とを入力して、その組合せにより電池の消耗度を
判断し、その判断結果に応じて駆動回路5のトランジス
タの1つに制御信号を与えることにより順次抵抗値の小
さい電流制御抵抗に段階的に変えて発光素子を駆動す
る。図10はこの場合における発光素子の電流と電池の
消耗度との関係を示す特性図である。図からわかるよう
に、電流制御抵抗の抵抗値を電池の消耗度に対応して3
段階に変えて駆動することにより、発光素子の駆動電流
の大きさを電池の消耗度にかかわらずほぼ一定に保ち、
実質的に電池寿命を長くしている。
The operation of the above configuration will be described.
The voltage monitoring means 2 detects the voltage of the power supply circuit 1 by dividing it into three ranges according to the set value A and the set value B. FIG. 9 is a characteristic diagram showing the relationship between the voltage of the power supply circuit 1 and the battery consumption level corresponding to the current waveform of the light emitting element 4. As described above, the battery has an internal resistance, and a voltage drop due to the drive current of the light emitting element 4 occurs each time the battery is operated. When the battery is new and has almost no consumption, neither the first voltage monitoring signal nor the second voltage monitoring signal is output regardless of the presence or absence of the driving current. As the battery is consumed, the voltage becomes lower than the set value A when the current of the light emitting element 4 flows, and only the first voltage monitoring signal is output. When the battery is further consumed, the voltage becomes lower than the set value B when the current of the light emitting element 4 flows, and both the first voltage monitoring signal and the second voltage monitoring signal are output. Become. Therefore, the combination of the first voltage monitoring signal and the second voltage monitoring signal makes it possible to judge the voltage range of the power supply circuit 1 by dividing it into three ranges. The control means 3 inputs the first voltage monitoring signal and the second voltage monitoring signal, judges the degree of consumption of the battery based on the combination, and controls one of the transistors of the drive circuit 5 according to the judgment result. By applying a signal, the light emitting element is driven by gradually changing to a current control resistor having a small resistance value. FIG. 10 is a characteristic diagram showing the relationship between the current of the light emitting element and the consumption of the battery in this case. As can be seen from the figure, the resistance value of the current control resistor is set to 3 according to the degree of battery consumption.
By driving in different stages, the size of the drive current of the light emitting element is kept almost constant regardless of the consumption of the battery,
Substantially extending battery life.

【0020】以上の実施例では、電源電圧の範囲を2区
分して判断し、電流制御抵抗の抵抗値を2段階に変える
場合と、電源電圧の範囲を3区分して判断し、電流制御
抵抗の抵抗値を3段階に変える場合について説明した
が、区分数と段階数をこれら以上に多く設定すればする
ほど、発光素子の電流値の変化を少なくして一定に保つ
ように制御できることは言うまでもない。
In the above embodiment, the range of the power supply voltage is divided into two, and the resistance value of the current control resistor is changed in two steps, and the range of the power supply voltage is divided into three and the current control resistor is judged. Although the case where the resistance value of the light emitting element is changed to three levels has been described, it is needless to say that the larger the number of sections and the number of steps are set, the smaller the change in the current value of the light emitting element can be controlled to be kept constant. Yes.

【0021】以上のように本実施例によれば、電圧監視
手段により発光素子の通電しているときの電源回路の電
圧の範囲を検出し、その結果により電池の消耗度を判断
し、その判断結果により電池の消耗度に対応して順次電
流制御抵抗の抵抗値を順次小さい値に段階的に変えて発
光素子を駆動することにより、電池の消耗が進行しても
光信号の強度をほぼ一定に保ち、遠隔操作を確実にでき
るようになる。
As described above, according to the present embodiment, the voltage monitoring means detects the range of the voltage of the power supply circuit when the light emitting element is energized, and the battery consumption is judged based on the result, and the judgment is made. As a result, by sequentially changing the resistance value of the current control resistor to a small value in accordance with the degree of battery consumption and driving the light emitting element, the intensity of the optical signal is almost constant even if the battery is consumed. It will be possible to maintain remote control without fail.

【0022】なお、電圧監視手段2を光信号を送出して
いる期間だけ動作させ、光信号を送出していないときに
は非動作とすることにより、電池の消耗を低減すること
ができる。
The battery consumption can be reduced by operating the voltage monitoring means 2 only while the optical signal is being sent out and not operating it when the optical signal is not being sent out.

【0023】(実施例2)以下、請求項2に係わる本発
明の実施例について図面を参照しながら説明する。実施
例1に示した構成においては、電源電圧監視手段は発光
素子が通電を開始したのちに電圧降下の影響を含めた電
圧を検出するので、制御手段は電流制御抵抗の抵抗値を
信号の途中から変える場合が発生し、光信号の途中から
強度が変化する場合が発生する。本実施例はこの問題を
も解決する手段を提供する。
(Embodiment 2) Hereinafter, an embodiment of the present invention according to claim 2 will be described with reference to the drawings. In the configuration shown in the first embodiment, since the power supply voltage monitoring means detects the voltage including the influence of the voltage drop after the light emitting element starts to be energized, the control means determines the resistance value of the current control resistor in the middle of the signal. From the middle, and the intensity may change from the middle of the optical signal. This embodiment provides means for solving this problem as well.

【0024】図2は本実施例の構成を示すブロック図で
ある。なお、実施例1と同じ構成要素には同一番号を付
与し、詳細な説明を省略する。本実施例が実施例1と異
なる点は記憶手段6を備え、電圧監視手段2が出力する
電圧監視信号を記憶手段6に記憶することと、制御手段
3は記憶手段6に記憶した電圧監視信号により電源回路
の電圧の範囲を判断して制御する。他の構成および動作
は実施例1と同じである。
FIG. 2 is a block diagram showing the configuration of this embodiment. The same components as those in the first embodiment are designated by the same reference numerals, and detailed description will be omitted. The present embodiment is different from the first embodiment in that the storage means 6 is provided, the voltage monitoring signal output from the voltage monitoring means 2 is stored in the storage means 6, and the control means 3 is stored in the storage means 6. The voltage range of the power supply circuit is determined by the control. Other configurations and operations are the same as those in the first embodiment.

【0025】上記構成において、操作者が遠隔操作を実
行したとき、制御手段は記憶手段6が記憶している前回
の操作における電圧監視信号により制御を実行し、記憶
手段6は今回の操作における電圧監視信号に書き換え
る。前回操作と今回操作の間に発光素子を駆動する大き
い電流は流れていないので電池の消耗は実質的に進行し
ておらず、記憶手段6に記憶した電圧監視信号は電池の
消耗度によく対応している。したがって、電池の消耗度
に対応しながら、しかも、光信号の途中で強度が変化す
ることなく遠隔操作できる。
In the above structure, when the operator performs a remote operation, the control means executes the control by the voltage monitor signal in the previous operation stored in the storage means 6, and the storage means 6 controls the voltage in the current operation. Rewrite as a supervisory signal. Since a large current for driving the light emitting element does not flow between the previous operation and the current operation, the battery is not substantially consumed, and the voltage monitoring signal stored in the storage unit 6 corresponds well to the battery consumption. is doing. Therefore, the remote operation can be performed while the battery power is being consumed and the intensity does not change in the middle of the optical signal.

【0026】以上のように本実施例によれば、記憶手段
6に前回の操作における電圧監視信号を記憶し、その電
圧監視信号により電源回路1の電圧の範囲を判定して電
流制御抵抗の抵抗値を変えて駆動することにより、光信
号の途中で強度が変化することなく、実施例1と同様の
効果を得ることができる。
As described above, according to this embodiment, the voltage monitoring signal in the previous operation is stored in the storage means 6, and the voltage range of the power supply circuit 1 is judged by the voltage monitoring signal to determine the resistance of the current control resistor. By driving by changing the value, the same effect as that of the first embodiment can be obtained without changing the intensity in the middle of the optical signal.

【0027】なお、図8においてトランジスタ21は発
光素子が光信号を送出している期間だけ電圧監視手段2
を動作状態にするための手段であって、制御手段3から
光信号の送出に同期してトランジスタ21を導通させる
ことにより、光信号の送出期間だけ電圧監視手段2を動
作させ、操作しないときに電圧監視手段を非動作として
電池の消耗を低減する効果がある。
In FIG. 8, the transistor 21 is the voltage monitoring means 2 only during the period when the light emitting element is transmitting an optical signal.
For operating the voltage monitoring means 2 during the optical signal transmission period by turning on the transistor 21 in synchronism with the transmission of the optical signal from the control means 3. There is an effect of reducing the consumption of the battery by deactivating the voltage monitoring means.

【0028】(実施例3)以下、請求項3に係わる本発
明の一実施例について図面を参照しながら説明する。実
施例2においては前回の操作における電圧監視信号を記
憶したが、前回操作と今回操作との間の期間が非常に長
いとき、電池の消耗が進行している場合があり、前回操
作における電圧監視信号が今回操作の状況に合致しない
場合もある。本実施例はこの問題をも解決する手段を提
供する。図3は本実施例の構成を示すブロック図であ
る。なお、実施例1および実施例2と同じ構成要素には
同一番号を付与して説明を省略する。本実施例が実施例
1と異なる点は、記憶手段6と監視用送信指示手段7と
を備えたことにある。
(Embodiment 3) An embodiment of the present invention according to claim 3 will be described below with reference to the drawings. Although the voltage monitoring signal in the previous operation is stored in the second embodiment, when the period between the previous operation and the current operation is very long, the battery may be exhausted, and the voltage monitoring in the previous operation may be performed. In some cases, the signal may not match the current operating situation. This embodiment provides means for solving this problem as well. FIG. 3 is a block diagram showing the configuration of this embodiment. It should be noted that the same components as those in the first and second embodiments are given the same reference numerals and the description thereof will be omitted. The present embodiment is different from the first embodiment in that the storage means 6 and the monitoring transmission instruction means 7 are provided.

【0029】図において、監視用送信指示手段7は所定
の周期で制御手段3に指示して、発光素子から疑似光信
号を出力するように制御させる。また、記憶手段6は前
記疑似光信号を出力したときの電圧監視信号を記憶す
る。この疑似光信号は遠隔操作のための光信号に類似し
た信号であって、かつ遠隔操作できない信号である。
In the figure, the monitoring transmission instruction means 7 instructs the control means 3 at a predetermined cycle to control the light emitting element to output a pseudo optical signal. Further, the storage means 6 stores the voltage monitoring signal when the pseudo optical signal is output. This pseudo optical signal is a signal similar to the optical signal for remote control and is a signal that cannot be remotely controlled.

【0030】上記構成において動作を説明すると、監視
用送信指示手段7が所定の周期で制御手段3に疑似光信
号を送出するように指示する。電圧監視手段2は電源回
路1の電圧を監視しており、この疑似信号の送出により
発光素子4が通電しているときの電圧を検出でき、電圧
監視信号を記憶手段6に出力する。疑似光信号は通常の
光信号と類似しているので、この疑似光信号による電圧
監視信号は通常の光信号を送出しているときの電圧状態
と同じである。制御手段3は記憶手段6に記憶した電圧
監視信号により電源回路1の電圧の範囲を判定し、実施
例1と同様に駆動回路5を制御し、電圧の範囲に対応し
て電流制御抵抗を段階的に変えて発光素子4から光信号
を送出させる。この動作により、前回の操作と今回の操
作との間の期間が長くても、定期的に電池の消耗度をチ
ェックして記憶手段に記憶していることになり、最新の
電圧監視信号で制御でき、また、実施例2と同様に、光
信号の途中で光信号の強度が変化することもない。
To explain the operation in the above configuration, the monitoring transmission instruction means 7 instructs the control means 3 to send out a pseudo optical signal at a predetermined cycle. The voltage monitoring means 2 monitors the voltage of the power supply circuit 1, and by sending this pseudo signal, the voltage when the light emitting element 4 is energized can be detected, and a voltage monitoring signal is output to the storage means 6. Since the pseudo optical signal is similar to the normal optical signal, the voltage monitoring signal based on the pseudo optical signal has the same voltage state as when the normal optical signal is being transmitted. The control means 3 determines the voltage range of the power supply circuit 1 based on the voltage monitoring signal stored in the storage means 6, controls the drive circuit 5 as in the first embodiment, and sets the current control resistance in accordance with the voltage range. The optical signal is emitted from the light emitting element 4 by changing the optical signal. By this operation, even if the period between the previous operation and the current operation is long, the battery consumption is checked regularly and stored in the storage means, and the latest voltage monitoring signal is used for control. In addition, the intensity of the optical signal does not change in the middle of the optical signal as in the second embodiment.

【0031】以上のように、本実施例によれば、監視用
送信指示手段7の指示により制御手段3は所定周期で疑
似光信号を送出するように制御し、電圧監視手段2は疑
似光信号を出力しているときの電源回路1の電圧に対応
する電圧監視信号を記憶手段6に出力して記憶させ、制
御手段3はその電圧監視信号により電流制御抵抗の抵抗
値を段階的に変えて光信号を出力するように制御するこ
とにより、操作の間隔が長期であって電池の消耗が進行
していても最新の消耗状態に対応して光信号を送出で
き、また光信号の途中で強度が変化することなく安定に
送出できる。
As described above, according to this embodiment, the control means 3 controls the pseudo optical signal to be transmitted at a predetermined cycle in accordance with the instruction from the monitoring transmission instruction means 7, and the voltage monitoring means 2 has the pseudo optical signal. Is output, the voltage monitoring signal corresponding to the voltage of the power supply circuit 1 is output to and stored in the storage means 6, and the control means 3 changes the resistance value of the current control resistor stepwise by the voltage monitoring signal. By controlling to output an optical signal, even if the operation interval is long and the battery is depleted, the optical signal can be sent according to the latest state of exhaustion. Can be sent stably without changing.

【0032】なお、電圧監視手段は通常の光信号の送出
中においても電圧を監視し、記憶手段6はそのときの電
圧監視信号を記憶するようにしてもよく、また、通常の
光信号または疑似光信号を送出している期間だけ電圧監
視手段を操作させる手段を用いてもよいことは言うまで
もない。
The voltage monitoring means may monitor the voltage even during transmission of a normal optical signal, and the storage means 6 may store the voltage monitoring signal at that time, or the normal optical signal or pseudo signal. It goes without saying that a means for operating the voltage monitoring means may be used only while the optical signal is being sent.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、請求項
1に係わる本発明は、電池により電力を供給する電源回
路と、前記電源回路の電圧を監視して電圧監視信号を出
力する電圧監視手段と、遠隔制御のための光信号を出力
する発光素子と、前記光信号を発生させるための電気信
号を生成するとともに装置の動作を制御する制御手段
と、前記発光素子に電流制御抵抗を直列に挿入して前記
電源回路に接続し、駆動電流を流す駆動回路とを備え、
前記制御手段は前記電圧監視信号を入力し、前記発光素
子が通電しているときの前記電源回路の電圧の範囲に対
応して前記電流制御抵抗の抵抗値を段階的に変え、前記
電源回路の電圧が低い範囲になるにしたがって順次抵抗
値の小さい電流制御抵抗を選択することにより、前記電
池の消耗に対応して光信号の強度をほぼ一定に保つよう
に制御することにより、電池が消耗しても光信号の強度
が低下しないようにでき、電池の寿命を実質的に長くで
き、また、請求項2に係わる本発明は、電池により電力
を供給する電源回路と、前記電源回路の電圧を監視して
電圧監視信号を出力する電圧監視手段と、遠隔制御のた
めの光信号を出力する発光素子と、前記光信号を発生さ
せるための電気信号を生成するとともに装置の動作を制
御する制御手段と、前記発光素子に電流制御抵抗を直列
に挿入して前記電源回路に接続し、駆動電流を流す駆動
回路と、前回の操作で記憶した電圧監視信号を前記制御
手段に出力するとともに今回の操作で前記電圧監視手段
が出力する電圧監視信号を記憶する記憶手段とを備え、
前記制御手段は前記記憶手段が前回の操作で記憶した電
圧監視信号を入力し、前記発光素子が前回の操作におい
て通電していたときの前記電源回路の電圧の範囲に対応
して前記電流制御抵抗の抵抗値を段階的に変え、前記電
源回路の電圧が低い範囲になるにしたがって順次抵抗値
の小さい電流制御抵抗を選択することにより、前記電池
の消耗に対応して光信号の強度をほぼ一定に保つように
制御することにより、電池が消耗しても光信号の強度が
低下しないようにできるとともに、光信号の途中で強度
が変化することなく安定し、また、請求項3に係わる本
発明は、電池により電力を供給する電源回路と、前記電
源回路の電圧を監視して電圧監視信号を出力する電圧監
視手段と、遠隔制御のための光信号を出力する発光素子
と、前記光信号を発生させるための電気信号を生成する
とともに装置の動作を制御する制御手段と、前記発光素
子に電流制御抵抗を直列に挿入して前記電源回路に接続
し、駆動電流を流す駆動回路と、前記発光素子に疑似光
信号を送出させる指示を所定の周期で前記制御手段に与
える監視用送信指示手段と、前記疑似光信号を送出して
いるときに前記発光素子の通電時の前記電圧監視信号を
記憶する記憶手段とを備え、前記制御手段は前記記憶手
段が記憶した電圧監視信号を入力し、前記疑似光信号を
送出して前記発光素子が通電しているときの前記電源回
路の電圧の範囲に対応して前記電流制御抵抗の抵抗値を
段階的に変え、前記電源回路の電圧が低い範囲になるに
したがって順次抵抗値の小さい電流制御抵抗を選択する
ことにより、前記電池の消耗に対応して光信号の強度を
ほぼ一定に保つように制御することにより、電池が消耗
しても光信号の強度が低下しないようにできるととも
に、光信号の途中で強度が変化することもなく、さらに
操作と操作の期間が長期に空いて電池の消耗が進行して
いても最新の消耗度情報により光信号の強度を設定でき
る。
As is apparent from the above description, the present invention according to claim 1 is directed to a power supply circuit for supplying electric power from a battery and a voltage monitor for monitoring the voltage of the power supply circuit and outputting a voltage monitor signal. Means, a light emitting element for outputting an optical signal for remote control, control means for generating an electrical signal for generating the optical signal and controlling the operation of the device, and a current control resistor in series with the light emitting element. And connected to the power supply circuit, a drive circuit for flowing a drive current,
The control means inputs the voltage monitoring signal, and gradually changes the resistance value of the current control resistor in accordance with the range of the voltage of the power supply circuit when the light emitting element is energized. By selecting a current control resistor having a smaller resistance value in order as the voltage becomes lower, the battery is consumed by controlling the intensity of the optical signal to be substantially constant in response to the battery consumption. Even if the intensity of the optical signal is not lowered, the life of the battery can be substantially lengthened, and the present invention according to claim 2 provides a power supply circuit for supplying power by a battery and a voltage of the power supply circuit. Voltage monitoring means for monitoring and outputting a voltage monitoring signal, a light emitting element for outputting an optical signal for remote control, and control means for generating an electric signal for generating the optical signal and controlling the operation of the device When A current control resistor is inserted in series with the light emitting element and connected to the power supply circuit, and a drive circuit for supplying a drive current and a voltage monitoring signal stored in the previous operation are output to the control means and the current operation is performed in the above Storage means for storing the voltage monitoring signal output by the voltage monitoring means,
The control means inputs the voltage monitoring signal stored by the storage means in the previous operation, and the current control resistor corresponds to the voltage range of the power supply circuit when the light emitting element is energized in the previous operation. By gradually changing the resistance value of the power supply circuit and selecting a current control resistor having a smaller resistance value as the voltage of the power supply circuit becomes lower, the intensity of the optical signal is substantially constant in response to the consumption of the battery. When the battery is exhausted, the intensity of the optical signal can be prevented from lowering by controlling so that the optical signal is kept at a constant value, and the intensity is stable without changing in the middle of the optical signal. Further, the present invention according to claim 3 Is a power supply circuit that supplies power by a battery, a voltage monitoring unit that monitors the voltage of the power supply circuit and outputs a voltage monitoring signal, a light emitting element that outputs an optical signal for remote control, and the optical signal A control circuit for generating an electric signal for generating the signal and controlling the operation of the device; a drive circuit for inserting a current control resistor in series with the light emitting element and connecting the current control resistor to the power supply circuit; Storing transmission instructing means for giving to the control means an instruction to send a pseudo optical signal to the element at a predetermined cycle, and the voltage monitoring signal when the light emitting element is energized while sending the pseudo optical signal. The storage means for inputting the voltage monitoring signal stored by the storage means, sending the pseudo optical signal to the voltage range of the power supply circuit when the light emitting element is energized. Corresponding to the consumption of the battery, the resistance value of the current control resistor is changed step by step, and the current control resistor having a sequentially smaller resistance value is selected as the voltage of the power supply circuit becomes lower. By controlling the optical signal intensity so that it remains almost constant, it is possible to prevent the optical signal intensity from decreasing even when the battery is exhausted, and the intensity does not change in the middle of the optical signal. Even if the operation period is long and the battery is depleted, the intensity of the optical signal can be set based on the latest consumption information.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1に係わる本発明の空気調和機の遠隔操
作装置の一実施例の構成を示すブロック図
FIG. 1 is a block diagram showing the configuration of an embodiment of a remote control device for an air conditioner of the present invention according to claim 1.

【図2】請求項2に係わる本発明の空気調和機の遠隔操
作装置の一実施例の構成を示すブロック図
FIG. 2 is a block diagram showing the configuration of an embodiment of a remote control device for an air conditioner of the present invention according to claim 2;

【図3】請求項3に係わる本発明の空気調和機の遠隔操
作装置の一実施例の構成を示すブロック図
FIG. 3 is a block diagram showing the configuration of an embodiment of a remote control device for an air conditioner of the present invention according to claim 3;

【図4】請求項1に係わる本発明の空気調和機の遠隔操
作装置の一実施例の構成を示す回路図
FIG. 4 is a circuit diagram showing a configuration of an embodiment of a remote control device for an air conditioner of the present invention according to claim 1.

【図5】請求項1に係わる本発明の空気調和機の遠隔操
作装置の一実施例の他の構成を示す回路図
FIG. 5 is a circuit diagram showing another configuration of an embodiment of a remote control device for an air conditioner of the present invention according to claim 1.

【図6】図4および図5に示した本発明の空気調和機の
遠隔操作装置の一実施例における電源回路の電圧と電池
の消耗度との関係を発光素子の電流波形に対応して示す
特性図
FIG. 6 shows the relationship between the voltage of the power supply circuit and the degree of battery consumption in the embodiment of the remote control device for an air conditioner of the present invention shown in FIGS. 4 and 5, corresponding to the current waveform of the light emitting element. Characteristic diagram

【図7】図4および図5に示した本発明の空気調和機の
遠隔操作装置の一実施例における発光素子の電流値と電
池の消耗度との関係を示す特性図
FIG. 7 is a characteristic diagram showing the relationship between the current value of the light emitting element and the degree of battery consumption in the embodiment of the remote control device for an air conditioner of the present invention shown in FIGS. 4 and 5.

【図8】請求項1に係わる本発明の空気調和機の遠隔操
作装置の一実施例の他の構成を示す回路図
FIG. 8 is a circuit diagram showing another configuration of an embodiment of a remote control device for an air conditioner of the present invention according to claim 1.

【図9】図8に示した本発明の空気調和機の遠隔操作装
置の一実施例における電源回路の電圧と電池の消耗度と
の関係を発光素子の電流波形に対応して示す特性図
9 is a characteristic diagram showing the relationship between the voltage of the power supply circuit and the degree of battery consumption in the embodiment of the remote control device for an air conditioner of the present invention shown in FIG. 8 in correspondence with the current waveform of the light emitting element.

【図10】図8に示した本発明の空気調和機の遠隔操作
装置の一実施例における発光素子の電流値と電池の消耗
度との関係を示す特性図
10 is a characteristic diagram showing the relationship between the current value of the light emitting element and the degree of battery consumption in the embodiment of the remote control device for an air conditioner of the present invention shown in FIG.

【図11】従来の空気調和機の遠隔操作装置の構成を示
す回路図
FIG. 11 is a circuit diagram showing a configuration of a conventional remote control device for an air conditioner.

【図12】従来の空気調和機の遠隔操作装置における発
光素子の電流値と電池の消耗度との関係を示す特性図
FIG. 12 is a characteristic diagram showing the relationship between the current value of a light emitting element and the degree of battery consumption in a conventional remote control device for an air conditioner.

【符号の説明】[Explanation of symbols]

1 電源回路 2 電圧監視手段 3 制御手段 4 発光素子 5 駆動回路 1 power supply circuit 2 voltage monitoring means 3 control means 4 light emitting element 5 drive circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H04B 10/06

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電池により電力を供給する電源回路と、
前記電源回路の電圧を監視して電圧監視信号を出力する
電圧監視手段と、遠隔制御のための光信号を出力する発
光素子と、前記光信号を発生させるための電気信号を生
成するとともに装置の動作を制御する制御手段と、前記
発光素子に電流制御抵抗を直列に挿入して前記電源回路
に接続し、駆動電流を流す駆動回路とを備え、前記制御
手段は前記電圧監視信号を入力し、前記発光素子が通電
しているときの前記電源回路の電圧の範囲に対応して前
記電流制御抵抗の抵抗値を段階的に変え、前記電源回路
の電圧が低い範囲になるにしたがって順次抵抗値の小さ
い電流制御抵抗を選択することにより、前記電池の消耗
に対応して光信号の強度をほぼ一定に保つように制御す
る空気調和機の遠隔操作装置。
1. A power supply circuit for supplying electric power from a battery,
A voltage monitoring unit that monitors the voltage of the power supply circuit and outputs a voltage monitoring signal, a light emitting element that outputs an optical signal for remote control, and an electrical signal that generates the optical signal and that of the device. Control means for controlling the operation, a current control resistor is inserted in series with the light emitting element and connected to the power supply circuit, and a drive circuit for supplying a drive current is provided, and the control means inputs the voltage monitoring signal, The resistance value of the current control resistor is changed stepwise in accordance with the range of the voltage of the power supply circuit when the light emitting element is energized, and the resistance value of the current control resistor gradually decreases as the voltage becomes lower. A remote control device for an air conditioner, which controls to keep the intensity of an optical signal substantially constant in response to exhaustion of the battery by selecting a small current control resistor.
【請求項2】 電池により電力を供給する電源回路と、
前記電源回路の電圧を監視して電圧監視信号を出力する
電圧監視手段と、遠隔制御のための光信号を出力する発
光素子と、前記光信号を発生させるための電気信号を生
成するとともに装置の動作を制御する制御手段と、前記
発光素子に電流制御抵抗を直列に挿入して前記電源回路
に接続し、駆動電流を流す駆動回路と、前回の操作で記
憶した電圧監視信号を前記制御手段に出力するとともに
今回の操作で前記電圧監視手段が出力する電圧監視信号
を記憶する記憶手段とを備え、前記制御手段は前記記憶
手段が前回の操作で記憶した電圧監視信号を入力し、前
記発光素子が前回の操作において通電していたときの前
記電源回路の電圧の範囲に対応して前記電流制御抵抗の
抵抗値を段階的に変え、前記電源回路の電圧が低い範囲
になるにしたがって順次抵抗値の小さい電流制御抵抗を
選択することにより、前記電池の消耗に対応して光信号
の強度をほぼ一定に保つように制御するようにした空気
調和機の遠隔操作装置。
2. A power supply circuit for supplying electric power from a battery,
A voltage monitoring unit that monitors the voltage of the power supply circuit and outputs a voltage monitoring signal, a light emitting element that outputs an optical signal for remote control, and an electrical signal that generates the optical signal and that of the device. A control means for controlling the operation, a current control resistor inserted in series in the light emitting element and connected to the power supply circuit, a drive circuit for supplying a drive current, and a voltage monitoring signal stored in the previous operation are supplied to the control means. And a storage unit that stores the voltage monitoring signal output by the voltage monitoring unit in the current operation, and the control unit inputs the voltage monitoring signal stored by the storage unit in the previous operation, and the light emitting element According to the range of the voltage of the power supply circuit when it was energized in the previous operation, the resistance value of the current control resistor is changed stepwise so that the voltage of the power supply circuit is in the low range. Sequentially by selecting a small current control resistor resistance value, substantially the remote operation apparatus of the air conditioner to be controlled to maintain a constant intensity of the optical signal in response to exhaustion of the battery.
【請求項3】 電池により電力を供給する電源回路と、
前記電源回路の電圧を監視して電圧監視信号を出力する
電圧監視手段と、遠隔制御のための光信号を出力する発
光素子と、前記光信号を発生させるための電気信号を生
成するとともに装置の動作を制御する制御手段と、前記
発光素子に電流制御抵抗を直列に挿入して前記電源回路
に接続し、駆動電流を流す駆動回路と、前記発光素子に
疑似光信号を送出させる指示を所定の周期で前記制御手
段に与える監視用送信指示手段と、前記疑似光信号を送
出しているときに前記発光素子の通電時の前記電圧監視
信号を記憶する記憶手段とを備え、前記制御手段は前記
記憶手段が記憶した電圧監視信号を入力し、前記疑似光
信号を送出して前記発光素子が通電しているときの前記
電源回路の電圧の範囲に対応して前記電流制御抵抗の抵
抗値を段階的に変え、前記電源回路の電圧が低い範囲に
なるにしたがって順次抵抗値の小さい電流制御抵抗を選
択することにより、前記電池の消耗に対応して光信号の
強度をほぼ一定に保つように制御するようにした空気調
和機の遠隔操作装置。
3. A power supply circuit for supplying electric power from a battery,
A voltage monitoring unit that monitors the voltage of the power supply circuit and outputs a voltage monitoring signal, a light emitting element that outputs an optical signal for remote control, and an electrical signal that generates the optical signal and that of the device. A control means for controlling the operation, a drive circuit for inserting a current control resistor into the light emitting element in series and connecting the current control resistor to the power supply circuit to flow a drive current, and an instruction to send a pseudo optical signal to the light emitting element are predetermined. The control means is provided with a monitoring transmission instruction means to be given to the control means in a cycle, and a storage means for storing the voltage monitor signal when the light emitting element is energized while the pseudo optical signal is being sent. The resistance value of the current control resistor is set in accordance with the voltage range of the power supply circuit when the voltage monitoring signal stored in the storage means is input, the pseudo optical signal is transmitted, and the light emitting element is energized. Strange , By selecting current control resistors whose resistance values are successively smaller as the voltage of the power supply circuit becomes lower, so that the intensity of the optical signal is controlled to be substantially constant in response to the consumption of the battery. Air conditioner remote control device.
【請求項4】 電流制御抵抗と制御手段の制御信号によ
り発光素子に通電する駆動素子との直列回路の複数組を
並列接続して構成され、各組の電流制御抵抗の抵抗値を
互いに相異なる所定の値に設定された駆動回路を備え、
制御手段がそのうちの1つの組を選んで制御信号を与え
ることにより電流制御抵抗の値を段階的に切り換えるよ
うにした請求項1ないし3のいづれかに記載の空気調和
機の遠隔操作装置。
4. A plurality of sets of series circuits of a current control resistor and a drive element for energizing a light emitting element according to a control signal of a control means are connected in parallel, and the resistance values of the current control resistors of each set are different from each other. Equipped with a drive circuit set to a predetermined value,
4. The remote control device for an air conditioner according to claim 1, wherein the control means selects one of the sets to give a control signal to switch the value of the current control resistor stepwise.
【請求項5】 電流制御抵抗と制御手段の制御信号によ
り発光素子に通電する駆動素子との直列回路の複数組
の、各電流制御抵抗を互いに直列接続して構成された駆
動回路を備え、制御手段がそのうちの1つの組を選んで
制御信号を与えることにより電流制御抵抗の抵抗値を段
階的に切り換えるようにした請求項1ないし3のいづれ
かに記載の空気調和機の遠隔操作装置。
5. A drive circuit comprising a plurality of series circuits of a current control resistor and a drive element for energizing a light emitting element according to a control signal of a control means, wherein the current control resistors are connected in series to each other. The remote control device for an air conditioner according to any one of claims 1 to 3, wherein the means selects one of the sets to give a control signal to switch the resistance value of the current control resistor stepwise.
【請求項6】 電圧監視手段は発光素子の通電時におけ
る電源電圧を所定値の上下に2区分して検出して電圧監
視信号を出力し、制御手段は電流制御抵抗の抵抗値を2
段階に変えるようにした請求項1ないし5のいづれかに
記載の空気調和機の遠隔操作装置。
6. The voltage monitoring means detects the power supply voltage when the light emitting element is energized by dividing the power supply voltage into two parts above and below a predetermined value and outputs a voltage monitoring signal, and the control means sets the resistance value of the current control resistor to two.
The remote control device for an air conditioner according to any one of claims 1 to 5, wherein the remote control device is changed in stages.
【請求項7】 電圧監視手段は発光素子の通電時におけ
る電源電圧を2つの相異なる所定電圧により3段階に区
分して検出して電圧監視信号を出力し、制御手段は電流
制御抵抗の抵抗値を3段階に変えるようにした請求項1
ないし5のいづれかに記載の空気調和機の遠隔操作装
置。
7. The voltage monitoring means detects the power supply voltage when the light emitting element is energized in three stages according to two different predetermined voltages and outputs a voltage monitoring signal, and the control means outputs the resistance value of the current control resistor. Claim 1 which changed to three steps
7. The remote control device for an air conditioner according to any one of 1 to 5.
【請求項8】 電圧監視手段は電源電圧が所定の第1の
電圧以下になったとき第1の電圧監視信号を出力する第
1の電圧監視手段と、電源電圧が所定の第2の電圧以下
になったとき第2の電圧監視信号を出力する第2の電圧
監視手段とを備え、制御手段は前記第1の電圧監視信号
と前記第2の電圧監視信号とを入力して、その組合せに
より前記電源電圧を3段階に判定し、電流制御抵抗の抵
抗値を3段階に変えるようにした請求項1ないし5のい
づれかに記載の空気調和機の遠隔操作装置。
8. The voltage monitoring means outputs a first voltage monitoring signal when the power supply voltage falls below a predetermined first voltage, and the power supply voltage falls below a predetermined second voltage. And a second voltage monitoring means for outputting a second voltage monitoring signal when the control signal becomes, and the control means inputs the first voltage monitoring signal and the second voltage monitoring signal and 6. The remote control device for an air conditioner according to claim 1, wherein the power supply voltage is determined in three stages and the resistance value of the current control resistor is changed in three stages.
【請求項9】 電圧監視手段を光信号送出中のみ動作状
態とするようにした請求項1ないし請求項8のいづれか
に記載の空気調和機の遠隔操作装置。
9. The remote control device for an air conditioner according to any one of claims 1 to 8, wherein the voltage monitoring means is operated only during transmission of an optical signal.
JP5323007A 1993-12-22 1993-12-22 Remote control device of air conditioner Pending JPH07183853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5323007A JPH07183853A (en) 1993-12-22 1993-12-22 Remote control device of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5323007A JPH07183853A (en) 1993-12-22 1993-12-22 Remote control device of air conditioner

Publications (1)

Publication Number Publication Date
JPH07183853A true JPH07183853A (en) 1995-07-21

Family

ID=18150100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5323007A Pending JPH07183853A (en) 1993-12-22 1993-12-22 Remote control device of air conditioner

Country Status (1)

Country Link
JP (1) JPH07183853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483622B1 (en) 1998-03-30 2002-11-19 Nec Corporation Mobile data terminal with an infrared communication capability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483622B1 (en) 1998-03-30 2002-11-19 Nec Corporation Mobile data terminal with an infrared communication capability

Similar Documents

Publication Publication Date Title
US6777892B2 (en) Device for controlling operating means for at least one electric illuminating means and a method for controlling operating means for at least one electric illuminating means
EP1306826A4 (en) Drive circuit of display and display
US20060267922A1 (en) Display apparatus with backlight driver control
JP4763225B2 (en) LED drive circuit
US6738649B2 (en) Portable terminal equipment and method of controlling backlight display therein
KR19990078367A (en) Mobile data terminal with an infrared communication capability
EP0335316B1 (en) Apparatus for controlling selection of batteries
JPH07183853A (en) Remote control device of air conditioner
JP4830454B2 (en) LED drive device
KR100258381B1 (en) Apparatus and method of detecting a relay breakdown in an electric refrigerator
KR0168169B1 (en) Remote controller device and method of electronic home appliances
KR100207995B1 (en) Apparatus and method for display in home machinary
JP7327104B2 (en) Electronics
JP2000196526A (en) Infrared transmitter
JP3198438B2 (en) Power supply control method in same power supply device
KR100216759B1 (en) Lighting control apparatus and method of remocon with lighting button
JP2001320336A (en) Data transmitter and nurse call transmitter and system
KR0123207Y1 (en) Dpms display power management signaling circuit type control apparatus
KR100425289B1 (en) Apparatus for emitting keypad
JP2001352689A (en) Battery charge display
KR19990040745A (en) Light emitting diode driving device
KR100758370B1 (en) Mp3 play apparatus and method of driving the same
JPH1131843A (en) Lighting device for light emitting diode
KR100216976B1 (en) Illumination control method for inverter stand
JP2914184B2 (en) Air conditioner remote control device