JPH07183678A - Heat sink apparatus - Google Patents

Heat sink apparatus

Info

Publication number
JPH07183678A
JPH07183678A JP5326459A JP32645993A JPH07183678A JP H07183678 A JPH07183678 A JP H07183678A JP 5326459 A JP5326459 A JP 5326459A JP 32645993 A JP32645993 A JP 32645993A JP H07183678 A JPH07183678 A JP H07183678A
Authority
JP
Japan
Prior art keywords
duct
fin
heat sink
heat
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5326459A
Other languages
Japanese (ja)
Inventor
Masao Hanya
正夫 半谷
Kazuo Iwata
一夫 岩田
Hideo Yamamoto
秀夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP5326459A priority Critical patent/JPH07183678A/en
Publication of JPH07183678A publication Critical patent/JPH07183678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To provide a heat sink apparatus having large convection heat conductivity and excellent heat radiating property. CONSTITUTION:In a heat sink apparatus 12 comprising ducts 30 for circulating cooling air formed among a plurality of radiating fins 22 for ventilating air by a fan 21 to the ducts 30, the Reynolds number Re of an air flow passing through the ducts 30 is set to a value where a laminar flow occurs (2000 or less) and a ratio (Le/L) of an entrance length Le (Le=0.065Re.D) required for the air flow to complete the laminar flow to a duct length L is 3 or larger when a hydraulic diameter D of the duct 30 is expressed by 2ab/(a+b) where a duct width of the duct 30 is (a), a duct height is (b) and the duct length is L.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、発熱を伴う電気部品
等、特にLSIやパワートランジスタ等の電気回路部品
に使われる発熱素子の放熱に適したヒートシンク装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink device suitable for dissipating heat from an electric component that generates heat, especially a heat generating element used in an electric circuit component such as an LSI or a power transistor.

【0002】[0002]

【従来の技術】電気機器の回路基板などに実装されたL
SIパッケージ等の発熱素子の冷却を行うために、従来
よりヒートシンク装置が使われている。ヒートシンク装
置は、金属製のフィン本体に多数の放熱フィンを設ける
ことにより、放熱フィン間に多数のダクト部を形成し、
送風用のファンによって上記ダクト部に冷却用空気を流
通させることにより、放熱フィンを強制的に冷やすよう
になっている。従ってこの種のヒートシンク装置は発熱
素子の基板等に密接して設けられており、発熱素子の熱
を放熱フィンを介してフィンまわりの空気に伝達し、空
気が熱を持ち去るようになっている。
2. Description of the Related Art L mounted on a circuit board of electric equipment
A heat sink device has been conventionally used to cool a heat generating element such as an SI package. The heat sink device has a large number of heat dissipating fins provided on a metal fin body to form a large number of duct portions between the heat dissipating fins.
The radiating fins are forcibly cooled by circulating cooling air through the duct section by a fan for blowing air. Therefore, this type of heat sink device is provided in close contact with the substrate of the heat generating element, etc., and the heat of the heat generating element is transferred to the air around the fin via the heat radiating fins so that the air takes away the heat.

【0003】[0003]

【発明が解決しようとする課題】従来、冷却能力を高め
るための手段として、放熱フィンの表面積を大きくした
り、ファンの送風能力を大きくするなどの対策が講じら
れている。ところが放熱フィンの表面積を大きくするに
は、多くの放熱フィンを使用する必要があり、フィン間
すきま(ダクト幅)が狭くなるため、ダクト部の圧力損
失が問題となる。従って流量が減り、また、フィン効率
も低下する。すなわち、単に放熱フィンの表面積を大き
くするのでは、かえって熱抵抗が大きくなることがあ
り、冷却能力を高める上で有効な対策にならないことが
ある。
Conventionally, as a means for increasing the cooling capacity, measures such as increasing the surface area of the radiation fins and increasing the blowing capacity of the fan have been taken. However, in order to increase the surface area of the radiating fins, it is necessary to use many radiating fins, and the clearance between the fins (duct width) becomes narrow, so that pressure loss in the duct portion becomes a problem. Therefore, the flow rate is reduced and the fin efficiency is also reduced. That is, simply increasing the surface area of the heat radiation fins may rather increase the thermal resistance, which may not be an effective measure for increasing the cooling capacity.

【0004】例えば米国特許明細書第4,753,29
0号に示されているヒートシンク装置は、多数の放熱フ
ィンを備えているためフィン表面積が大きいが、フィン
間の圧力損失が大きいため冷却効率が悪い。あるいは特
開昭62−55000号公報に記載されているヒートシ
ンク装置なども、本発明者らの研究によるところでは冷
却効果が十分であるとは言い難い。
For example, US Pat. No. 4,753,29
The heat sink device shown in No. 0 has a large fin surface area because it has a large number of heat radiation fins, but the cooling efficiency is poor because the pressure loss between the fins is large. Alternatively, the heat sink device and the like described in Japanese Patent Laid-Open No. 62-55000 cannot be said to have a sufficient cooling effect according to the research conducted by the present inventors.

【0005】つまり従来は、放熱フィンのサイズやダク
ト部の寸法を設定するに当って、例えば計算によって求
めた放熱フィンの熱抵抗をよりどころにして適当なフィ
ン数や流速を決めるとか、試行錯誤的に放熱フィンのサ
イズや送風ファンの風量などを決めていたに過ぎない。
このため、いたずらにフィン表面積を大きくしてみた
り、送風ファンの能力を高めるばかりであり、必ずしも
冷却効率を上げるための有効な対策になっていないのが
現状であり、しかもヒートシンク装置の設計に時間がか
かっていた。従って本発明の目的は、放熱フィンの対流
熱伝達率を十分大きくとることができ、冷却効率が高く
放熱性に優れたヒートシンク装置を提供することにあ
る。
That is, conventionally, in setting the size of the heat radiation fins or the dimensions of the duct portion, for example, the thermal resistance of the heat radiation fins obtained by calculation is used as a basis to determine an appropriate number of fins and a flow velocity, or by trial and error. It simply decided the size of the radiation fins and the air volume of the blower fan.
For this reason, the fin surface area is unnecessarily increased, and the capacity of the blower fan is not only improved, but it is not always an effective measure for increasing the cooling efficiency. It took time. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a heat sink device capable of sufficiently increasing the convective heat transfer coefficient of a radiation fin, having a high cooling efficiency and excellent heat radiation.

【0006】[0006]

【課題を解決するための手段】図1,2に示すように、
互いに平行な複数の放熱フィンの間に空気流通用のダク
ト部を形成し、ファンによって生じさせる空気流をダク
ト部に流通させるようにしたヒートシンク装置におい
て、放熱フィンの表面温度をtfin 、フィン間に流入す
る流体の温度をtinとした時、熱抵抗θ(単位当りの入
力熱量Qに対する放熱フィンの上昇温度tfin −tin
は、熱力学的に次式(1)で表される。
[Means for Solving the Problems] As shown in FIGS.
In a heat sink device in which a duct portion for air circulation is formed between a plurality of heat radiation fins that are parallel to each other, and an air flow generated by a fan is passed through the duct portion, the surface temperature of the heat radiation fin is t fin When the temperature of the fluid flowing into the chamber is t in , the thermal resistance θ (the temperature rise of the radiation fin with respect to the input heat quantity Q per unit t fin −t in )
Is thermodynamically represented by the following equation (1).

【0007】[0007]

【数1】 [Equation 1]

【0008】図2に示すように、フィン間に形成される
ダクト部の断面が長方形の流路(タクト幅aとダクト高
さbとの比b/aが8以上)である場合、レイノルズ数
Reが200〜1800(層流を生じる範囲)の時の対
流熱伝達率hc は次式(2)によって求めることができ
る。
As shown in FIG. 2, when the duct section formed between the fins has a rectangular flow path (ratio b / a of tact width a to duct height b is 8 or more), the Reynolds number is The convective heat transfer coefficient h c when Re is 200 to 1800 (range in which laminar flow occurs) can be obtained by the following equation (2).

【0009】[0009]

【数2】 [Equation 2]

【0010】レイノルズ数Reは流体の平均流速をV、
流体の密度をρ、流体の粘度をμ、水力学的直径をD
[D=2ab/(a+b)]としたとき、(V・D・
ρ)/μで表される無次元の値であり、レイノルズ数R
eが2000付近を越えるあたりから流体の流動が層流
から乱流に移行することが知られている。実用的なヒー
トシンク装置においては、送風ファンの能力に左右され
る平均流速Vやダクト部の水力学的直径Dなどの実用範
囲からすると、レイノルズ数Reが例えば200〜18
00程度であり、層流が生じる条件となっている。
The Reynolds number Re is the average flow velocity of the fluid V,
Fluid density ρ, fluid viscosity μ, hydraulic diameter D
When [D = 2ab / (a + b)], (V · D ·
ρ) / μ is a dimensionless value and Reynolds number R
It is known that the fluid flow shifts from laminar flow to turbulent flow when e exceeds about 2000. In a practical heat sink device, the Reynolds number Re is, for example, 200 to 18 from the practical range such as the average flow velocity V and the hydraulic diameter D of the duct part which depend on the capacity of the blower fan.
It is about 00, which is a condition for generating a laminar flow.

【0011】ダクト部に層流が生じる場合、速度分布は
フィン壁面の近傍を流れる高温空気の速度がかなり小さ
くなるため、対流熱伝達率hc がかなり小さい値とな
る。これに対し、乱流のように速度分布がフラットな流
動の場合は対流熱伝達率hc が大きいため、冷却能力を
高めるには乱流の方が有利である。しかしながら実際に
は、送風ファンの能力の限界などからレイノルズ数Re
を2000以上にすることには困難を伴う。
When a laminar flow occurs in the duct portion, the velocity distribution has a considerably small value of the convective heat transfer coefficient h c because the velocity of the hot air flowing near the fin wall surface becomes considerably small. On the other hand, in the case of a flow with a flat velocity distribution such as turbulent flow, the convective heat transfer coefficient h c is large, and therefore turbulent flow is more advantageous for increasing the cooling capacity. However, in practice, the Reynolds number Re
Setting the value to 2000 or more is difficult.

【0012】なお図3に示すように、放熱フィンにはそ
の根元からフィン先端にわたって温度勾配が生じるか
ら、温度が一様である時との差を補正するために、前記
(1)式においてフィン効率ηが使われている。フィン
効率ηは、次式(3)で表される。
As shown in FIG. 3, since a temperature gradient occurs in the radiating fin from the root to the tip of the fin, in order to correct the difference with the temperature when the temperature is uniform, the fin in equation (1) is corrected. Efficiency η is used. The fin efficiency η is expressed by the following equation (3).

【0013】[0013]

【数3】 [Equation 3]

【0014】前記(1)式により、熱抵抗θが増加しな
い高性能の放熱フィンを得るには、流体(空気)の比熱
p とフィン効率ηが一定であるなら、対流熱伝達率h
c またはフィン表面積Aまたは流量Wを大きくする必要
があることがわかる。ここで流量Wは送風ファンの能力
に依存し、送風ファンはその大きさや容量に制限を受け
るため、流量Wを高めるにはおのずと限界がある。
According to the equation (1), in order to obtain a high-performance radiating fin in which the thermal resistance θ does not increase, if the specific heat C p of the fluid (air) and the fin efficiency η are constant, the convective heat transfer coefficient h
It can be seen that it is necessary to increase the c or the fin surface area A or the flow rate W. Here, the flow rate W depends on the capacity of the blower fan, and the blower fan is limited in its size and capacity, so there is naturally a limit to increasing the flow rate W.

【0015】一方、フィン表面積Aを大きくするには、
フィンを薄くするとともにフィン間すきま(ダクト幅
a)を小さくしてフィン数を増加させるとか、フィン高
さ(ダクト高さb)とフィン長さ(ダクト長L)を大き
くするなどの対策が考えられるが、ダクト幅aを小さく
したりダクト長Lを長くすることは流体の粘性による圧
力損失を増大させる原因になるため好ましくない場合も
ある。
On the other hand, to increase the fin surface area A,
Measures such as thinning the fins and reducing the clearance between fins (duct width a) to increase the number of fins or increasing fin height (duct height b) and fin length (duct length L) are considered. However, reducing the duct width a or increasing the duct length L may cause an increase in pressure loss due to the viscosity of the fluid, which is not preferable in some cases.

【0016】つまり、図4に示すように圧力損失の増大
は流量の減少を招くため、ダクト幅aとフィン厚を小さ
くしてフィン表面積Aを増大させた場合、前述した熱抵
抗θは、計算上は図5に実線で示すように、ダクト幅と
の関係で表すと最小値をもつ曲線となり、ある特定のダ
クト幅の時に最小値をとるようになる。
That is, as shown in FIG. 4, an increase in pressure loss leads to a decrease in flow rate. Therefore, when the duct width a and the fin thickness are reduced to increase the fin surface area A, the above-mentioned thermal resistance θ is calculated. As shown by the solid line in FIG. 5, the upper part is a curve having the minimum value when expressed in relation to the duct width, and takes the minimum value at a certain specific duct width.

【0017】ところが本発明者らが行った実験によれ
ば、図5中に白丸で示したように、ダクト幅が狭い場合
には計算値と実験値は一致したが、ダクト幅が大きくな
るにつれて、熱抵抗θの実験値は計算値に比べてかなり
小さな値となり、計算値よりも放熱性が良好になること
が判明した。このような現象が現れる原因について調査
したところ、以下に説明するように対流熱伝達率hc
大きく関与していることがわかった。
However, according to the experiment conducted by the present inventors, as indicated by the white circles in FIG. 5, the calculated value and the experimental value are in agreement when the duct width is narrow, but as the duct width increases, The experimental value of the thermal resistance θ was considerably smaller than the calculated value, and it was found that the heat dissipation was better than the calculated value. As a result of investigating the cause of such a phenomenon, it was found that the convective heat transfer coefficient h c is greatly involved as described below.

【0018】すなわち本発明者らは、下記表1に示す4
グループの試作品で18種(No.1〜No.18)に
ついて、対流熱伝達率hc の実験値と計算値とを求めた
ところ、表2に示す結果が得られた。
That is, the inventors of the present invention have shown 4 in Table 1 below.
Experimental results and calculated values of the convection heat transfer coefficient h c were obtained for 18 kinds (No. 1 to No. 18) of prototypes of the group, and the results shown in Table 2 were obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】図6は、表2に示されたNo.1〜No.
18の各データについて、横軸に助走距離Leとダクト
長Lとの比(Le/L)をとり、縦軸にhc 実験値とh
c 計算値との比(hc 実験値/hc 計算値)をとって、
表2のデータを整理したものである。なお、助走距離L
eについては後述する。
FIG. 6 shows No. 1 shown in Table 2. 1-No.
For each data of 18, the horizontal axis is the ratio (Le / L) of the running distance Le and the duct length L, and the vertical axis is the h c experimental value and h
Taking the ratio with the calculated value of c (h c experimental value / h c calculated value),
This is a summary of the data in Table 2. In addition, run-up distance L
e will be described later.

【0022】図6に示されように、hc 実験値とhc
算値との比は、助走距離Leとダクト長Lの比に対し
て、ほぼ線形(リニヤ)な関係にある。このような関係
が生じる理由はおよそ次に述べるようなことであると推
測される。
As shown in FIG. 6, the ratio between the h c experimental value and the h c calculated value has a substantially linear relationship with the ratio between the running distance Le and the duct length L. It is assumed that the reason why such a relationship occurs is as follows.

【0023】通常、ヒートシンク装置のダクト部に入っ
てくる空気は、前述のようにレイノルズ数的には層流で
ある。そしてhc 計算値は完全な層流が生じることを前
提として計算されている。しかしながら実際には、図7
に模式的に示すように、ダクト部に導入された空気はダ
クト入口からいきなり層流になるのではなく、完全な層
流が完成されるにはある程度の長さの助走距離Leが必
要である。この助走距離Leは、近似的にLe=0.0
65Re・D で表される。
Normally, the air that enters the duct portion of the heat sink device is a laminar flow in terms of Reynolds number as described above. The calculated value of h c is calculated on the assumption that a perfect laminar flow occurs. However, in reality, FIG.
As shown schematically in FIG. 4, the air introduced into the duct does not suddenly become a laminar flow from the duct inlet, but a certain length of run-up distance Le is required to complete a complete laminar flow. . The approach distance Le is approximately Le = 0.0.
It is represented by 65Re · D.

【0024】本発明者らは、助走距離Leとダクト長L
との比(Le/L)が対流熱伝達率hc に与える影響を
調査したところ、前述の図6に示されるように、Le/
Lが2付近を越えるあたりから、対流熱伝達率hc の実
験値が計算値を越えるようになることを突き止めた。デ
ータのばらつきを考慮しても、Le/Lが3以上であれ
ば、対流熱伝達率hc の実験値は計算値よりも確実に良
い結果が得られる。
The present inventors have found that the run-up distance Le and the duct length L
When the influence of the ratio (Le / L) to the convective heat transfer coefficient h c is investigated, as shown in FIG.
It was found that the experimental value of the convection heat transfer coefficient h c exceeds the calculated value when L exceeds about 2. Even if the variation of data is taken into consideration, if Le / L is 3 or more, the experimental value of the convective heat transfer coefficient h c is certainly better than the calculated value.

【0025】しかしながら、Le/Lが10を越えると
傾きが小さくなることから、対流熱伝達率hc の実験値
と計算値の比の上限は、図6より、2.6〜3の間にあ
ると推定され、Le/Lが15を越える範囲では対流熱
伝達率hc の促進の効果は小さい。
However, since the slope becomes smaller when Le / L exceeds 10, the upper limit of the ratio between the experimental value and the calculated value of the convective heat transfer coefficient h c is from 2.6 to 3 according to FIG. It is estimated that there is, and in the range where Le / L exceeds 15, the effect of promoting the convective heat transfer coefficient h c is small.

【0026】従って、放熱フィンの冷却効率を高めるた
めに開発された本発明のヒートシンク装置は、ダクト幅
をa、ダクト高さb、ダクト長をLとし、このダクト部
の水力学的直径Dを2ab/(a+b)で表したとき、
このダクト部を通る空気流のレイノルズ数Reが層流と
なるような平均流速Vあるいは上記Dの値を設定すると
ともに、上記空気流がダクト部に導入されてから層流を
完成するのに必要な助走距離Leとダクト長Lとの比
(Le/L)を3以上としたことを特徴とするヒートシ
ンク装置である。なお、放熱フィンは平行フィンをピン
状に分割した柱状のものであってもかまわない。
Therefore, in the heat sink device of the present invention developed to enhance the cooling efficiency of the radiation fins, the duct width is a, the duct height is b, and the duct length is L, and the hydraulic diameter D of this duct portion is When expressed by 2ab / (a + b),
It is necessary to set the average flow velocity V or the value of D so that the Reynolds number Re of the air flow passing through the duct becomes a laminar flow, and to complete the laminar flow after the air flow is introduced into the duct. The heat sink device is characterized in that the ratio (Le / L) between the running distance Le and the duct length L is 3 or more. The heat radiation fin may be a columnar shape in which parallel fins are divided into pins.

【0027】[0027]

【作用】ファンの回転によって生じる空気流は、放熱フ
ィン間のダクト部を通り、フィン壁面に接しつつフィン
の熱を奪いながら流れることにより、熱を持ち去る。上
記空気流は、レイノルズ数的には層流が生じる条件であ
るが、本発明では助走距離Leとダクト長Lとの比を前
述の値以上に設定したことにより、フィン壁面付近の高
温空気も十分な流速が得られ、熱抵抗θが小さなものと
なる。
The airflow generated by the rotation of the fan flows through the duct portion between the radiating fins while contacting the fin wall surface and removing the heat of the fins, thereby carrying away the heat. The above-described air flow is a condition that a laminar flow occurs in terms of Reynolds number, but in the present invention, the high-temperature air near the fin wall surface is also set by setting the ratio of the approach distance Le and the duct length L to the above value or more. A sufficient flow velocity can be obtained, and the thermal resistance θ becomes small.

【0028】なお、ファンによって生じさせた空気流を
ダクト部に効率的に導くためには、放熱フィンの先端側
にフィンカバーを設けることが有効である。また、放熱
フィンはフィンの根元部からフィン先端側に向って厚み
が漸減するようなテーパ状にすることにより、フィン効
率ηを高めたり、あるいは放熱フィンのダクト入口側の
端部を流線形に尖らせることによって、ダクト部におけ
る圧力損失を減らすことも有効となりえる。
In order to efficiently guide the air flow generated by the fan to the duct portion, it is effective to provide a fin cover on the tip side of the heat radiation fin. In addition, the heat radiation fin is tapered so that the thickness gradually decreases from the root of the fin toward the tip of the fin, so that the fin efficiency η is increased or the end of the heat radiation fin on the duct inlet side is streamlined. By sharpening it can also be effective to reduce the pressure loss in the duct.

【0029】[0029]

【実施例】以下に本発明の実施例について、図8〜図1
0を参照して説明する。図8に示したICパッケージ1
0は、例えばピングリッドアレイIC等の発熱素子11
にファン一体型のヒートシンク装置12を設けたもので
ある。発熱素子11は、基板13とIC本体14とピン
15などを備えている。このヒートシンク装置12に
は、フィン本体20の内側に送風用のファン21が一体
的に設けられている。
EXAMPLES Examples of the present invention will be described below with reference to FIGS.
This will be described with reference to 0. IC package 1 shown in FIG.
0 is a heating element 11 such as a pin grid array IC
The heat sink device 12 integrated with the fan is provided in the. The heating element 11 includes a substrate 13, an IC body 14, pins 15 and the like. The heat sink device 12 is integrally provided with a fan 21 for blowing air inside the fin body 20.

【0030】図9に示されるように、フィン本体20
は、ファン21の四周を囲むように設けられた多数の放
熱フィン22を有している。放熱フィン22の上面側は
フィンカバー23によって覆われている。放熱フィン2
2は互いに平行に配置されており、放熱フィン22の間
にダクト部30が形成されている。フィン本体20の材
料としては、アルミニウム合金あるいは銅のように熱伝
導率の小さい金属が適している。
As shown in FIG. 9, the fin body 20
Has a large number of heat radiation fins 22 provided so as to surround the four circumferences of the fan 21. The upper surface side of the radiation fin 22 is covered with a fin cover 23. Radiating fin 2
2 are arranged in parallel to each other, and a duct portion 30 is formed between the radiation fins 22. As a material of the fin body 20, a metal having a small thermal conductivity such as an aluminum alloy or copper is suitable.

【0031】図10に示されるように、フィン本体20
にモータ基板35と軸36などが設けられており、モー
タ基板35に設けられたコイルとマグネットによってフ
ァン21のブレード37が回転駆動されるようになって
いる。
As shown in FIG. 10, the fin body 20
A motor board 35 and a shaft 36 are provided in the motor board 35, and the blade 37 of the fan 21 is rotationally driven by a coil and a magnet provided on the motor board 35.

【0032】ヒートシンク装置12は、ダクト部30の
ダクト幅をa、ダクト高さをb、ダクト長をLとした
時、ダクト部30を通る空気流のレイノルズ数Reが2
000以下となるように平均流速Vと流体力学的直径D
[D=2ab/(a+b)]の値を設定するとともに、
前述した理由により、助走距離Le(Le=0.065
Re・D)とダクト長Lとの比(Le/L)を3以上と
している。
In the heat sink device 12, when the duct width of the duct portion 30 is a, the duct height is b, and the duct length is L, the Reynolds number Re of the air flow passing through the duct portion 30 is 2
The average flow velocity V and the hydrodynamic diameter D should be less than 000.
While setting the value of [D = 2ab / (a + b)],
For the reasons described above, the approach distance Le (Le = 0.065
The ratio (Re / L) of Re · D) to the duct length L is 3 or more.

【0033】例えば前記表1,2中に記載のNo.8を
実施例として採用する場合、ダクト幅a:0.6mm、ダ
クト高さb:8mm、ダクト長L:5mm、D=0.111
6、ダクト数120、表面積A:103.2cm2 、R
e:233である。この時の助走距離Leは16.91
2mmであるから、Le/Lは約3.38である。この場
合、実際の対流熱伝達率hc は前記(1)式による計算
値よりも30%程度高くなっている。そしてNo.8よ
りもLe/Lが大きいNo.9〜No.14は全てhc
実験値がhc 計算値を大幅に上回っており、ばらつきを
考慮しても、確実に計算値よりも冷却効率の向上が図れ
ることになった。
For example, Nos. When 8 is adopted as an example, duct width a: 0.6 mm, duct height b: 8 mm, duct length L: 5 mm, D = 0.111.
6, duct number 120, surface area A: 103.2 cm 2 , R
e: 233. The running distance Le at this time is 16.91.
Since it is 2 mm, Le / L is about 3.38. In this case, the actual convection heat transfer coefficient h c is about 30% higher than the value calculated by the equation (1). And No. No. 8 in which Le / L is larger than 8 9-No. 14 is all h c
The experimental value is significantly higher than the calculated value h c, and even if the variation is taken into consideration, the cooling efficiency can be certainly improved over the calculated value.

【0034】上記構成のヒートシンク装置12を有する
ICパッケージ10は、ファン21が回転することによ
り、図10中の上方から吸入された空気がファン21の
径方向に吐出されて放熱フィン22に送られ、この空気
流がダクト部30を通ることによって放熱フィン22が
冷却される。
In the IC package 10 having the heat sink device 12 having the above-described structure, the fan 21 is rotated so that the air sucked from above in FIG. 10 is discharged in the radial direction of the fan 21 and sent to the radiation fin 22. The radiating fins 22 are cooled by the air flow passing through the duct portion 30.

【0035】ダクト部30を通る空気流の平均流速は2
00〜750cm/sec であり、レイノルズ数的には層
流が生じる条件であるが、このヒートシンク装置12に
おいては、層流が完成される前の空気流(速度分布がフ
ラットに近い状態)がダクト部30を流れるため、フィ
ン壁面に接する高温空気の流速がほとんど減少せず、効
率良く放熱フィン22の熱を持ち去ることができる。
The average velocity of the air flow through the duct portion 30 is 2
It is from 0 to 750 cm / sec, which is a condition that a Reynolds number causes a laminar flow. However, in this heat sink device 12, the air flow (the velocity distribution is almost flat) before the laminar flow is completed is a duct. Since the air flows through the portion 30, the flow velocity of the high temperature air in contact with the fin wall surface is hardly reduced, and the heat of the heat radiation fin 22 can be efficiently removed.

【0036】なお、図11に示すように、放熱フィン2
2の根元部からフィン先端側に向ってフィン幅が漸減す
るようなテーパ形状とすることにより、フィン効率ηを
低くすることも効果的である。あるいは図12に示した
放熱フィン22のように、フィン22のダクト入口側の
端部を流線形にすることで、ダクト部30の圧力損失を
減らすようにしてもよい。また、図13に示すように、
ファンを収容するための凹部40と放熱フィン22との
間に、ピン状のフィン41を配置したり、あるいはファ
ンのブレードの下部に同様のフィンを配置することによ
り、表面積を増やして冷却効率を更に高めるようにして
もよい。
As shown in FIG. 11, the radiation fins 2
It is also effective to reduce the fin efficiency η by forming a tapered shape in which the fin width gradually decreases from the root portion of 2 toward the fin tip side. Alternatively, as in the radiation fin 22 shown in FIG. 12, the end portion of the fin 22 on the duct inlet side may be streamlined to reduce the pressure loss of the duct portion 30. Also, as shown in FIG.
By disposing a pin-shaped fin 41 between the recess 40 for accommodating the fan and the radiation fin 22, or by disposing a similar fin under the blade of the fan, the surface area is increased and the cooling efficiency is improved. It may be further increased.

【0037】[0037]

【発明の効果】本発明によれば、ダクト部におけるフィ
ン壁面近傍の空気流を好ましい状態にすることができ、
対流熱伝達率を十分大きくすることができるため冷却効
率が高く、従ってフィンまわりの空気に伝達される熱量
が多く、放熱フィンによる冷却能力を高めることができ
る。
According to the present invention, the air flow in the vicinity of the fin wall surface in the duct portion can be made into a preferable state,
Since the convective heat transfer coefficient can be made sufficiently large, the cooling efficiency is high, and therefore the amount of heat transferred to the air around the fins is large, and the cooling capacity by the heat radiation fins can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明するためのヒートシンク装置を概
念的に示す側面図。
FIG. 1 is a side view conceptually showing a heat sink device for explaining the present invention.

【図2】図1中のII−II線に沿う断面図。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】放熱フィンの温度分布を示す図。FIG. 3 is a diagram showing a temperature distribution of a radiation fin.

【図4】流量と静圧との関係を示す図。FIG. 4 is a diagram showing the relationship between flow rate and static pressure.

【図5】ダクト幅と熱抵抗との関係を示す図。FIG. 5 is a diagram showing a relationship between duct width and thermal resistance.

【図6】助走距離/ダクト長とhc 実験値/hc 計算値
との関係を示す図。
FIG. 6 is a diagram showing a relationship between approach distance / duct length and h c experimental value / h c calculated value.

【図7】ダクト部における助走距離と速度分布を模式的
に示す図。
FIG. 7 is a diagram schematically showing an approach distance and a velocity distribution in a duct portion.

【図8】本発明の一実施例を示すヒートシンク装置付き
ICパッケージの正面図。
FIG. 8 is a front view of an IC package with a heat sink device showing an embodiment of the present invention.

【図9】図8に示されたICパッケージに使われるヒー
トシンク装置の平面図。
9 is a plan view of a heat sink device used in the IC package shown in FIG.

【図10】図9に示されたヒートシンク装置の断面図。10 is a cross-sectional view of the heat sink device shown in FIG.

【図11】放熱フィンの変形例を示す断面図。FIG. 11 is a cross-sectional view showing a modified example of the radiation fin.

【図12】放熱フィンの更に別の変形例を示す断面図。FIG. 12 is a cross-sectional view showing still another modification of the radiation fin.

【図13】本発明の他の実施例を示すヒートシンク装置
のフィン本体の平面図。
FIG. 13 is a plan view of a fin body of a heat sink device showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…ICパッケージ 11…発熱素子 12…ヒートシンク装置 21…ファン 22…放熱フィン 30…ダクト部 10 ... IC package 11 ... Heating element 12 ... Heat sink device 21 ... Fan 22 ... Radiating fin 30 ... Duct part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の放熱フィンの間に空気流通用のダク
ト部を形成し、ファンによって生じる空気流を上記ダク
ト部に流通させるようにしたヒートシンク装置におい
て、 上記ダクト部のダクト幅をa、ダクト高さb、ダクト長
をLとし、このダクト部の水力学的直径Dを2ab/
(a+b)で表したとき、このダクト部を通る空気流の
レイノルズ数Reが層流となるような平均流速Vあるい
は上記Dの値を設定するとともに、上記空気流がダクト
部に導入されてから層流を完成するのに必要な助走距離
Leとダクト長Lとの比(Le/L)を3以上としたこ
とを特徴とするヒートシンク装置。
1. A heat sink device in which a duct portion for air circulation is formed between a plurality of heat dissipating fins so that an air flow generated by a fan is circulated through the duct portion, and the duct width of the duct portion is a. With the duct height b and the duct length L, the hydraulic diameter D of this duct is 2ab /
When represented by (a + b), the average flow velocity V or the value of D is set so that the Reynolds number Re of the air flow passing through this duct becomes a laminar flow, and after the air flow is introduced into the duct. A heat sink device characterized in that a ratio (Le / L) of an approach distance Le and a duct length L required to complete a laminar flow is set to 3 or more.
【請求項2】上記ファンの周囲に、平行に延びる多数の
放熱フィンを設け、上記ファンによって吸入した空気を
ファンの径方向に吐出して上記ダクト部に流すようにし
た請求項1記載のヒートシンク装置。
2. The heat sink according to claim 1, wherein a large number of heat radiation fins extending in parallel are provided around the fan, and air sucked by the fan is discharged in a radial direction of the fan to flow into the duct portion. apparatus.
【請求項3】上記放熱フィンは、フィン根元部からフィ
ン先端部に向って厚みが漸減するようなテーパ状をなし
ている請求項1記載の被検出物。
3. The object to be detected according to claim 1, wherein the heat radiation fin is tapered so that the thickness thereof gradually decreases from the fin root portion toward the fin tip portion.
JP5326459A 1993-12-24 1993-12-24 Heat sink apparatus Pending JPH07183678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5326459A JPH07183678A (en) 1993-12-24 1993-12-24 Heat sink apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5326459A JPH07183678A (en) 1993-12-24 1993-12-24 Heat sink apparatus

Publications (1)

Publication Number Publication Date
JPH07183678A true JPH07183678A (en) 1995-07-21

Family

ID=18188051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5326459A Pending JPH07183678A (en) 1993-12-24 1993-12-24 Heat sink apparatus

Country Status (1)

Country Link
JP (1) JPH07183678A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102504A (en) * 1999-10-01 2001-04-13 Mitsubishi Electric Corp Control device
JP2001267771A (en) * 2000-03-17 2001-09-28 Hitachi Ltd Electronic apparatus
EP1478020A1 (en) * 2003-05-14 2004-11-17 Thomson Licensing S.A. Streamline heat sink and method for manufacturing the heat sink
EP1478019A1 (en) * 2003-05-14 2004-11-17 Thomson Licensing S.A. Streamline heat sink and method for manufacturing the heat sink
JP2005166923A (en) * 2003-12-02 2005-06-23 Yaskawa Electric Corp Cooler for electronic apparatus
JP2005215289A (en) * 2004-01-29 2005-08-11 Kyocera Mita Corp Image forming apparatus
US7760506B1 (en) * 2007-06-06 2010-07-20 Hewlett-Packard Development Company, L.P. Electronic components, systems and apparatus with air flow devices
JP2016149567A (en) * 2016-03-29 2016-08-18 株式会社新川 Heater for bonding device, heater assembly for bonding device, and bonding device
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
KR102234986B1 (en) * 2019-10-15 2021-04-01 세메스 주식회사 Apparatus and method for treating substrate
US11395443B2 (en) 2020-05-11 2022-07-19 Coolit Systems, Inc. Liquid pumping units, and related systems and methods
US11452243B2 (en) 2017-10-12 2022-09-20 Coolit Systems, Inc. Cooling system, controllers and methods
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102504A (en) * 1999-10-01 2001-04-13 Mitsubishi Electric Corp Control device
JP2001267771A (en) * 2000-03-17 2001-09-28 Hitachi Ltd Electronic apparatus
EP1478020A1 (en) * 2003-05-14 2004-11-17 Thomson Licensing S.A. Streamline heat sink and method for manufacturing the heat sink
EP1478019A1 (en) * 2003-05-14 2004-11-17 Thomson Licensing S.A. Streamline heat sink and method for manufacturing the heat sink
JP2005166923A (en) * 2003-12-02 2005-06-23 Yaskawa Electric Corp Cooler for electronic apparatus
JP2005215289A (en) * 2004-01-29 2005-08-11 Kyocera Mita Corp Image forming apparatus
US7760506B1 (en) * 2007-06-06 2010-07-20 Hewlett-Packard Development Company, L.P. Electronic components, systems and apparatus with air flow devices
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
US11714432B2 (en) 2011-08-11 2023-08-01 Coolit Systems, Inc. Flow-path controllers and related systems
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US11661936B2 (en) 2013-03-15 2023-05-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
JP2016149567A (en) * 2016-03-29 2016-08-18 株式会社新川 Heater for bonding device, heater assembly for bonding device, and bonding device
US11452243B2 (en) 2017-10-12 2022-09-20 Coolit Systems, Inc. Cooling system, controllers and methods
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11725890B2 (en) 2019-04-25 2023-08-15 Coolit Systems, Inc. Cooling module with leak detector and related systems
KR102234986B1 (en) * 2019-10-15 2021-04-01 세메스 주식회사 Apparatus and method for treating substrate
US11395443B2 (en) 2020-05-11 2022-07-19 Coolit Systems, Inc. Liquid pumping units, and related systems and methods

Similar Documents

Publication Publication Date Title
JPH07183678A (en) Heat sink apparatus
US5781411A (en) Heat sink utilizing the chimney effect
TWI326404B (en) Embedded heat pipe in a hybrid cooling system
JP2012521657A (en) Grid heat sink
KR102166190B1 (en) Fractal heat transfer device
US7213636B2 (en) Cooling assembly with impingement cooled heat sink
TWI251462B (en) Heat dissipation device
JP2010152886A (en) Device and method for cooling heat-generating computer component
US20230154821A1 (en) Heat sink with turbulent structures
JPH08288438A (en) Cooling device for electronic equipment
US20140352937A1 (en) Injection plate for microstructure water cooling units for an electrical or electronic component
US6913069B2 (en) Cooling device having fins arranged to funnel air
KR20210079366A (en) Heatsink with air compartment baffles
JP2007281213A (en) Heat sink module and cooling apparatus having the same
JP2012059741A (en) Cooling device for electronic components
JP4294002B2 (en) Heat dissipation device
US20190033930A1 (en) Cooling device for use in heat dissipation associated with electronic components
JP2017069522A (en) Cold plate
JP3992953B2 (en) heatsink
JP3953194B2 (en) heatsink
Yang et al. An in-situ performance test of liquid cooling for a server computer system
Pouryoussefi et al. Experimental study of air-cooled parallel plate fin heat sinks with and without circular pin fins between the plate fins
TWI363594B (en)
JP2003243586A (en) Air-cooled heat sink
Kawamura et al. Influence of fan setting height on the cooling performance of a plate‐fin‐type heat sink with microprocessor