JPH07174974A - Illuminator and projection type display device - Google Patents

Illuminator and projection type display device

Info

Publication number
JPH07174974A
JPH07174974A JP5322716A JP32271693A JPH07174974A JP H07174974 A JPH07174974 A JP H07174974A JP 5322716 A JP5322716 A JP 5322716A JP 32271693 A JP32271693 A JP 32271693A JP H07174974 A JPH07174974 A JP H07174974A
Authority
JP
Japan
Prior art keywords
lens
light source
reflector
optical element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5322716A
Other languages
Japanese (ja)
Other versions
JP3508190B2 (en
Inventor
Tadaaki Nakayama
唯哲 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP32271693A priority Critical patent/JP3508190B2/en
Publication of JPH07174974A publication Critical patent/JPH07174974A/en
Application granted granted Critical
Publication of JP3508190B2 publication Critical patent/JP3508190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To obtain an illuminator in which the loss of light quantity is small and whose secondary light source is small in size by arranging an aspherical lens on the luminous flux incident side of an integrator. CONSTITUTION:The illuminator is constituted by including a light source lamp 101, a reflector 102, and a uniform illuminating optical element consisting of two lens plates 103 and 104 where plural spherical lenses are planarly arranged. In such constitution, the aspherical lens 201 is arranged between the reflector 102 and the uniform illuminating optical element. The lamp 101 is a light source proximate to a point light source such as a halogen lamp, etc., and the luminous flux radiated therefrom is unidirectionally reflected by the reflector 102. As to the shape of the reflector 102, the inclination of each part on its cross section is consecutively decided by calculation, so that it can not be expressed by an easy numerical expression like a parabola and an ellipse but expressed approximately in a high-order function. The reflected luminous flux is made incident on the lens 201 next and the main light beam of the luminous flux made incident on the respective parts of the lens 201 is angularly changed in a direction parallel with an optical axis 203.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、矩形形状に均一照明を
行なう照明装置及び、液晶パネル等の映像をスクリーン
上に拡大表示する投写型表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lighting device for uniformly illuminating a rectangular shape and a projection type display device for enlarging and displaying an image on a liquid crystal panel or the like on a screen.

【0002】[0002]

【従来の技術】対象とする領域を均一に照明する方法と
して、2枚のレンズ板で構成される均一照明光学素子を
用いる方法があり、一般にはインテグレータ照明系と呼
ばれている。その構成例を図1(A)に示す。光源ラン
プ101からの放射光はリフレクタ102で反射され、
ほぼ平行に出射した光束は、複数の球面レンズがマトリ
ックス状に配置された2枚のレンズ板103,104を
通過し、さらに補助レンズ105を通過して照明対象1
06を均一に照明する。ここでは、第1のレンズ板10
3は複数の矩形形状のレンズで構成され、各矩形レンズ
は第2のレンズ板104内の対応する矩形レンズの中心
に光源の像を形成する。そして、第1のレンズ板103
の各矩形レンズの像が第2のレンズ板104と補助レン
ズ105の働きによって、照明対象106上に重畳結像
される。従って、照明対象106は第1のレンズ板10
3の矩形レンズと相似な矩形形状で照明される。なお、
ここでは第1のレンズ板103と第2のレンズ板104
は同じものが用いられ、各矩形レンズの焦点距離は、両
者間の距離に等しい。また、補助レンズ105の焦点距
離は補助レンズ105と照明対象106間の距離に等し
い。
2. Description of the Related Art As a method of uniformly illuminating a target area, there is a method of using a uniform illumination optical element composed of two lens plates, which is generally called an integrator illumination system. An example of the structure is shown in FIG. The light emitted from the light source lamp 101 is reflected by the reflector 102,
The light flux emitted substantially in parallel passes through two lens plates 103 and 104 in which a plurality of spherical lenses are arranged in a matrix, and further passes through an auxiliary lens 105 to be illuminated 1
Illuminate 06 evenly. Here, the first lens plate 10
3 is composed of a plurality of rectangular lenses, and each rectangular lens forms an image of the light source at the center of the corresponding rectangular lens in the second lens plate 104. Then, the first lens plate 103
The images of the respective rectangular lenses are formed on the illumination target 106 in an overlapping manner by the functions of the second lens plate 104 and the auxiliary lens 105. Therefore, the illumination target 106 is the first lens plate 10
Illuminated in a rectangular shape similar to the rectangular lens of No. 3. In addition,
Here, the first lens plate 103 and the second lens plate 104
Are the same, and the focal length of each rectangular lens is equal to the distance between them. The focal length of the auxiliary lens 105 is equal to the distance between the auxiliary lens 105 and the illumination target 106.

【0003】インテグレータ照明系は、従来から露光機
や投写型表示装置の照明系に用いられており、最近では
特に液晶パネルの映像を投写表示する液晶プロジェクタ
ーの照明系に用いられている。液晶プロジェクターにお
ける具体的な方法は、特開平3−111806号公報に
詳しく述べられている。
The integrator illumination system has been conventionally used for an illumination system of an exposure machine or a projection type display device, and recently, it has been particularly used for an illumination system of a liquid crystal projector for projecting and displaying an image on a liquid crystal panel. A specific method for the liquid crystal projector is described in detail in Japanese Patent Laid-Open No. 3-111806.

【0004】従来のインテグレータ照明系に用いられる
リフレクタは、球面形状や回転放物面、また回転楕円面
や回転双曲面が用いられ、反射された光束は直接あるい
は球面レンズを通した後、第1のレンズ板に入射されて
いた。
A reflector used in a conventional integrator illumination system has a spherical shape, a paraboloid of revolution, a spheroid of revolution, or a hyperboloid of revolution. The reflected light beam is directly or after passing through a spherical lens. Had been incident on the lens plate.

【0005】[0005]

【発明が解決しようとする課題】ところが上述の方法で
は、第1のレンズ板に入射する光束の角度分布が各レン
ズごとに異なっており、一般に入射光束の中心部ほど角
度のばらつきが大きいため、第2のレンズ板の中心部で
光量損失を生じるという問題点があった。つまり、図1
(B)に示されるように、第2のレンズ板104上にで
きる光源像は、レンズ板の中心付近にできるものほど大
きくなり、中心部の光源像107はその周辺部分が矩形
レンズ内に納まりきらないため、光量の損失となってい
た。また、第2のレンズ板の周辺部にできる光源像10
8は非常に小さいため、隣合う光源像との間にかなりの
隙間が生じ、第2のレンズ板上の見かけの光源、すなわ
ち2次光源全体の大きさが必要以上に大きくなってい
た。
However, in the above method, the angular distribution of the light beam incident on the first lens plate is different for each lens, and in general, the central portion of the incident light beam has a large angle variation. There is a problem that a light amount loss occurs at the central portion of the second lens plate. That is, FIG.
As shown in (B), the light source image formed on the second lens plate 104 becomes larger as it is formed near the center of the lens plate, and the light source image 107 at the center has the peripheral portion within the rectangular lens. Since it could not be cut off, there was a loss of light. In addition, the light source image 10 formed on the periphery of the second lens plate 10
Since 8 is very small, a considerable gap was generated between adjacent light source images, and the apparent light source on the second lens plate, that is, the entire secondary light source was unnecessarily large.

【0006】そこで、本発明はこのような問題点を解決
するもので、その目的とするところは、インテグレータ
を用いた照明系において、光量損失が非常に少なく2次
光源のサイズが小さい照明装置を提供することである。
また、液晶プロジェクターの照明光学系においてこの照
明装置を適用し、小型でありながら光利用効率の高い投
写型表示装置を提供することである。
Therefore, the present invention solves such a problem, and an object of the present invention is to provide an illumination system using an integrator, which has a very small light quantity loss and a small secondary light source. Is to provide.
Further, it is another object of the present invention to provide a projection display device that is small in size and has high light utilization efficiency by applying the lighting device to an illumination optical system of a liquid crystal projector.

【0007】[0007]

【課題を解決するための手段】本発明の照明装置は、光
源ランプと、前記光源ランプからの放射光束を一方向に
反射するリフレクタと、複数の球面レンズを平面的に配
置した2枚のレンズ板による均一照明光学素子とを含ん
で構成される照明装置において、前記リフレクタと前記
均一照明光学素子の間に、非球面レンズを配したことを
特徴とする。
SUMMARY OF THE INVENTION An illumination device according to the present invention comprises a light source lamp, a reflector for reflecting a light beam emitted from the light source lamp in one direction, and two lenses in which a plurality of spherical lenses are two-dimensionally arranged. In an illumination device including a plate-based uniform illumination optical element, an aspherical lens is arranged between the reflector and the uniform illumination optical element.

【0008】また、前記均一照明光学素子が、複数の矩
形レンズを隙間なく平面的に配置した第1のレンズ板
と、前記第1のレンズ板に含まれる矩形レンズと同数の
矩形レンズを隙間なく平面的に配置した第2のレンズ板
とで構成されることを特徴とする。
In the uniform illumination optical element, the first lens plate in which a plurality of rectangular lenses are two-dimensionally arranged without a gap and the same number of rectangular lenses as the rectangular lenses included in the first lens plate are provided without a gap. It is characterized in that it is composed of a second lens plate arranged in a plane.

【0009】また、前記均一照明光学素子が、複数の矩
形レンズを隙間なく平面的に配置した第1のレンズ板
と、前記第1のレンズ板に含まれる矩形レンズと同数の
6角形のレンズを隙間なく平面的に配置した第2のレン
ズ板とで構成されることを特徴とする。
Further, the uniform illumination optical element includes a first lens plate in which a plurality of rectangular lenses are arranged in a plane without a gap, and a hexagonal lens in the same number as the rectangular lenses included in the first lens plate. It is characterized in that it is configured with a second lens plate arranged in a plane without a gap.

【0010】また、前記均一照明光学素子が、複数の矩
形レンズを隙間なく平面的に配置した第1のレンズ板
と、前記第1のレンズ板に含まれる矩形レンズと同数の
菱形のレンズを隙間なく平面的に配置した第2のレンズ
板とで構成されることを特徴とする。
Further, the uniform illumination optical element has a gap between a first lens plate having a plurality of rectangular lenses arranged in a plane without gaps and a diamond-shaped lens having the same number as the rectangular lenses included in the first lens plate. And a second lens plate arranged in a plane.

【0011】また、光源ランプと、前記光源ランプから
の放射光束を一方向に反射するリフレクタと、複数のシ
リンドリカルレンズを平面配置した4枚のレンズ板によ
る均一照明光学素子とを含んで構成される照明装置にお
いて、前記リフレクタと前記均一照明光学素子の間に、
非球面レンズを配したことを特徴とする。
Further, the light source lamp includes a light source lamp, a reflector for reflecting a light beam emitted from the light source lamp in one direction, and a uniform illumination optical element having four lens plates on which a plurality of cylindrical lenses are arranged in a plane. In the illumination device, between the reflector and the uniform illumination optical element,
It is characterized by arranging an aspherical lens.

【0012】また、前記均一照明光学素子を構成する4
枚のレンズ板の2枚づつを一体化し、2枚のレンズ板と
したことを特徴とする。
The uniform illumination optical element 4 is constructed.
The present invention is characterized in that two lens plates are integrated to form two lens plates.

【0013】また、前記均一照明光学素子に含まれる各
レンズ板を屈折率分布型のシリンドリカルレンズで構成
したことを特徴とする。
Further, each lens plate included in the uniform illumination optical element is constituted by a gradient index type cylindrical lens.

【0014】本発明の投写型表示装置は、照明装置と、
前記照明装置からの光束を変調して画像情報を含ませる
変調手段と、変調された光束をスクリーン上に投写表示
する投写光学系とを含んで構成される投写型表示装置に
おいて、前記照明装置は、光源ランプと、前記光源ラン
プからの放射光束を一方向に反射するリフレクタと、複
数の球面レンズを平面的に配置した2枚のレンズ板によ
る均一照明光学素子とを含んで構成され、前記リフレク
タと前記均一照明光学素子の間に、非球面レンズを配し
てなり、前記変調手段の近傍にレンズを配置し、前記照
明装置における光束出射面の像を、前記投写光学系の入
射瞳に結像させることを特徴とする。
The projection display device of the present invention comprises an illumination device and
In a projection display device including a modulation unit that modulates a light beam from the illuminating device to include image information, and a projection optical system that projects and displays the modulated light beam on a screen, the illuminating device is A reflector for reflecting a light beam emitted from the light source lamp in one direction; and a uniform illumination optical element composed of two lens plates having a plurality of spherical lenses arranged in a plane. An aspherical lens is disposed between the uniform illumination optical element and the uniform illumination optical element, and a lens is disposed in the vicinity of the modulation means, and an image of the light flux exit surface of the illumination device is formed on the entrance pupil of the projection optical system. The feature is to make it image.

【0015】また、照明装置と、前記照明装置からの光
束を変調して画像情報を含ませる変調手段と、変調され
た光束をスクリーン上に投写表示する投写光学系とを含
んで構成される投写型表示装置において、前記照明装置
は、光源ランプと、前記光源ランプからの放射光束を一
方向に反射するリフレクタと、複数のシリンドリカルレ
ンズを平面配置した4枚のレンズ板による均一照明光学
素子とを含んで構成され、前記リフレクタと前記均一照
明光学素子の間に、非球面レンズを配してなり、前記変
調手段の近傍にレンズを配置し、前記照明装置における
光束出射面の像を、前記投写光学系の入射瞳に結像させ
ることを特徴とする。
Further, a projection including an illuminating device, a modulation means for modulating a light beam from the illuminating device to contain image information, and a projection optical system for projecting and displaying the modulated light beam on a screen. In the type display device, the illumination device includes a light source lamp, a reflector that reflects a light beam emitted from the light source lamp in one direction, and a uniform illumination optical element including four lens plates in which a plurality of cylindrical lenses are arranged in a plane. An aspherical lens is disposed between the reflector and the uniform illumination optical element, and the lens is disposed in the vicinity of the modulation means, and the image of the light flux emission surface in the illumination device is projected by the projection device. It is characterized in that an image is formed on the entrance pupil of the optical system.

【0016】[0016]

【実施例】以下、本発明による照明装置及び投写型表示
装置について、図面に基づき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An illumination device and a projection type display device according to the present invention will be described in detail below with reference to the drawings.

【0017】本発明の照明装置の基本的な構成を図2に
示す。光源ランプ101は、ハロゲンランプ,メタルハ
ライドランプ,キセノンランプなど点に近い光源で、放
射される光束は、リフレクタ102によって一方向に反
射される。リフレクタ102の形状は、その断面におけ
る各部分の傾斜が計算によって連続的に決められたもの
であるため、放物線や楕円のように簡単な数式では表現
できず、近似的には高次の関数で表せる。反射された光
束は、次に非球面レンズ201に入射し、非球面レンズ
201の各部分に入射した光束の主光線は光軸203に
平行な方向に変角される。非球面レンズ201以降の構
成は、通常のインテグレータ照明系とほぼ同じである
が、以下に簡単に説明しておく。第1のレンズ板103
は、複数の矩形レンズを緊密に並べて構成され、個々の
矩形レンズの形状は、照明対象106の矩形形状と相似
形となっている。第1のレンズ板103に入射する光束
は、各矩形レンズごとに分割され、各矩形レンズはそれ
ぞれの入射光束を第2のレンズ板104上の一点に集光
し、結果として第2のレンズ板104上には複数の光源
像が形成される。第2のレンズ板104は、複数のレン
ズを緊密に配置した構造で、各レンズの中心は、第2の
レンズ板104上に形成される光源像の中心に一致して
いる。第2のレンズ板104に含まれる各レンズは、対
応する第1のレンズ板103に含まれる矩形レンズの像
を無限遠に結像させるようなパワーを有している。補助
レンズ105は、照明対象106までの距離に等しい焦
点距離を有しており、無限遠にできるはずの矩形像を有
限な距離に配置された照明対象106上にちょうど重な
るように結像させる。従って、第1のレンズ板103で
複数の矩形形状に分割された各光束が、照明対象106
上に重畳結像されるため、もとの不均一な光束は、効率
よく矩形で均一な光束に変換される。フィールドレンズ
202は、照明対象106へ入射する光束の主光線の角
度を調整するためのもので、その焦点距離を補助レンズ
105までの距離に等しくすれば、照明対象106に入
射する光束の主光線は、光軸203にほぼ平行となる。
FIG. 2 shows the basic structure of the illuminating device of the present invention. The light source lamp 101 is a light source close to a point such as a halogen lamp, a metal halide lamp, and a xenon lamp, and the emitted light flux is reflected by the reflector 102 in one direction. The shape of the reflector 102 cannot be represented by a simple mathematical formula such as a parabola or an ellipse because the inclination of each portion in the cross section is continuously determined by calculation, and is approximated by a higher-order function. Can be represented. The reflected light flux then enters the aspherical lens 201, and the principal ray of the light flux incident on each part of the aspherical lens 201 is deflected in a direction parallel to the optical axis 203. The configuration after the aspherical lens 201 is almost the same as that of a normal integrator illumination system, but it will be briefly described below. First lens plate 103
Is configured by closely arranging a plurality of rectangular lenses, and the shape of each rectangular lens is similar to the rectangular shape of the illumination target 106. The light beam incident on the first lens plate 103 is divided for each rectangular lens, and each rectangular lens focuses each incident light beam on one point on the second lens plate 104, and as a result, the second lens plate. A plurality of light source images are formed on 104. The second lens plate 104 has a structure in which a plurality of lenses are closely arranged, and the center of each lens coincides with the center of the light source image formed on the second lens plate 104. Each lens included in the second lens plate 104 has such power as to form an image of the rectangular lens included in the corresponding first lens plate 103 at infinity. The auxiliary lens 105 has a focal length equal to the distance to the illumination target 106, and forms a rectangular image, which should be infinity, on the illumination target 106 arranged at a finite distance so as to exactly overlap. Therefore, each of the light fluxes divided into the plurality of rectangular shapes by the first lens plate 103 becomes the illumination target 106.
Since the image is superimposed and imaged on the original, the original non-uniform light flux is efficiently converted into a rectangular and uniform light flux. The field lens 202 is for adjusting the angle of the chief ray of the light beam incident on the illumination target 106. If the focal length is made equal to the distance to the auxiliary lens 105, the chief ray of the light beam incident on the illumination target 106. Is substantially parallel to the optical axis 203.

【0018】本発明で最も重要な、リフレクタ102の
形状と非球面レンズ201の形状について、図3(A)
を用いて詳しく説明する。先に説明したインテグレータ
照明系で利用される光束の角度範囲は、照明系の構成に
よって決まり、一定の角度以内での利用率は100%と
なる。そこでその角度をθ度とし、非球面レンズ201
を通過した光束が、すべて光軸203に対してθ度以内
の角度となるようにリフレクタ102及び非球面レンズ
201を設計する。まず、リフレクタ102は、非球面
レンズ201上の各点への入射光束が、その主光線を中
心に±θ度以内に納まるように設計する。非球面レンズ
201の中心部は、光軸203に垂直な平面となってい
るので、中心部に入射する光束は、光軸203に対して
±θ度の範囲とされる。従って、まず非球面レンズの中
心からθ度の角度で引いた直線と、リフレクタ102と
の交点であるc1点の内側の曲線は、光源301の一端
であるb点と非球面レンズ201の中心点との2つの点
を焦点とする楕円曲線となる。次に、光源301のリフ
レクタ102側の一端であるa点から出発した光線がc
1点で反射され、非球面レンズ201に当たる点をd点
とする。このd点からは、リフレクタ102のc1点か
ら外側に光源301が反射像として見えるので、この反
射像がd点から2θ度の範囲内で見えるようにリフレク
タ102の曲線を決定すればよい。つまり、d点から線
分c1dと2θ度の角度を有する直線を引き、この直線
とc1点から連続的に延ばした曲線の交点c2における
リフレクタ102の傾きが、b点から出発した光線がc
2点で反射されてd点に向かうように設計すればよい。
実際は、c1からc2への曲線を円の一部で設計し、c
1点でなめらかであり、c2点で前記の傾きとなるよう
な曲率の円を試行錯誤的に決定すれば良い。c2点から
外側の形状は、以上と同じ方法の繰り返しによって決定
され、結果として、複数の円の一部を合成した形状のリ
フレクタとなる。最終的にリフレクタ102の形状は連
続な高次の関数で近似し、効果はシミュレーションで確
かめればよい。
The shape of the reflector 102 and the shape of the aspherical lens 201, which are the most important in the present invention, are shown in FIG.
Will be described in detail. The angular range of the luminous flux used in the above-described integrator illumination system is determined by the configuration of the illumination system, and the utilization rate within a certain angle is 100%. Therefore, the angle is set to θ degrees, and the aspherical lens 201
The reflector 102 and the aspherical lens 201 are designed so that all the light fluxes that have passed through are at an angle within θ degrees with respect to the optical axis 203. First, the reflector 102 is designed so that the incident light flux on each point on the aspherical lens 201 is within ± θ degrees around the principal ray. Since the central part of the aspherical lens 201 is a plane perpendicular to the optical axis 203, the luminous flux incident on the central part is within a range of ± θ degrees with respect to the optical axis 203. Therefore, the curve inside the point c1 which is the intersection of the reflector 102 and the straight line drawn from the center of the aspherical lens at an angle of θ degrees is the point b which is one end of the light source 301 and the center point of the aspherical lens 201. It becomes an elliptic curve with two points of and as the focal points. Next, a light beam starting from point a, which is one end of the light source 301 on the reflector 102 side, is c
The point which is reflected at one point and hits the aspherical lens 201 is defined as point d. From this point d, the light source 301 appears as a reflected image outside the point c1 of the reflector 102. Therefore, the curve of the reflector 102 may be determined so that this reflected image can be seen within a range of 2θ degrees from the point d. That is, a straight line having an angle of 2θ with the line segment c1d is drawn from the point d, and the inclination of the reflector 102 at the intersection point c2 of the straight line and the curve continuously extended from the point c1 is such that the ray starting from the point b is c.
It may be designed so as to be reflected at two points and head toward the point d.
Actually, design the curve from c1 to c2 with a part of the circle,
A circle having a curvature that is smooth at one point and has the above-mentioned inclination at the point c2 may be determined by trial and error. The shape outside the point c2 is determined by repeating the same method as described above, and as a result, a reflector having a shape obtained by combining a part of a plurality of circles is obtained. Finally, the shape of the reflector 102 is approximated by a continuous high-order function, and the effect can be confirmed by simulation.

【0019】このようにして決定されたリフレクタ10
2からの反射光束は、非球面レンズ201上では、その
各点に入射する光束の角度範囲が等しく、2θ度となっ
ている。但し、各光束の主光線の方向は一定していない
ので、非球面レンズ201の曲面によって、光軸203
に平行になるよう変角する。非球面レンズ201の曲面
形状は、通常図3(A)に示されるように、中心部が正
のパワーを有し、周辺部が負のパワーを有する形状とな
る。また、この非球面レンズ201は、各部の光束の主
光線を光軸203上の一点で交わるような方向に変角す
る形状であってもよい。
The reflector 10 thus determined
On the aspherical lens 201, the reflected light fluxes from No. 2 have the same angular range of the light fluxes incident on the respective points and have an angle of 2θ. However, since the direction of the principal ray of each light flux is not constant, the curved surface of the aspherical lens 201 causes the optical axis 203
Bend to be parallel to. As shown in FIG. 3A, the curved surface shape of the aspherical lens 201 is usually such that the central portion has positive power and the peripheral portion has negative power. Further, the aspherical lens 201 may have a shape in which the principal ray of the light flux of each portion is changed in a direction so as to intersect at one point on the optical axis 203.

【0020】このようなリフレクタ及び非球面レンズの
構成による系を通過した光束は、角度分布が均一となっ
ているので、インテグレータ照明系の第2のレンズ板上
にできる光源像は、図3(B)に示されるように、中心
部の光源像302と周辺部の光源像303の大きさが、
ほぼ同じになっており、しかも矩形レンズの内接円にち
ょうど納まるような最適のサイズとなる。従って、従来
のような中心部での光量損失がなく、また周辺部の光源
サイズが従来よりも大きくなるので、光束の利用効率が
飛躍的に増加する。
Since the light flux passing through the system having such a reflector and aspherical lens has a uniform angular distribution, the light source image formed on the second lens plate of the integrator illumination system is shown in FIG. As shown in B), the sizes of the central light source image 302 and the peripheral light source image 303 are
The sizes are almost the same, and the optimum size fits within the inscribed circle of the rectangular lens. Therefore, there is no light amount loss in the central portion as in the conventional case, and the light source size in the peripheral area is larger than in the conventional case, so that the utilization efficiency of the luminous flux is dramatically increased.

【0021】図2における第2のレンズ板104は図4
(A)や図4(B)に示されるように、6角形や菱形の
レンズで構成されてもよい。これらの場合、第2のレン
ズ板104の配列に合わせて、第1のレンズ板の各矩形
レンズを配列する必要があり、各矩形レンズは、上下の
矩形レンズの位置に対して左右に半分ずれた構成で配置
される。図4(A)のように第2のレンズ板104の各
レンズが6角形になると、矩形よりも円形に近くなるぶ
ん、内接円の大きさが増し、各レンズ上にできる光源像
を大きくできるというメリットがある。第1のレンズ板
の矩形レンズの縦横比が1:3.5のとき、第2レンズ
板104の各レンズの形状が正6角形となり最も適して
いる。また、図4(B)に示されるような菱型のレンズ
を用いた場合も、内接円の大きさが矩形形状の場合より
大きくなり、効率が増加する。第1のレンズ板の矩形レ
ンズの縦横比が1:2の時、第2のレンズ板104の菱
形が正方形となり最適である。
The second lens plate 104 in FIG. 2 is shown in FIG.
As shown in (A) and FIG. 4 (B), it may be composed of hexagonal or rhombic lenses. In these cases, it is necessary to arrange each rectangular lens of the first lens plate in accordance with the arrangement of the second lens plate 104, and each rectangular lens is displaced from the positions of the upper and lower rectangular lenses by half to the left and right. It is arranged in a different configuration. As shown in FIG. 4A, when each lens of the second lens plate 104 is a hexagon, the size of the inscribed circle is increased as it is closer to a circle than a rectangle, and the light source image formed on each lens is enlarged. There is a merit that you can do it. When the aspect ratio of the rectangular lens of the first lens plate is 1: 3.5, the shape of each lens of the second lens plate 104 is a regular hexagon, which is most suitable. Further, also when the diamond-shaped lens as shown in FIG. 4B is used, the size of the inscribed circle is larger than that of the rectangular shape, and the efficiency is increased. When the aspect ratio of the rectangular lens of the first lens plate is 1: 2, the rhombus of the second lens plate 104 becomes a square, which is optimal.

【0022】本発明の照明装置の構成例を図5(A)に
示す。基本的な構成は図2の場合と同様であるが、ここ
では図2における第1のレンズ板103と第2のレンズ
板104で構成されるインテグレータが、複数のシリン
ドリカルレンズにより構成される4枚のレンズ板となっ
ている。4枚のレンズ板501,502,503,50
4は、シリンドリカルレンズの方向が同一である2つの
組に分けることができ、それぞれの組のシリンドリカル
レンズの方向は互いに直交する関係となっている。本例
では、レンズ板501,503とレンズ板502,50
4の2つの組になっている。従って、4枚のレンズ板を
通過する光束は、光軸に垂直な面内において直交する2
つの成分が、それぞれ独立に集光される。本構成は、通
常の球面レンズを用いた場合に比べて、各レンズのサイ
ズを小さくつくることができ、従ってインテグレータの
光軸方向の長さを短くできるという利点がある。また、
いずれかのレンズ板の組みを、他のレンズ板の組みと入
れ換えることによって、矩形に照明される部分のアスペ
クト比を容易に変更できるという利点がある。図5
(B)は、4枚のレンズ板を2枚づつ一体化して構成し
たものである。レンズ板505とレンズ板506は、そ
れぞれ直交する光束成分に対するインテグレータとして
はたらく。また、レンズ板505またはレンズ板506
の両面に形成されているシリンドリカルレンズの方向
が、互いに直交するようにつくられれば、レンズ板50
5とレンズ板506を同一の形状につくることができ
る。
FIG. 5A shows an example of the structure of the lighting device of the present invention. The basic configuration is the same as in the case of FIG. 2, but here the integrator composed of the first lens plate 103 and the second lens plate 104 in FIG. 2 is composed of a plurality of cylindrical lenses. Has become the lens plate. Four lens plates 501,502,503,50
4 can be divided into two groups in which the directions of the cylindrical lenses are the same, and the directions of the cylindrical lenses in each group are orthogonal to each other. In this example, the lens plates 501 and 503 and the lens plates 502 and 50
There are two sets of four. Therefore, the light flux passing through the four lens plates is orthogonal to each other in the plane perpendicular to the optical axis.
The two components are collected independently. This configuration has an advantage that the size of each lens can be made smaller than that in the case of using a normal spherical lens, and therefore the length of the integrator in the optical axis direction can be shortened. Also,
By replacing one of the lens plate sets with another lens plate set, there is an advantage that the aspect ratio of the rectangular illuminated portion can be easily changed. Figure 5
(B) is a structure in which four lens plates are integrated into two lens plates. The lens plate 505 and the lens plate 506 act as integrators for the light flux components orthogonal to each other. In addition, the lens plate 505 or the lens plate 506
If the cylindrical lenses formed on both surfaces of the lens are formed so that the directions thereof are orthogonal to each other, the lens plate 50
5 and the lens plate 506 can be formed in the same shape.

【0023】図5(B)におけるレンズ板と同じ働きの
レンズ板を、屈折率分布型のレンズで構成することがで
きる。図6(A)は、一例としてイオン交換法で作製す
る方法を示す図である。低屈折率イオンを含むガラス基
板601には、両面に金属コーティングによるマスク6
02を形成し、高屈折率を与えるイオンを含む溶液塩中
に浸漬される。マスク602の開口部からイオン交換が
行われてガラス基板601中に屈折率分布のある領域6
03が形成される。マスク602の開口部を矩形形状に
すれば、球面レンズと同様の働きをする矩形レンズが形
成される。また、マスク602の開口部をストライプ状
に形成すれば、シリンドリカルレンズと同じ働きをする
レンズ板が形成される。
A lens plate having the same function as the lens plate shown in FIG. 5B can be formed by a gradient index lens. FIG. 6A is a diagram showing a method of manufacturing by an ion exchange method as an example. The glass substrate 601 containing low refractive index ions has a mask 6 with metal coating on both sides.
02 is formed and immersed in a solution salt containing ions that give a high refractive index. A region 6 having a refractive index distribution in the glass substrate 601 after ion exchange is performed from the opening of the mask 602.
03 is formed. If the opening portion of the mask 602 is formed in a rectangular shape, a rectangular lens that functions like a spherical lens is formed. Further, if the openings of the mask 602 are formed in stripes, a lens plate having the same function as a cylindrical lens is formed.

【0024】図6(B)は、イオン交換法で形成した屈
折率分布型のレンズ板を用いてインテグレータ照明系を
構成する例である。光源ランプ101から放射された光
束は、図2の場合と同様、最適に設計されたリフレクタ
102によって反射され、非球面レンズ604に入射す
る。この非球面レンズ604は、フレネルレンズで構成
することができる。両面にストライプ状の屈折率分布型
レンズを形成した2枚のレンズ板605,606で構成
されるインテグレータは、2枚のレンズ板が同じ構成
で、また両者が貼合わされている。出射側の補助レンズ
607はここではフレネルレンズで構成されている。こ
のようにインテグレータをイオン交換法によるレンズ板
で構成すれば、インテグレータを薄型にできるだけでな
く、レンズ板の表面が平坦になるため、各光学要素を貼
合わせることができる。従って、位置合わせが容易で、
表面反射による光量損失を最小にすることができる。
FIG. 6B shows an example of constructing an integrator illumination system using a gradient index lens plate formed by an ion exchange method. The light flux emitted from the light source lamp 101 is reflected by the optimally designed reflector 102 and enters the aspherical lens 604, as in the case of FIG. The aspherical lens 604 can be composed of a Fresnel lens. In an integrator composed of two lens plates 605 and 606 each having a stripe-shaped gradient index lens formed on both sides, the two lens plates have the same structure, and both are bonded together. The auxiliary lens 607 on the exit side is configured by a Fresnel lens here. If the integrator is composed of the lens plate by the ion exchange method as described above, not only the integrator can be made thin, but also the surface of the lens plate becomes flat, so that each optical element can be bonded. Therefore, alignment is easy,
The amount of light loss due to surface reflection can be minimized.

【0025】次に、本発明による投写型表示装置につい
て図面に基づき詳細に説明する。本発明の投写型表示装
置の構成例を図7(A)に示す。光源ランプ101とリ
フレクタ102で構成される光源装置から出射した光束
は、さきに説明された非球面レンズ201と2枚のレン
ズ板103,104によるインテグレータで構成される
均一照明光学素子701を通過して、青緑反射ダイクロ
イックミラーと青反射ダイクロイックミラーと反射鏡で
構成される色分離光学系702に入射する。光源の白色
光(W)は、色分離光学系702をを通過してRGBの
3原色に分離される。均一照明光学素子701と各色光
が色分離光学系702を出射する位置との光路的距離は
すべて等しくなっている。次に各色光は、それぞれ平行
化レンズ703a,703b,703cに入射して、均
一照明光学素子701からの発散光束が平行化される。
平行化された光束のうち赤色光(R)と青色光(B)
は、それぞれ平行化レンズ703a,703bの直後に
置かれた液晶パネル705a,705bに入射して変調
され、各色光に対応した映像情報が付加される。一方緑
色光(G)は、3枚のレンズと2枚の反射鏡で構成され
る光伝達手段704を経た後、液晶パネル705cに入
射し、変調される。液晶パネル705a,705b,7
05cで変調された各色光は、次に色合成手段であるク
ロスダイクロイックミラー706に入射する。このクロ
スダイクロイックミラー706は、緑反射の誘電体多層
膜と赤反射の誘電体多層膜をX字状に含んでいるので、
青色光(B)は透過し、赤色光(R)と緑色光(G)は
反射される。従って全ての色光は1つに合成され、合成
された光学像は投写レンズ707によってスクリーン7
08上に投写表示される。投写レンズ707としては、
テレセントリック系に近いものが使用される。
Next, the projection display device according to the present invention will be described in detail with reference to the drawings. An example of the structure of the projection display device of the present invention is shown in FIG. The light flux emitted from the light source device composed of the light source lamp 101 and the reflector 102 passes through the uniform illumination optical element 701 composed of the aspherical lens 201 and the integrator composed of the two lens plates 103 and 104 described above. Then, the light enters a color separation optical system 702 including a blue-green reflective dichroic mirror, a blue reflective dichroic mirror and a reflective mirror. White light (W) from the light source passes through the color separation optical system 702 and is separated into the three primary colors of RGB. The uniform illumination optical element 701 and the position where each color light exits the color separation optical system 702 have the same optical path distance. Next, the respective color lights are incident on the collimating lenses 703a, 703b, 703c, respectively, and the divergent light flux from the uniform illumination optical element 701 is collimated.
Red light (R) and blue light (B) in the collimated light flux
Are incident on and modulated by liquid crystal panels 705a and 705b placed immediately after the collimating lenses 703a and 703b, respectively, and image information corresponding to each color light is added. On the other hand, the green light (G) enters the liquid crystal panel 705c after being passed through the light transmitting means 704 including three lenses and two reflecting mirrors and is modulated. Liquid crystal panels 705a, 705b, 7
The respective color lights modulated by 05c then enter the cross dichroic mirror 706 which is a color combining means. Since the cross dichroic mirror 706 includes a green reflective dielectric multilayer film and a red reflective dielectric multilayer film in an X shape,
Blue light (B) is transmitted and red light (R) and green light (G) are reflected. Therefore, all the colored lights are combined into one, and the combined optical image is projected onto the screen 7 by the projection lens 707.
08 is projected and displayed. As the projection lens 707,
The one close to the telecentric system is used.

【0026】図7(B)は、本発明の投写型表示装置の
別の構成例を示す図である。光源ランプ101から放射
される光束は、リフレクタ102で反射されて、非球面
レンズ201に入射し、さらに第1のレンズ板103と
2枚の第2のレンズ板104で構成されるインテグレー
タに入射する。インテグレータの内部には、青緑反射の
ダイクロイックミラー709が45度の角度で配置さ
れ、入射する白色光を透過する赤色光(R)と反射する
青色光(B)及び緑色光(G)に分離する。透過した赤
色光(R)は、反射鏡713,714,715で順に反
射され平行化レンズ703cを経て、液晶パネル705
cで変調される。一方、反射された緑色光(G)は反射
鏡710で反射され、次に緑反射のダイクロイックミラ
ー711で反射され、さらに反射鏡713で反射されて
平行化レンズ703bに入射し、液晶パネル705bで
変調される。また、青色光(B)は反射鏡710で反射
されて後、緑反射のダイクロイックミラー711を透過
し、さらに反射鏡712で反射されて平行化レンズ70
3aに入射し、液晶パネル705aで変調される。変調
された各光束は、クロスダイクロイックミラー706に
入射して同一の光軸上に合成される。合成された光束
は、投写レンズ707を通過してスクリーン708上に
結像される。図8は、本発明の投写型表示装置の別の構
成例を示す図である。前述の場合と同様、照明系は最適
設計されたリフレクタ102と非球面レンズ201を含
むインテグレータ照明系である。この照明系を出射する
白色光(W)は、赤緑反射のダイクロイックミラー80
1によって、反射する黄色光(G,R)と透過する青色
光(B)に分割される。青色光は、次に反射鏡802で
反射された後、平行化レンズ703aに入射してほぼ平
行な光束となり、液晶パネル705aによって変調され
る。一方黄色光は、赤反射のダイクロイックミラー80
8で、反射する赤色光と透過する緑色光に分離され、そ
れぞれの色光は、平行化レンズ703b,703cに入
射し、さらに液晶パネル705b,705cで変調され
る。変調された青色光と赤色光は、赤反射のダイクロイ
ックミラー804で合成され、投写レンズ807に入射
する。また、変調された緑色光は、反射鏡803で反射
されて投写レンズ807に入射する。投写レンズ807
は光束の入射部が二つあり、それぞれの入射部にはレン
ズ805a,805bが配置されている。二つの入射部
を通過した光束は、ダイクロイックミラー806で一つ
に合成され、さらに出射部のレンズ群を通過する。ダイ
クロイックミラー806は、緑色光を透過させるものが
用いられ、構成としては板状のものを用いる場合とプリ
ズム状のものを用いる場合の二通りが考えられる。投写
レンズ807を通過した光束は、スクリーン708上に
結像される。
FIG. 7B is a diagram showing another configuration example of the projection type display device of the present invention. The light flux emitted from the light source lamp 101 is reflected by the reflector 102, enters the aspherical lens 201, and further enters an integrator composed of the first lens plate 103 and the two second lens plates 104. . Inside the integrator, a blue-green reflection dichroic mirror 709 is arranged at an angle of 45 degrees, and separates incident white light into red light (R) that transmits and blue light (B) and green light (G) that reflects. To do. The transmitted red light (R) is sequentially reflected by the reflecting mirrors 713, 714, 715, passes through the collimating lens 703c, and then the liquid crystal panel 705.
modulated by c. On the other hand, the reflected green light (G) is reflected by the reflecting mirror 710, is then reflected by the green reflecting dichroic mirror 711, is further reflected by the reflecting mirror 713, is incident on the collimating lens 703b, and is reflected by the liquid crystal panel 705b. Is modulated. The blue light (B) is reflected by the reflecting mirror 710, then passes through the green reflecting dichroic mirror 711, is further reflected by the reflecting mirror 712, and is collimated.
3a, and is modulated by the liquid crystal panel 705a. The modulated light beams enter the cross dichroic mirror 706 and are combined on the same optical axis. The combined light flux passes through the projection lens 707 and forms an image on the screen 708. FIG. 8 is a diagram showing another configuration example of the projection display device of the present invention. As in the case described above, the illumination system is an integrator illumination system including the optimally designed reflector 102 and aspherical lens 201. The white light (W) emitted from this illumination system is a red-green reflective dichroic mirror 80.
1 splits the reflected yellow light (G, R) and the transmitted blue light (B). The blue light is then reflected by the reflecting mirror 802, enters the collimating lens 703a, becomes a substantially parallel light flux, and is modulated by the liquid crystal panel 705a. On the other hand, yellow light is a red-reflecting dichroic mirror 80.
At 8, the reflected red light and the transmitted green light are separated, and the respective colored lights are incident on the collimating lenses 703b and 703c and further modulated by the liquid crystal panels 705b and 705c. The modulated blue light and red light are combined by the red-reflecting dichroic mirror 804 and enter the projection lens 807. Further, the modulated green light is reflected by the reflecting mirror 803 and enters the projection lens 807. Projection lens 807
Has two light beam incident portions, and lenses 805a and 805b are arranged at the respective incident portions. The light fluxes that have passed through the two incident portions are combined into one by the dichroic mirror 806, and further pass through the lens group of the emission portion. As the dichroic mirror 806, a dichroic mirror that transmits green light is used, and there are two types of configurations, a plate-shaped one and a prism-shaped one. The light flux that has passed through the projection lens 807 is imaged on the screen 708.

【0027】[0027]

【発明の効果】以上述べたように本発明によれば、イン
テグレータを用いた照明装置において、光源からの放射
光を反射するリフレクタの曲面形状を最適に設計し、さ
らにインテグレータの光束入射側に非球面レンズを配置
することによって、インテグレータを通過して被照明部
に入射する光束を従来よりも増加させることができる。
またインテグレータの出射部にできる各光源像を均一で
最適なサイズにすることができるので、被照明部から見
た見かけの光源サイズを小さくすることができる。
As described above, according to the present invention, in the illuminating device using the integrator, the curved surface shape of the reflector that reflects the radiated light from the light source is optimally designed, and further the non-incidence side of the integrator is provided on the light incident side. By arranging the spherical lens, it is possible to increase the luminous flux that passes through the integrator and is incident on the illuminated portion as compared with the related art.
Further, since each light source image formed on the emitting portion of the integrator can be made uniform and have an optimum size, the apparent light source size seen from the illuminated portion can be reduced.

【0028】また、この照明系を用いた本発明の投射型
表示装置は、照明系の効率が高いので明るく高品位な画
質を実現できる。また、見かけの光源サイズが従来より
も小さくなるので、投写レンズの口径を小さくつくるこ
とができ、設計が容易になる。
Further, the projection type display device of the present invention using this illumination system can realize bright and high-quality image because the efficiency of the illumination system is high. Further, since the apparent light source size is smaller than that of the conventional one, the diameter of the projection lens can be made small, which facilitates the design.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は、従来の照明装置の構成を示す図。
(B)は、従来の照明装置における見かけの光源形状を
示す図。
FIG. 1A is a diagram showing a configuration of a conventional lighting device.
(B) is a figure which shows the apparent light source shape in the conventional illuminating device.

【図2】本発明の照明装置の基本的構成を示す図。FIG. 2 is a diagram showing a basic configuration of a lighting device of the present invention.

【図3】(A)は、本発明の照明装置に用いるリフレク
タと非球面レンズの設計方法を示す図。(B)は、本発
明の照明装置における見かけの光源形状を示す図。
FIG. 3A is a diagram showing a method of designing a reflector and an aspherical lens used in the illumination device of the present invention. (B) is a figure which shows the apparent light source shape in the illuminating device of this invention.

【図4】(A)は、本発明の照明装置に使用するレンズ
板の構成例を示す図。(B)は、本発明の照明装置に使
用するレンズ板の他の構成例を示す図。
FIG. 4A is a diagram showing a configuration example of a lens plate used in the illumination device of the present invention. (B) is a figure which shows the other structural example of the lens plate used for the illuminating device of this invention.

【図5】(A)は、本発明の照明装置の構成例を示す
図。(B)は、本発明の照明装置に用いられるインテグ
レータの構成例を示す図。
FIG. 5A is a diagram showing a configuration example of a lighting device of the present invention. (B) is a figure which shows the structural example of the integrator used for the illuminating device of this invention.

【図6】(A)は、本発明の照明装置に用いられるレン
ズ板の作製方法を示す図。(B)は、本発明の照明装置
の構成例を示す図。
FIG. 6A is a diagram showing a method for manufacturing a lens plate used in the lighting device of the present invention. FIG. 6B is a diagram showing a configuration example of a lighting device of the present invention.

【図7】(A)は、本発明の投写型表示装置の他の構成
例を示す図。(B)は、本発明の投写型表示装置の他の
構成例を示す図。
FIG. 7A is a diagram showing another configuration example of the projection display device of the present invention. FIG. 6B is a diagram showing another configuration example of the projection display device of the present invention.

【図8】本発明の投写型表示装置の他の構成例を示す
図。
FIG. 8 is a diagram showing another configuration example of the projection display device of the present invention.

【符号の説明】[Explanation of symbols]

101 光源ランプ 102 リフレクタ 103,104 レンズ板 106 照明対象 201 非球面レンズ 202 フィールドレンズ 601 ガラス基板 602 マスク 603 屈折率分布領域 705 液晶パネル 706 クロスダイクロイックミラー 707 投写レンズ 708 スクリーン 101 light source lamp 102 reflectors 103 and 104 lens plate 106 illumination target 201 aspherical lens 202 field lens 601 glass substrate 602 mask 603 refractive index distribution region 705 liquid crystal panel 706 cross dichroic mirror 707 projection lens 708 screen

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 光源ランプと、前記光源ランプからの放
射光束を一方向に反射するリフレクタと、複数の球面レ
ンズを平面的に配置した2枚のレンズ板による均一照明
光学素子とを含んで構成される照明装置において、前記
リフレクタと前記均一照明光学素子の間に、非球面レン
ズを配したことを特徴とする照明装置。
1. A structure including a light source lamp, a reflector that reflects a light beam emitted from the light source lamp in one direction, and a uniform illumination optical element having two lens plates on which a plurality of spherical lenses are arranged in a plane. In the illumination device described above, an aspherical lens is arranged between the reflector and the uniform illumination optical element.
【請求項2】 前記均一照明光学素子が、複数の矩形レ
ンズを隙間なく平面的に配置した第1のレンズ板と、前
記第1のレンズ板に含まれる矩形レンズと同数の矩形レ
ンズを隙間なく平面的に配置した第2のレンズ板とで構
成されることを特徴とする請求項1記載の照明装置。
2. The uniform illumination optical element includes a first lens plate having a plurality of rectangular lenses arranged in a plane without a gap, and a rectangular lens having the same number as the rectangular lenses included in the first lens plate without a gap. The lighting device according to claim 1, wherein the lighting device comprises a second lens plate arranged in a plane.
【請求項3】 前記均一照明光学素子が、複数の矩形レ
ンズを隙間なく平面的に配置した第1のレンズ板と、前
記第1のレンズ板に含まれる矩形レンズと同数の6角形
のレンズを隙間なく平面的に配置した第2のレンズ板と
で構成されることを特徴とする請求項1記載の照明装
置。
3. The uniform illumination optical element includes a first lens plate in which a plurality of rectangular lenses are arranged in a plane without a gap, and hexagonal lenses in the same number as the rectangular lenses included in the first lens plate. The illumination device according to claim 1, wherein the illumination device is configured with a second lens plate arranged in a plane without a gap.
【請求項4】 前記均一照明光学素子が、複数の矩形レ
ンズを隙間なく平面的に配置した第1のレンズ板と、前
記第1のレンズ板に含まれる矩形レンズと同数の菱形の
レンズを隙間なく平面的に配置した第2のレンズ板とで
構成されることを特徴とする請求項1記載の照明装置。
4. The uniform illumination optical element includes a first lens plate having a plurality of rectangular lenses arranged in a plane without a gap, and a diamond lens having the same number as the rectangular lenses included in the first lens plate. The illuminating device according to claim 1, wherein the illuminating device is configured by a second lens plate arranged in a plane instead of the second lens plate.
【請求項5】 光源ランプと、前記光源ランプからの放
射光束を一方向に反射するリフレクタと、複数のシリン
ドリカルレンズを平面配置した4枚のレンズ板による均
一照明光学素子とを含んで構成される照明装置におい
て、前記リフレクタと前記均一照明光学素子の間に、非
球面レンズを配したことを特徴とする照明装置。
5. A light source lamp, a reflector that reflects a light beam emitted from the light source lamp in one direction, and a uniform illumination optical element including four lens plates on which a plurality of cylindrical lenses are arranged in a plane. The illuminating device, wherein an aspherical lens is arranged between the reflector and the uniform illuminating optical element.
【請求項6】 前記均一照明光学素子を構成する4枚の
レンズ板の2枚づつを一体化し、2枚のレンズ板とした
ことを特徴とする請求項5に記載の照明装置。
6. The illumination device according to claim 5, wherein two of the four lens plates forming the uniform illumination optical element are integrated to form two lens plates.
【請求項7】 前記均一照明光学素子に含まれる各レン
ズ板を屈折率分布型のシリンドリカルレンズで構成した
ことを特徴とする請求項5または6記載の照明装置。
7. The illumination device according to claim 5, wherein each lens plate included in the uniform illumination optical element is formed of a gradient index cylindrical lens.
【請求項8】 照明装置と、前記照明装置からの光束を
変調して画像情報を含ませる変調手段と、変調された光
束をスクリーン上に投写表示する投写光学系とを含んで
構成される投写型表示装置において、前記照明装置は、
光源ランプと、前記光源ランプからの放射光束を一方向
に反射するリフレクタと、複数の球面レンズを平面的に
配置した2枚のレンズ板による均一照明光学素子とを含
んで構成され、前記リフレクタと前記均一照明光学素子
の間に、非球面レンズを配してなり、前記変調手段の近
傍にレンズを配置し、前記照明装置における光束出射面
の像を、前記投写光学系の入射瞳に結像させることを特
徴とする投写型表示装置。
8. A projection comprising an illuminating device, a modulation means for modulating a light beam from the illuminating device to contain image information, and a projection optical system for projecting and displaying the modulated light beam on a screen. In the display device, the lighting device includes
The reflector includes a light source lamp, a reflector that reflects a light beam emitted from the light source lamp in one direction, and a uniform illumination optical element including two lens plates on which a plurality of spherical lenses are arranged in a plane. An aspherical lens is arranged between the uniform illumination optical elements, a lens is arranged in the vicinity of the modulation means, and an image of the light flux exit surface of the illumination device is formed on the entrance pupil of the projection optical system. A projection type display device characterized by:
【請求項9】 照明装置と、前記照明装置からの光束を
変調して画像情報を含ませる変調手段と、変調された光
束をスクリーン上に投写表示する投写光学系とを含んで
構成される投写型表示装置において、前記照明装置は、
光源ランプと、前記光源ランプからの放射光束を一方向
に反射するリフレクタと、複数のシリンドリカルレンズ
を平面配置した4枚のレンズ板による均一照明光学素子
とを含んで構成され、前記リフレクタと前記均一照明光
学素子の間に、非球面レンズを配してなり、前記変調手
段の近傍にレンズを配置し、前記照明装置における光束
出射面の像を、前記投写光学系の入射瞳に結像させるこ
とを特徴とする投写型表示装置。
9. A projection comprising an illuminating device, a modulating means for modulating a luminous flux from the illuminating device to contain image information, and a projection optical system for projecting and displaying the modulated luminous flux on a screen. In the display device, the lighting device includes
The reflector includes the light source lamp, a reflector that reflects a light beam emitted from the light source lamp in one direction, and a uniform illumination optical element including four lens plates in which a plurality of cylindrical lenses are arranged in a plane. An aspherical lens is disposed between the illumination optical elements, the lens is disposed in the vicinity of the modulation means, and the image of the light flux exit surface of the illumination device is formed on the entrance pupil of the projection optical system. A projection display device characterized by:
JP32271693A 1993-12-21 1993-12-21 Lighting device and projection display device Expired - Fee Related JP3508190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32271693A JP3508190B2 (en) 1993-12-21 1993-12-21 Lighting device and projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32271693A JP3508190B2 (en) 1993-12-21 1993-12-21 Lighting device and projection display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003359271A Division JP3591536B2 (en) 2003-10-20 2003-10-20 Lighting device and projection display device

Publications (2)

Publication Number Publication Date
JPH07174974A true JPH07174974A (en) 1995-07-14
JP3508190B2 JP3508190B2 (en) 2004-03-22

Family

ID=18146830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32271693A Expired - Fee Related JP3508190B2 (en) 1993-12-21 1993-12-21 Lighting device and projection display device

Country Status (1)

Country Link
JP (1) JP3508190B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001787A1 (en) * 1995-06-26 1997-01-16 Nissho Giken Kabushiki Kaisha Projection display
JPH1073765A (en) * 1996-08-30 1998-03-17 Pioneer Electron Corp Illumination optical system
US6283615B1 (en) 1999-04-13 2001-09-04 Victor Company Of Japan, Limited Illumination apparatus
WO2005036255A1 (en) * 2003-10-07 2005-04-21 Seiko Epson Corporation Illumination unit and projector comprising it
USRE39040E1 (en) 1996-08-19 2006-03-28 Seiko Epson Corporation Projector
WO2006070580A1 (en) * 2004-12-27 2006-07-06 Nikon Corporation Optical integrator, illumination optical device, photolithograph, photolithography, and method for fabricating device
US7178922B2 (en) 2003-10-03 2007-02-20 Mitsubishi Denki Kabushiki Kaisha Lamp, condensing optical system, and image display device
JP2007140159A (en) * 2005-11-18 2007-06-07 Casio Comput Co Ltd Light source unit and projector
USRE39702E1 (en) 1996-08-19 2007-06-26 Seiko Epson Corporation Projector
KR100813983B1 (en) * 2005-12-20 2008-03-14 삼성전자주식회사 Illumination system, illumination unit and image projection apparatus employing the same
US7388322B2 (en) * 2002-01-11 2008-06-17 Carl Zeiss Microimaging Gmbh Illumination device for microscopes
US7607787B2 (en) 2004-12-14 2009-10-27 Casio Computer Co., Ltd. Light source unit and projector system
US7819533B2 (en) 2005-03-07 2010-10-26 Casio Computer Co., Ltd. Light source unit and projector apparatus
US8182100B2 (en) 2007-12-18 2012-05-22 Light Prescriptions Innovators, Llc Free-form condenser optic
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8587764B2 (en) * 2007-03-13 2013-11-19 Nikon Corporation Optical integrator system, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN112747289A (en) * 2019-10-31 2021-05-04 罗布照明公司 System and method for producing a mixed light distribution from an LED luminaire

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001787A1 (en) * 1995-06-26 1997-01-16 Nissho Giken Kabushiki Kaisha Projection display
US5871266A (en) * 1995-06-26 1999-02-16 Nissho Giken Kabushiki Kaisha Projection-type display device
USRE41680E1 (en) 1996-08-19 2010-09-14 Seiko Epson Corporation Projector
USRE39702E1 (en) 1996-08-19 2007-06-26 Seiko Epson Corporation Projector
USRE39040E1 (en) 1996-08-19 2006-03-28 Seiko Epson Corporation Projector
JPH1073765A (en) * 1996-08-30 1998-03-17 Pioneer Electron Corp Illumination optical system
US6283615B1 (en) 1999-04-13 2001-09-04 Victor Company Of Japan, Limited Illumination apparatus
US7388322B2 (en) * 2002-01-11 2008-06-17 Carl Zeiss Microimaging Gmbh Illumination device for microscopes
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US7178922B2 (en) 2003-10-03 2007-02-20 Mitsubishi Denki Kabushiki Kaisha Lamp, condensing optical system, and image display device
US7150535B2 (en) 2003-10-07 2006-12-19 Seiko Epson Corporation Lighting device and projector equipped with the same
WO2005036255A1 (en) * 2003-10-07 2005-04-21 Seiko Epson Corporation Illumination unit and projector comprising it
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7607787B2 (en) 2004-12-14 2009-10-27 Casio Computer Co., Ltd. Light source unit and projector system
US7706072B2 (en) 2004-12-27 2010-04-27 Nikon Corporation Optical integrator, illumination optical device, photolithograph, photolithography, and method for fabricating device
JPWO2006070580A1 (en) * 2004-12-27 2008-06-12 株式会社ニコン Optical integrator, illumination optical apparatus, exposure apparatus, exposure method, and device manufacturing method
JP2011135099A (en) * 2004-12-27 2011-07-07 Nikon Corp Optical integrator, illumination optical device, photolithographic apparatus, photolithographic method, and method for fabricating device
WO2006070580A1 (en) * 2004-12-27 2006-07-06 Nikon Corporation Optical integrator, illumination optical device, photolithograph, photolithography, and method for fabricating device
US7819533B2 (en) 2005-03-07 2010-10-26 Casio Computer Co., Ltd. Light source unit and projector apparatus
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2007140159A (en) * 2005-11-18 2007-06-07 Casio Comput Co Ltd Light source unit and projector
US7448774B2 (en) 2005-12-20 2008-11-11 Samsung Electronics Co., Ltd. Illumination optical system, illumination unit and image projection apparatus employing the same
KR100813983B1 (en) * 2005-12-20 2008-03-14 삼성전자주식회사 Illumination system, illumination unit and image projection apparatus employing the same
US8587764B2 (en) * 2007-03-13 2013-11-19 Nikon Corporation Optical integrator system, illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8182100B2 (en) 2007-12-18 2012-05-22 Light Prescriptions Innovators, Llc Free-form condenser optic
CN112747289A (en) * 2019-10-31 2021-05-04 罗布照明公司 System and method for producing a mixed light distribution from an LED luminaire
EP3816504A1 (en) * 2019-10-31 2021-05-05 ROBE lighting s.r.o. System and method for producing a blending light distribution from led luminaires
US11175017B2 (en) 2019-10-31 2021-11-16 Robe Lighting S.R.O. System and method for producing a blending light distribution from LED luminaires

Also Published As

Publication number Publication date
JP3508190B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
JP3508190B2 (en) Lighting device and projection display device
US6464375B2 (en) Lens element and illumination optical apparatus and projection display apparatus
JP3473075B2 (en) Lighting device and projection display device
JPH10333115A (en) Projection type liquid crystal display device
JP2000171901A (en) Lighting optical device and projection type display device
JP2006243603A (en) Condensing element, lighting device, and projection image display device
US6773111B2 (en) Projection type image display apparatus
KR20000075786A (en) Multi-color-band light source
JP2006215536A (en) Optical system for projection display, and projector incorporating it
US7066609B2 (en) Projection-type display apparatus
JP3880227B2 (en) Illumination device and projection device
EP2154567B1 (en) Light source device and projection display device using the same
EP1382996B1 (en) Illuminating optical system and projector
JP3591536B2 (en) Lighting device and projection display device
WO2005019928A1 (en) Illuminator and projector comprising it
JP2010164731A (en) Illumination apparatus and projector including the same
JP2010026260A (en) Lighting optical device and projection type display device
JP2000147658A (en) Image projector
US20030197944A1 (en) Projection type image display apparatus
JP2000241755A (en) Illuminator and its illuminance distribution improving device and liquid crystal projection device
JP2000305169A (en) Illuminator and projection display device
JPS63216025A (en) Projection type color display device
JP3610804B2 (en) Illumination device and projection display device
JPH02163729A (en) Projection type display device
JP2004138667A (en) Projection type display device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees