JPH07174661A - Measuring method for gas leak of container - Google Patents

Measuring method for gas leak of container

Info

Publication number
JPH07174661A
JPH07174661A JP31171393A JP31171393A JPH07174661A JP H07174661 A JPH07174661 A JP H07174661A JP 31171393 A JP31171393 A JP 31171393A JP 31171393 A JP31171393 A JP 31171393A JP H07174661 A JPH07174661 A JP H07174661A
Authority
JP
Japan
Prior art keywords
container
differential pressure
measured
leak
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31171393A
Other languages
Japanese (ja)
Other versions
JP3143299B2 (en
Inventor
Masayo Yanuki
正余 賈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Steel Co Ltd
Taiyo Ltd
Original Assignee
Taiyo Steel Co Ltd
Taiyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Steel Co Ltd, Taiyo Ltd filed Critical Taiyo Steel Co Ltd
Priority to JP05311713A priority Critical patent/JP3143299B2/en
Publication of JPH07174661A publication Critical patent/JPH07174661A/en
Application granted granted Critical
Publication of JP3143299B2 publication Critical patent/JP3143299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To precisely measure a gas leak while the same reference container is used for different containers to be measured by a method wherein a differential-pressure component due to conducted heat and due to a leak is found on the basis of a differential pressure, between the reference container and the containers to be measured, which is measure after a compressed gas has been filled. CONSTITUTION:A solenoid valve SV1 is turned on, solenoid valves SV2, SV3 are then turned on simultaneously, compressed air is supplied to a reference container MV and a container WV to be measured, and respective pressures Pm(t), Pw(t) inside the containers MV, WV are raised. The solenoid valves SV2, SV3 are turned off and the supply of the compressed air is stopped at a point of time when a filling operation is completed, and a solenoid valve SV4 is turned on simultaneously. Then, the respective pressures Pm(t), Pw(t) are dropped due to a temperature change in the compressed air in the container MV and due to a temperature change in the compressed air and due to the leak of the compressed air in the container WV, and a differential pressure D(t) is generated. On the basis of the differential pressure D(t) which has measured it for a prescribed time, a differential-pressure component PH(t) due to the conducted heat and a differential-pressure component PL(t) due to the leak are found by using an approximation method, and the leak amount VL of the container WV is operated on the basis of the component DL(t).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、容器(被測定容器)の
ガス漏れを差圧方式によって計測するための方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring gas leakage of a container (measurement container) by a differential pressure method.

【0002】[0002]

【従来の技術】従来において、被測定容器の空気漏れを
計測するために、被測定容器と全く同一の形状及び容積
を有し且つ空気漏れの全くない容器(バランス容器)を
製作し、被測定容器及びバランス容器に対して圧縮空気
を供給して互いに同一の圧力となるように充填した後、
圧縮空気の供給を停止し、その後のこれらの容器間にお
ける差圧を測定することが行われている。
2. Description of the Related Art Conventionally, in order to measure air leakage of a container to be measured, a container (balance container) having exactly the same shape and volume as the container to be measured and having no air leakage was manufactured, and the container to be measured was measured. After supplying compressed air to the container and the balance container and filling them so that they have the same pressure,
It is practiced to stop the supply of compressed air and then measure the differential pressure between these vessels.

【0003】差圧が測定されると、差圧と被測定容器の
容積から被測定容器の空気漏れ量を推定することができ
る。
When the differential pressure is measured, it is possible to estimate the air leakage amount of the measured container from the differential pressure and the volume of the measured container.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した従来
の方法では、圧縮空気の圧縮又は膨張にともなう温度変
化の影響をなくすため、被測定容器と全く同一の形状及
び容積のバランス容器を用いる必要がある。
However, in the above-mentioned conventional method, in order to eliminate the influence of temperature change due to compression or expansion of compressed air, it is necessary to use a balance container having exactly the same shape and volume as the container to be measured. There is.

【0005】したがって、被測定容器が異なる毎にそれ
ぞれに対応したバランス容器を製作し、且つそれを配管
接続して取り付けなければならず、その手間が大変であ
り実用上極めて不便であった。
Therefore, it is necessary to manufacture a balance container corresponding to each different container to be measured, and to connect it by pipe connection, which is troublesome and extremely inconvenient in practical use.

【0006】しかも、正確に計測するためには、バラン
ス容器は空気漏れの全くないものでなければならないの
で、バランス容器の製作が容易ではなく、空気漏れの計
測に多大の時間とコストとを要していた。
Moreover, in order to perform accurate measurement, the balance container must have no air leakage at all, so it is not easy to manufacture the balance container, and it takes a lot of time and cost to measure the air leakage. Was.

【0007】本発明は、上述の問題に鑑み、異なる被測
定容器に対し、同一の基準容器を用いてガスの漏れを正
確に計測する方法を提供することを目的とする。
In view of the above-mentioned problems, it is an object of the present invention to provide a method for accurately measuring gas leakage in different measured containers by using the same reference container.

【0008】[0008]

【課題を解決するための手段】請求項1の発明に係る方
法は、上述の課題を解決するため、被測定容器のガス漏
れを計測する方法であって、被測定容器及び基準容器に
対して圧縮ガスを供給して充填した後に圧縮ガスの供給
を停止し、その後における前記基準容器と前記被測定容
器との間の差圧D(t)を所定の時間計測し、計測され
た差圧D(t)に基づき、近似方法を用いて、伝熱によ
る差圧成分DH(t)と、漏れによる差圧成分DL
(t)とを求め、漏れによる差圧成分DL(t)に基づ
いてガス漏れを求める方法である。
In order to solve the above-mentioned problems, a method according to the invention of claim 1 is a method for measuring gas leakage of a container to be measured, wherein After supplying and filling the compressed gas, the supply of the compressed gas is stopped, and the differential pressure D (t) between the reference container and the measured container after that is measured for a predetermined time, and the measured differential pressure D Based on (t), a differential pressure component DH (t) due to heat transfer and a differential pressure component DL due to leakage are used by using an approximation method.
(T) and a gas leak based on the differential pressure component DL (t) due to the leak.

【0009】請求項2の発明に係る方法は、前記伝熱に
よる差圧成分DH(t)を、前記被測定容器及び基準容
器についての2つの一次遅れ要素のインディシャル応答
の差とし、前記漏れによる差圧成分DL(t)を、時間
の一次関数とする方法である。
In the method according to the second aspect of the present invention, the differential pressure component DH (t) due to the heat transfer is set as the difference between the indial responses of the two first-order lag elements for the measured container and the reference container, and the leak is generated. This is a method in which the differential pressure component DL (t) due to is a linear function of time.

【0010】[0010]

【作用】ガスの状態を支配する主なパラメータは、体積
V、圧力P、及び温度Tである。したがって、容積変化
の無い容器の場合には、容器内のガスの圧力変化及び温
度変化を正確に測定できれば容器からのガス漏れを高精
度で検出することができる。しかし、現在のセンサー技
術では、圧力変化を差圧計(差圧センサー)によって比
較的正確に(誤差±P×10-5)測定することはできる
が、温度変化を正確に(誤差制限±T×10-5)測定す
ることは極めて困難である。
The main parameters that govern the state of the gas are the volume V, the pressure P, and the temperature T. Therefore, in the case of a container having no volume change, if the pressure change and temperature change of the gas in the container can be accurately measured, the gas leakage from the container can be detected with high accuracy. However, with the current sensor technology, pressure change can be measured relatively accurately (error ± P × 10 −5 ) by a differential pressure gauge (differential pressure sensor), but temperature change can be accurately measured (error limit ± T ×). 10 -5 ) It is extremely difficult to measure.

【0011】そこで、本発明においては、固定的に取り
付けて内蔵した基準容器MV及び差圧計DPSを用い
て、基準容器MV内の圧力Pmと被測定容器WV(ワー
ク)内の圧力Pwとの差(差圧)D=Pm −PW を差圧
計DPSによって比較的に正確に測定し、得られた差圧
の時間変化D(t)から伝熱による差圧成分DH(t)
及び漏れによる差圧成分Dl(t)を解析することによ
って、ガスの漏れ量VL又は漏れ率qが高精度で計測さ
れる。
Therefore, in the present invention, the difference between the pressure Pm in the reference container MV and the pressure Pw in the measured container WV (work) is determined by using the reference container MV and the differential pressure gauge DPS which are fixedly mounted and built in. (Differential pressure) D = P m −P W is relatively accurately measured by the differential pressure gauge DPS, and the differential pressure component DH (t) due to heat transfer is calculated from the obtained time change D (t) of the differential pressure.
By analyzing the differential pressure component Dl (t) due to the leak and the leak, the leak amount VL or the leak rate q of the gas is measured with high accuracy.

【0012】[0012]

【実施例】図1は本発明に係る計測装置1の構成を示す
流体回路図である。図1において、計測装置1は、圧縮
空気源PS、フィルタFT、圧力調整弁RV、ソレノイ
ドバルブSV1〜4、ストップバルブSV5、基準容器
(マスタ容器)MV、差圧計DPS、被測定容器WVを
接続するための配管接続部21などから構成されてい
る。
1 is a fluid circuit diagram showing the configuration of a measuring device 1 according to the present invention. In FIG. 1, the measuring device 1 connects a compressed air source PS, a filter FT, a pressure adjusting valve RV, solenoid valves SV1 to 4, a stop valve SV5, a reference container (master container) MV, a differential pressure gauge DPS, and a measured container WV. It is composed of a pipe connection portion 21 and so on.

【0013】基準容器MVは、全ての被測定容器WVに
対して共通に用いられるものであり、漏れが実質的に全
くなく、容積Vmが既知である。差圧計DPSは、基準
容器MVと被測定容器WVとの間の微少な差圧D(t)
を計測するためのものである。
The reference container MV is commonly used for all the measured containers WV, has substantially no leakage, and has a known volume Vm. The differential pressure gauge DPS measures the minute differential pressure D (t) between the reference container MV and the measured container WV.
Is for measuring.

【0014】圧縮空気源PSは、基準容器MV及び被測
定容器WVに対して圧縮空気を供給するためのものであ
り、圧力調整弁RVによって適当な圧力に調整される。
ソレノイドバルブSV1〜4は、基準容器MV又は被測
定容器WVへの圧縮空気の供給及び停止を制御するため
のものであり、ソレノイドバルブSV2、3を閉じた状
態では、これら容器MV、WVへの空気の流通は完全に
遮断される。また、ソレノイドバルブSV4をオフした
状態では、差圧D(t)が零となり、測定を開始するま
でに差圧計DPSに大きな差圧力が加わるのを防止でき
る。
The compressed air source PS is for supplying compressed air to the reference container MV and the measured container WV, and is adjusted to an appropriate pressure by the pressure adjusting valve RV.
The solenoid valves SV1 to SV4 are for controlling the supply and stop of compressed air to the reference container MV or the container to be measured WV. The air flow is completely cut off. Further, when the solenoid valve SV4 is turned off, the differential pressure D (t) becomes zero, and it is possible to prevent a large differential pressure from being applied to the differential pressure gauge DPS before the measurement is started.

【0015】図2は本発明に係る計測装置1の電気回路
を示すブロック図である。図2において、計測装置1
は、差圧計DPSから出力される検出信号を増幅する増
幅器31、デジタル信号に変換するA/D変換器32、
漏れ量の演算を始めとする種々の演算やソレノイドバル
ブSV1〜4の制御のための演算などを行って計測装置
1の全体を制御する演算装置33、差圧D(t)のデー
タを始めとして種々のデータを格納するメモリ34、入
力装置35、表示装置36、プリンタ装置37、ソレノ
イドバルブSV1〜4を駆動するためのドライバ回路3
8などから構成されており、必要に応じて磁気ディスク
装置などの外部記憶装置が接続され、また回線を通じて
他のシステムとの通信が行われる。
FIG. 2 is a block diagram showing an electric circuit of the measuring device 1 according to the present invention. In FIG. 2, the measuring device 1
Is an amplifier 31 for amplifying the detection signal output from the differential pressure gauge DPS, an A / D converter 32 for converting it into a digital signal,
The calculation device 33 that controls the entire measuring device 1 by performing various calculations such as the calculation of the leakage amount and the calculation for controlling the solenoid valves SV1 to SV4, and the data of the differential pressure D (t). A memory 34 for storing various data, an input device 35, a display device 36, a printer device 37, and a driver circuit 3 for driving the solenoid valves SV1 to SV4.
8 and the like, an external storage device such as a magnetic disk device is connected if necessary, and communication with other systems is performed through a line.

【0016】図3は計測装置1によって空気漏れの計測
を行う場合の各機器の動作タイミングを示す図である。
図3においては、基準容器MV内の圧力Pm(t)及び
被測定容器WV内の圧力Pw(t)の縦軸のスケールは
互いに等しく、これらに対して差圧D(t)の縦軸のス
ケールは拡大されている。
FIG. 3 is a diagram showing the operation timing of each device when the measuring device 1 measures the air leakage.
In FIG. 3, the vertical scales of the pressure Pm (t) in the reference container MV and the pressure Pw (t) in the measured container WV are equal to each other, and the vertical scale of the differential pressure D (t) is The scale has been expanded.

【0017】ソレノイドバルブSV1がオンし、その後
にソレノイドバルブSV2、3が同時にオンすることに
よって、基準容器MV及び被測定容器WVへの圧縮空気
の供給が開始される。これによって、圧縮空気はそれぞ
れの容器MV、WV内に流入し、それぞれの圧力Pm
(t)、Pw(t)が上昇する。
The solenoid valve SV1 is turned on, and then the solenoid valves SV2, 3 are turned on at the same time, whereby the supply of compressed air to the reference container MV and the measured container WV is started. As a result, the compressed air flows into the respective containers MV and WV, and the respective pressures Pm
(T) and Pw (t) increase.

【0018】そして、両容器MV、WVへの充填が完了
した時点taにおいて、ソレノイドバルブSV2、3を
オフし、両容器MV、WVへの圧縮空気の供給を停止す
るとともに、ソレノイドバルブSV4をオンする。そう
すると、基準容器MVにおいては圧縮空気の温度変化に
よって、被測定容器WVにおいては圧縮空気の温度変化
と漏れによって、それぞれ圧力Pm(t)、Pw(t)
が低下するため、図に示すような差圧D(t)が発生す
る。このとき、時点tcにおいて、差圧D(t)の最初
のピークが発生する。その後、差圧D(t)は時点tp
において一旦零となり、その後増大する。
At the time ta when the filling of both containers MV, WV is completed, the solenoid valves SV2, 3 are turned off, the supply of compressed air to both containers MV, WV is stopped, and the solenoid valve SV4 is turned on. To do. Then, the pressures Pm (t) and Pw (t) are changed in the reference container MV due to the temperature change of the compressed air and in the measured container WV due to the temperature change and the leakage of the compressed air, respectively.
Is decreased, the differential pressure D (t) shown in the figure is generated. At this time, at time tc, the first peak of the differential pressure D (t) occurs. After that, the differential pressure D (t) changes to the time point tp.
It becomes zero at and then increases.

【0019】差圧D(t)を所定の時間だけ計測し、そ
のデータをメモリ34に格納する。その後、ソレノイド
バルブSV4をオフするとともにソレノイドバルブSV
2、3をオンし、両容器MV、WV内の圧縮空気を排出
する。そして、ソレノイドバルブSV2、3をオフし、
測定を終了する。
The differential pressure D (t) is measured for a predetermined time and the data is stored in the memory 34. After that, the solenoid valve SV4 is turned off and the solenoid valve SV is turned off.
2 and 3 are turned on, and the compressed air in both containers MV and WV is discharged. Then, the solenoid valves SV2, 3 are turned off,
Finish the measurement.

【0020】このようにして測定した差圧D(t)の時
間変化に基づいて、被測定容器WVの漏れ量VLが演算
装置33によって求められる。次に、差圧D(t)から
漏れ量VLの求め方について説明する。
The leak amount VL of the measured container WV is calculated by the arithmetic unit 33 based on the time change of the differential pressure D (t) thus measured. Next, how to obtain the leak amount VL from the differential pressure D (t) will be described.

【0021】まず、検出された差圧D(t)の時間変化
から、最小2乗法などの近似方法を用いて次の近似式
(1)を求める。 D(t)=DH(t)+DL(t)+D(tb) …(1) 但し、差圧変化についての始点を時点tbとする。した
がって、時点tbにおいて時刻t=0、つまりtb=0
である。
First, the following approximate expression (1) is obtained from the detected time change of the differential pressure D (t) using an approximation method such as the least square method. D (t) = DH (t) + DL (t) + D (tb) (1) However, the starting point for the differential pressure change is time tb. Therefore, at time tb, time t = 0, that is, tb = 0
Is.

【0022】(1)式において、DH(t)は伝熱によ
る差圧成分、DL(t)は漏れによる差圧成分、D(t
b)は時刻tb(=0)における差圧D(t)の測定値
である。
In the equation (1), DH (t) is a differential pressure component due to heat transfer, DL (t) is a differential pressure component due to leakage, and D (t).
b) is the measured value of the differential pressure D (t) at time tb (= 0).

【0023】次に、伝熱による差圧成分DH(t)、及
び漏れによる差圧成分DL(t)は、それぞれ次式
(2)(3)によって示される。
Next, the differential pressure component DH (t) due to heat transfer and the differential pressure component DL (t) due to leakage are respectively expressed by the following equations (2) and (3).

【0024】[0024]

【数1】 [Equation 1]

【0025】但し、式(2)(3)において、thは一
次遅れ要素の時定数、Poは周囲環境の大気圧、qは被
測定容器WVから単位容積且つ単位時間当たりに大気へ
漏れるガスの体積である漏れ率を示す。
However, in equations (2) and (3), th is the time constant of the first-order lag element, Po is the atmospheric pressure of the surrounding environment, and q is the gas leaking from the measured container WV to the atmosphere per unit volume and per unit time. The leak rate, which is the volume, is shown.

【0026】次に、漏れによる差圧成分DL(t)から
qを求め、さらにqの値に基づいて、被測定容器WVか
ら単位時間当たりに大気へ漏れるガスの体積であるガス
漏れ率QL、及び被測定容器WVから所定時間内に大気
へ漏れるガスの体積である漏れ量VLを、それぞれ次式
(4)(5)によって求める。
Next, q is obtained from the differential pressure component DL (t) due to leakage, and based on the value of q, the gas leakage rate QL, which is the volume of gas leaking from the measured container WV to the atmosphere per unit time, Also, the leak amount VL, which is the volume of gas leaking from the measured container WV to the atmosphere within a predetermined time, is calculated by the following equations (4) and (5).

【0027】QL=q・Vw …(4) VL=q・Vw・(td−tb)…(5) 但し、式(4)(5)において、Vwは被測定容器WV
の容積、tdは差圧変化の測定の終了時刻を示す。
QL = q.Vw (4) VL = q.Vw. (Td-tb) (5) However, in the formulas (4) and (5), Vw is the measured container WV.
, Td indicates the end time of measurement of the change in differential pressure.

【0028】ここで、上述した式(2)及び式(3)に
ついて説明する。図4は差圧D(t)の成分を示す図、
図5は伝熱による差圧成分DH(t)を求めるためのブ
ロック図である。
Here, the above equations (2) and (3) will be described. FIG. 4 is a diagram showing the components of the differential pressure D (t),
FIG. 5 is a block diagram for obtaining the differential pressure component DH (t) due to heat transfer.

【0029】上述した式(1)及び図4に示されるよう
に、時点tbから時点tdまでの間における差圧D
(t)は、伝熱による差圧成分DH(t)、漏れによる
差圧成分DL(t)、及び時点tbにおける初期差圧D
(tb)に分解される。またDH(t)及びDL(t)
の初期値は零である。
As shown in the above equation (1) and FIG. 4, the differential pressure D from the time point tb to the time point td.
(T) is the differential pressure component DH (t) due to heat transfer, the differential pressure component DL (t) due to leakage, and the initial differential pressure D at time tb.
It is decomposed into (tb). Also, DH (t) and DL (t)
The initial value of is zero.

【0030】漏れによる差圧成分DL(t)について
は、被測定容器WV内の圧力Pw(t)が周囲環境にお
ける大気圧の1.9倍(絶対圧での比較)以上であれ
ば、漏れの質量流量は被測定容器WV内の圧力変化又は
温度変化によらないことから、時間の一次関数とするこ
とができ、ガスの状態方程式を用いて上述の式(3)が
得られる。
Regarding the differential pressure component DL (t) due to leakage, if the pressure Pw (t) in the measured container WV is 1.9 times the atmospheric pressure in the surrounding environment (comparison in absolute pressure) or more, leakage Since it does not depend on the pressure change or temperature change in the measured container WV, it can be a linear function of time, and the above equation (3) is obtained using the equation of state of gas.

【0031】また、伝熱による差圧成分DH(t)につ
いては、伝熱による影響を2つのステップ入力として扱
い、図5に示されるように、被測定容器WV及び基準容
器MVについての2つの一次遅れ要素のインディシャル
応答の差として扱うことができる。
As for the differential pressure component DH (t) due to heat transfer, the effect due to heat transfer is treated as two step inputs, and as shown in FIG. 5, there are two differences regarding the measured container WV and the reference container MV. It can be treated as the difference in the indicial response of the first-order lag element.

【0032】図5より、伝熱による差圧成分DH(t)
のラプラス変換DH(s)は次式(6)のようになる。
From FIG. 5, the differential pressure component DH (t) due to heat transfer
The Laplace transform DH (s) of is expressed by the following equation (6).

【0033】[0033]

【数2】 [Equation 2]

【0034】ここで、Rはガス定数、ρw及びρmはそ
れぞれ被測定容器WV又は基準容器MVの内部のガス密
度wを、thw及びthmはそれぞれ被測定容器WV又
は基準容器MVの時定数を示す。
Here, R is the gas constant, ρw and ρm are the gas densities w inside the measured container WV or the reference container MV, and thw and thm are the time constants of the measured container WV or the reference container MV, respectively. .

【0035】さて、式(6)によって伝熱による差圧成
分DH(t)を求めることができるが、DH(t)を表
す理論式には未知の定数が多い。そこで、本発明者は、
式(6)に対して適切な近似を行い、伝熱による差圧成
分DH(t)を表す近似式を得た。すなわち、式(6)
の内の二次遅れ要素である次の式(7)、
Although the differential pressure component DH (t) due to heat transfer can be obtained by the equation (6), there are many unknown constants in the theoretical equation expressing DH (t). Therefore, the present inventor
Appropriate approximation was made to the equation (6) to obtain an approximate equation representing the differential pressure component DH (t) due to heat transfer. That is, equation (6)
The following equation (7), which is the second-order lag element of

【0036】[0036]

【数3】 [Equation 3]

【0037】を、一次遅れ要素である次の式(8)、The following equation (8), which is a first-order lag element,

【0038】[0038]

【数4】 [Equation 4]

【0039】と、無駄時間要素である次の式(9)、And the following equation (9) which is a dead time element,

【0040】[0040]

【数5】 [Equation 5]

【0041】との組み合わせで近似し、この近似による
誤差が非常に大きい無駄時間(ta→tb)内における
過渡応答を0とし、時間tb以降における一次遅れ要素
である式(8)のステップ入力(1/s)に対する応答
を求めることとした。なお、Aは一次遅れ要素のゲイン
定数、thは一次遅れ要素の時定数を示す。
And the transient response within the dead time (ta → tb) where the error due to this approximation is very large is set to 0, and the step input (8) which is the first-order lag element after time tb ( The response to 1 / s) was determined. A is a gain constant of the first-order lag element, and th is a time constant of the first-order lag element.

【0042】一次遅れ要素である式(8)のインディシ
ャル応答(ステップ入力に対する応答)の一般解は次の
式(10)で示される。
A general solution of the indial response (response to step input) of the equation (8) which is a first-order lag element is shown by the following equation (10).

【0043】[0043]

【数6】 [Equation 6]

【0044】この式(10)から次の式(11)が得ら
れる。
From the equation (10), the following equation (11) is obtained.

【0045】[0045]

【数7】 [Equation 7]

【0046】また、式(1)(3)から次の式(12)
が得られる。
From the expressions (1) and (3), the following expression (12) is obtained.
Is obtained.

【0047】[0047]

【数8】 これらの式(10)(11)(12)から、上述した式
(2)が得られる。
[Equation 8] From the equations (10), (11) and (12), the above equation (2) is obtained.

【0048】なお、上述の実施例の計測装置1は、演算
装置33内のROMに適切なプログラムが組み込まれて
いる。そのROMを計測装置1にインストールするとき
に、計測装置1に用いられている実際の流体機器に合わ
せて、次のパラメータを設定しておく。
In the measuring device 1 of the above embodiment, a suitable program is incorporated in the ROM in the arithmetic unit 33. When the ROM is installed in the measuring device 1, the following parameters are set according to the actual fluid device used in the measuring device 1.

【0049】差圧計DPSの測定レンジDmax (mmH
2 O) 基準容器MVの容積Vm(cc) 配管接続部21などを含めた被測定容器側のデッドボリ
ュームVwd(cc) 計測装置1による計測を実際に行う際に、被測定容器W
Vの容積Vw(cc)、許容される漏れ率の最大値NG
(cc/min)、及び時点td(s)の値を、オペレ
ータが入力装置35から入力することによって、差圧D
(t)の計測及び漏れ率q、漏れ量VLの演算が自動的
に行われ、その結果が表示装置36に表示され、必要に
応じてプリンタ装置37によってプリントされる。
Differential pressure gauge DPS measurement range Dmax (mmH
2 O) Volume Vm (cc) of the reference container MV Dead volume Vwd (cc) on the measured container side including the pipe connection portion 21 and the like When the actual measurement by the measuring device 1 is performed, the measured container W
V volume Vw (cc), maximum allowable leak rate NG
(Cc / min) and the value of the time point td (s) are input by the operator from the input device 35, so that the differential pressure D
The measurement of (t) and the calculation of the leak rate q and the leak amount VL are automatically performed, the results are displayed on the display device 36, and printed by the printer device 37 as necessary.

【0050】上述したように、計測装置1を用いた計測
では、被測定容器WVの形状及び容積などに係わらず、
つまり被測定容器WVを種々取り替えた場合でも、同一
の基準容器MVを用いることとし、基準容器MVを取り
替えることをしない。
As described above, in the measurement using the measuring device 1, regardless of the shape and volume of the container WV to be measured,
In other words, even when various containers to be measured WV are replaced, the same reference container MV is used and the reference container MV is not replaced.

【0051】したがって、被測定容器WVが異なる毎に
それぞれに対応した基準容器MVを製作したりそれを配
管接続して取り付けたりする必要がなく、計測のための
作業が極めて簡便になる。しかも、1個の空気漏れのな
い基準容器MVを製作すればよいので、時間とコストを
大幅に低減することができる。
Therefore, it is not necessary to manufacture a reference container MV corresponding to each different container to be measured WV or to attach it by pipe connection, and the work for measurement becomes extremely simple. Moreover, since it is only necessary to manufacture one reference container MV without air leakage, it is possible to significantly reduce time and cost.

【0052】上述の実施例の計測装置1の他の利点を列
挙すると次のとおりである。 温度変化による影響は理論計算によって処理される
ため、被測定容器WVまでの配管やその周辺の温度など
といった計測条件の制限が緩和され、ガス漏れの計測が
容易である。 漏れ率qは差圧D(t)の時間変化の曲線の形から
算出されるため、差圧D(t)のばらつきやノイズなど
による影響は計算によって補正され、高い精度が得られ
る。 理論計算をベースとして差圧D(t)の計測タイミ
ングが決定されるので、短時間で計測が行われ、1つの
被測定容器WVの漏れ量VLを計測し又は検査する時間
が短縮される。また、計測装置1によって対応可能な計
測範囲が極めて広いので、計測又は検査に要するコスト
が大幅に低減される。
Other advantages of the measuring apparatus 1 of the above-mentioned embodiment are listed as follows. Since the influence of the temperature change is processed by theoretical calculation, the limitation of the measurement conditions such as the temperature of the pipe to the measured container WV and its surroundings is relaxed, and the gas leak can be easily measured. Since the leak rate q is calculated from the shape of the curve of the time-dependent change of the differential pressure D (t), the influence of variations in the differential pressure D (t) and noise is corrected by calculation, and high accuracy is obtained. Since the measurement timing of the differential pressure D (t) is determined based on theoretical calculation, the measurement is performed in a short time, and the time for measuring or inspecting the leak amount VL of one measured container WV is shortened. Moreover, since the measuring range that can be handled by the measuring device 1 is extremely wide, the cost required for measurement or inspection is significantly reduced.

【0053】上述の実施例において、被測定容器WV及
び基準容器MVの流路の開閉のためにソレノイドバルブ
SV1〜4を用いたが、これ以外の種々の弁を用いるこ
とができる。その他、計測装置1の流体回路、電気回
路、又はそれらの各部の構成は本発明の主旨に沿って種
々変更することができる。
Although the solenoid valves SV1 to SV4 are used to open and close the flow paths of the container to be measured WV and the reference container MV in the above-described embodiment, various valves other than these can be used. In addition, the configuration of the fluid circuit, the electric circuit, or each part thereof of the measuring device 1 can be variously changed in accordance with the gist of the present invention.

【0054】[0054]

【発明の効果】本発明によると、異なる被測定容器に対
し、同一の基準容器を用いてガスの漏れを正確に計測す
ることができる。
According to the present invention, it is possible to accurately measure a gas leak for different containers to be measured by using the same reference container.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る計測装置の構成を示す流体回路図
である。
FIG. 1 is a fluid circuit diagram showing a configuration of a measuring device according to the present invention.

【図2】本発明に係る計測装置の電気回路を示すブロッ
ク図である。
FIG. 2 is a block diagram showing an electric circuit of the measuring device according to the present invention.

【図3】計測装置によって空気漏れの計測を行う場合の
各機器の動作タイミングを示す図である。
FIG. 3 is a diagram showing an operation timing of each device when an air leak is measured by a measuring device.

【図4】差圧D(t)の成分を示す図である。FIG. 4 is a diagram showing components of a differential pressure D (t).

【図5】伝熱による差圧成分DH(t)を求めるための
ブロック図である。
FIG. 5 is a block diagram for obtaining a differential pressure component DH (t) due to heat transfer.

【符号の説明】[Explanation of symbols]

1 計測装置 WV 被測定容器 MV 基準容器 D(t) 差圧 1 Measuring device WV Measuring container MV Standard container D (t) Differential pressure

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被測定容器のガス漏れを計測する方法であ
って、 被測定容器及び基準容器に対して圧縮ガスを供給して充
填した後に圧縮ガスの供給を停止し、 その後における前記基準容器と前記被測定容器との間の
差圧D(t)を所定の時間計測し、 計測された差圧D(t)に基づき、近似方法を用いて、
伝熱による差圧成分DH(t)と、漏れによる差圧成分
DL(t)とを求め、 漏れによる差圧成分DL(t)に基づいてガス漏れを求
める、 ことを特徴とする容器のガス漏れの計測方法。
1. A method for measuring gas leakage in a container to be measured, which comprises supplying compressed gas to a container to be measured and a reference container, filling the compressed gas, and then stopping the supply of the compressed gas, and then the reference container. And a differential pressure D (t) between the measured container and the container to be measured for a predetermined time, and based on the measured differential pressure D (t), using an approximation method,
A gas of a container characterized in that a differential pressure component DH (t) due to heat transfer and a differential pressure component DL (t) due to leakage are obtained, and a gas leak is obtained based on the differential pressure component DL (t) due to leakage. How to measure leaks.
【請求項2】前記伝熱による差圧成分DH(t)を、前
記被測定容器及び基準容器についての2つの一次遅れ要
素のインディシャル応答の差とし、 前記漏れによる差圧成分DL(t)を、時間の一次関数
とする、 ことを特徴とする請求項1記載の容器のガス漏れの計測
方法。
2. A differential pressure component DH (t) due to the heat transfer is defined as a difference between the indi- tual responses of two first-order lag elements for the measured container and the reference container, and a differential pressure component DL (t) due to the leakage. Is a linear function of time, The method for measuring gas leakage of a container according to claim 1, wherein
JP05311713A 1993-12-13 1993-12-13 How to measure gas leaks from containers Expired - Fee Related JP3143299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05311713A JP3143299B2 (en) 1993-12-13 1993-12-13 How to measure gas leaks from containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05311713A JP3143299B2 (en) 1993-12-13 1993-12-13 How to measure gas leaks from containers

Publications (2)

Publication Number Publication Date
JPH07174661A true JPH07174661A (en) 1995-07-14
JP3143299B2 JP3143299B2 (en) 2001-03-07

Family

ID=18020579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05311713A Expired - Fee Related JP3143299B2 (en) 1993-12-13 1993-12-13 How to measure gas leaks from containers

Country Status (1)

Country Link
JP (1) JP3143299B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946506B1 (en) * 2008-05-28 2010-03-11 현대자동차주식회사 Crack Diagnosis Method of SCR system
WO2012081537A1 (en) * 2010-12-14 2012-06-21 株式会社エイムテック Differential pressure measuring method and device
JP2018009955A (en) * 2016-06-29 2018-01-18 暎三 浦田 Leak inspection method and leak inspection device
JPWO2021065005A1 (en) * 2019-10-04 2021-04-08

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604572A (en) * 2013-11-06 2014-02-26 安徽皖仪科技股份有限公司 Leakage detection method for central air conditioner copper tube

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946506B1 (en) * 2008-05-28 2010-03-11 현대자동차주식회사 Crack Diagnosis Method of SCR system
WO2012081537A1 (en) * 2010-12-14 2012-06-21 株式会社エイムテック Differential pressure measuring method and device
JP2012127710A (en) * 2010-12-14 2012-07-05 Aim Tech:Kk Differential pressure measurement method and device for the same
JP2018009955A (en) * 2016-06-29 2018-01-18 暎三 浦田 Leak inspection method and leak inspection device
JPWO2021065005A1 (en) * 2019-10-04 2021-04-08
WO2021065005A1 (en) * 2019-10-04 2021-04-08 三菱電機株式会社 Airtightness evaluation device
US11781936B2 (en) 2019-10-04 2023-10-10 Mitsubishi Electric Corporation Airtightness evaluation device

Also Published As

Publication number Publication date
JP3143299B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
US4686638A (en) Leakage inspection method with object type compensation
US4523452A (en) Method of measuring leak rates
EP0466657B1 (en) In-line volume testing a plastic bottle
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
US4078421A (en) Method and automatic device for the testing of tight cavities
CN203365087U (en) Differential pressure type airtight leak detection instrument calibration device
US9429493B2 (en) Manifold assembly for a portable leak tester
US4888718A (en) Volume measuring apparatus and method
JP4056818B2 (en) Leak test method and apparatus
US4763518A (en) Method for measuring net internal volume of a receptacle containing an unknown volume of residual liquid
US20090299659A1 (en) Method for determining the total leak rate of systems impinged upon by pressure,and control apparatus for carrying out said method
JPH07174661A (en) Measuring method for gas leak of container
JP2012255687A (en) Pressure leakage measuring method
JP2597710B2 (en) Pressure gauge calibration device
JP3054508B2 (en) Method and apparatus for measuring gas leakage in a container
US10101185B2 (en) Method and measuring assembly according to the differential pressure principle having a zero-point calibration
JP2618952B2 (en) Calibration device for differential pressure transmitter
JP3310224B2 (en) Method and apparatus for measuring gas leakage in a container
JPH0643089A (en) Apparatus for testing completeness of membrane filter
JP3186644B2 (en) Gas leak inspection method
RU2282166C1 (en) Device for calibrating pressure gages
JPH0240515Y2 (en)
JPH11304632A (en) Computing device for drift correction value for leak inspection and leak inspection apparatus using it
JP3038321B2 (en) Leak amount measurement device
JPH0814982A (en) Method for measuring quantity of liquid

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001212

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees