JPH07159438A - Correcting device of acceleration sensor - Google Patents

Correcting device of acceleration sensor

Info

Publication number
JPH07159438A
JPH07159438A JP30660993A JP30660993A JPH07159438A JP H07159438 A JPH07159438 A JP H07159438A JP 30660993 A JP30660993 A JP 30660993A JP 30660993 A JP30660993 A JP 30660993A JP H07159438 A JPH07159438 A JP H07159438A
Authority
JP
Japan
Prior art keywords
acceleration sensor
sensor
vehicle
state
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30660993A
Other languages
Japanese (ja)
Inventor
Takashi Watanabe
多佳志 渡辺
Junji Mizutani
淳司 水谷
Shoichi Masaki
彰一 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP30660993A priority Critical patent/JPH07159438A/en
Publication of JPH07159438A publication Critical patent/JPH07159438A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correctly distinguish a sloping road and also to suitably correct a zero drift of an acceleration sensor, by storing a value of the acceleration sensor in a stopping time, on detecting a change from one state to the other state between the traveling and stoppage of a car. CONSTITUTION:In an acceleration sensor 40, a weight 42 is provided in one end side of a rod-like sensor member 41, and a strain produced in the sensor member 41 by accelerating is detected as a change of voltage by a strain detecting part 43. In a car, an electronic control circuit 50 for controlling a running state, etc., of the car and for carrying out various operation processings of the zero point correction of the sensor 40, etc., is provided. The circuit 50 comprises a CPU 51, ROM 52, RAM 53, etc. On detecting a change from one state to the other state between the traveling and stoppage of the car, a value of the sensor 40 in a stopping time is stored in the RAM 53, therewith the CPU 51 integrates values of the sensor 40 stored by a drift amount computing means, averages them to find a drift amount from zero point, and carries out zero point correction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶対加速度を検出する
タイプの加速度センサの補正装置に関し、詳しくはその
加速度センサの0点ドリフトを補正する加速度センサの
補正装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a correction device for an acceleration sensor of the type that detects absolute acceleration, and more particularly to a correction device for an acceleration sensor that corrects zero-point drift of the acceleration sensor.

【0002】[0002]

【従来の技術】従来より、加速度センサとしては、例え
ば車輪速度の変化から相対的な加速度を算出する加速度
センサが知られているが、それ以外にも、例えば加速度
の変化によって生じた部材(センサ部材)のひずみを、
電流や電圧の変化として捉えて、絶対加速度を検出する
いわゆるGセンサと呼ばれる加速度センサ(例えばDC
式加速度センサ)が知られている。
2. Description of the Related Art Conventionally, as an acceleration sensor, for example, an acceleration sensor which calculates a relative acceleration from a change in wheel speed has been known. Strain)
An acceleration sensor called a so-called G sensor (for example, a DC sensor) that detects absolute acceleration by grasping it as a change in current or voltage
Acceleration sensors) are known.

【0003】この絶対加速度を検出するタイプの加速度
センサは、センサ部材のひずみ等から加速度を検出する
という構造上、長期間の使用により徐々に0点がドリフ
トしてしまうという問題があった。例えばこの加速度セ
ンサを長期間使用していると、センサ部材そのものに経
時変化によるゆがみ等が生じて電気的に変化が発生し、
車両が停止している場合でも僅かに加速度が出力される
ことがあった。
The acceleration sensor of the type that detects absolute acceleration has a problem that the zero point gradually drifts due to long-term use because of the structure of detecting acceleration from the strain of the sensor member. For example, if this acceleration sensor is used for a long period of time, the sensor member itself may be distorted due to aging, causing electrical changes,
Acceleration may be slightly output even when the vehicle is stopped.

【0004】[0004]

【発明が解決しようとする課題】この対策として、例え
ば加速度センサの初期の特性をシビアに追い込んで、経
時変化により0点がドリフトしても、要求精度内に入る
様に設計する方法が考えられるが、精度向上を図る作業
が大変であり、コストも上昇するという難点があった。
As a countermeasure to this problem, for example, a method may be considered in which the initial characteristics of the acceleration sensor are rigorously driven so that even if the zero point drifts due to a change over time, the design will be within the required accuracy. However, there is a problem that the work for improving the accuracy is difficult and the cost is increased.

【0005】また、それとは別に、車輪速度より推定し
た車体加速度とGセンサの出力とを比較し、Gセンサの
出力を補正するという技術がある。しかしながら、この
方法では、坂路によるG成分とGセンサのドリフトとを
区別できないので、両方を同時に補正してしまい、結果
として坂路を検出できないという別の問題が生じる。
In addition to the above, there is a technique of correcting the output of the G sensor by comparing the vehicle body acceleration estimated from the wheel speed with the output of the G sensor. However, with this method, since the G component due to the slope and the drift of the G sensor cannot be distinguished, both are corrected at the same time, resulting in another problem that the slope cannot be detected.

【0006】更に、特開昭63−116917号公報に
は、複数の上下Gセンサの絶対値が同時に設定値以上と
なり且つその状態が所定時間以上継続した場合には、坂
路やバンク等と判断して、Gセンサの出力の平均値をG
センサの出力から減算するという技術が開示されてい
る。しかしながら、この場合も、坂路によるG成分とG
センサのドリフトを区別できないので同様な問題があ
り、その上Gセンサを複数必要とするので構造が複雑に
なるという問題もある。
Further, in Japanese Patent Laid-Open No. 63-116917, when the absolute values of a plurality of upper and lower G sensors simultaneously exceed a set value and the state continues for a predetermined time or longer, it is determined to be a slope or a bank. The average value of the G sensor output
A technique of subtracting from the output of the sensor is disclosed. However, in this case as well, the G component and G
There is a similar problem because the sensor drift cannot be distinguished, and there is also a problem that the structure becomes complicated because a plurality of G sensors are required.

【0007】本発明は、この様な不具合の発生を解決す
るためになされたものであり、坂路を正確に区別できる
とともに、加速度センサの経時変化等による0点ドリフ
トを好適に補正できる加速度センサの補正装置を提供す
ることを目的とする。
The present invention has been made in order to solve the occurrence of such a problem, and provides an acceleration sensor capable of accurately distinguishing a slope and correcting the zero-point drift due to a change with time of the acceleration sensor. An object is to provide a correction device.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
の請求項1の発明は、図1に例示する様に、車両の絶対
加速度を検出する加速度センサの補正装置であって、車
両の走行及び停止の両状態のうち、一方の状態から他方
の状態に変化したことを検出する車両状態検出手段と、
該車両状態検出手段によって車両の状態が変化したこと
を検出した場合には、前記車両の停止時の加速度センサ
の値を記憶する記憶手段と、該記憶手段によって記憶さ
れた加速度センサの値を、積算し平均化して0点からの
ドリフト量を求めるドリフト量算出手段と、該ドリフト
量算出手段によって求められたドリフト量を、加速度セ
ンサの値から減算して0点補正を行なう0点補正手段
と、を備えたことを特徴とする加速度センサの補正装置
を要旨とする。
The invention according to claim 1 for achieving the above object is a correction device for an acceleration sensor for detecting an absolute acceleration of a vehicle as shown in FIG. A vehicle state detecting means for detecting a change from one state to the other of the two states of stop and
When the vehicle state detection means detects that the state of the vehicle has changed, a storage means for storing the value of the acceleration sensor when the vehicle is stopped, and a value of the acceleration sensor stored by the storage means Drift amount calculation means for obtaining the drift amount from the zero point by integrating and averaging, and zero point correction means for performing the zero point correction by subtracting the drift amount obtained by the drift amount calculation means from the value of the acceleration sensor. A gist is a correction device for an acceleration sensor, which is provided with.

【0009】[0009]

【作用】前記目的を達成するための本発明は、車両の絶
対加速度を検出する加速度センサの補正装置であり、車
両状態検出手段によって、車両の走行及び停止の両状態
のうち一方の状態から他方の状態に変化したことを検出
した場合には、記憶手段によって、車両の停止時の加速
度センサの値を記憶するとともに、ドリフト量算出手段
によって、この記憶された加速度センサの値を積分し平
均化して0点からのドリフト量を求める。そして、0点
補正手段によって、このドリフト量を加速度センサの値
から減算して0点補正を行なう。
The present invention for achieving the above object is a correction device for an acceleration sensor for detecting the absolute acceleration of a vehicle, wherein one of the two states, running and stopping, of the vehicle is detected by the vehicle state detecting means. When it is detected that the state has changed, the storage means stores the value of the acceleration sensor when the vehicle is stopped, and the drift amount calculation means integrates and averages the stored values of the acceleration sensor. Then, the drift amount from 0 point is obtained. Then, the zero point correction means subtracts this drift amount from the value of the acceleration sensor to perform the zero point correction.

【0010】つまり、本発明は、通常の走行において
は、坂路は登ったら下るものであり、永遠に続く坂路は
ないという考え方に基づいて、車両停止時毎の加速セン
サの値を積分し平均化することによって、坂路の影響を
排除してドリフト量を求め、このドリフト量を用いて実
際の加速度センサの0点補正を行なうものである。具体
的には、図2に示す様に、例えば仮に0点が+1ドリフ
トしている加速度センサの場合に、車両が上り+10下
り−10の坂路にて各々停止したとすると、センサ出力
は各々+11,−9となり、それらを積分した後に平均
化すると、(+11−9)/2=+1となり、しかも坂
路の影響は±0となるので、0点補正のためのドリフト
量(+1)が正確に求まることになる。
In other words, the present invention integrates and averages the values of the acceleration sensor every time the vehicle is stopped, based on the idea that, in normal driving, a slope goes down when it climbs up, and there is no slope that lasts forever. By doing so, the influence of the slope is eliminated to obtain the drift amount, and the zero amount of the actual acceleration sensor is corrected using this drift amount. Specifically, as shown in FIG. 2, for example, in the case of an acceleration sensor in which the 0 point drifts by +1 and the vehicle is stopped on each of the uphill +10 and down-10 slopes, the sensor outputs are +11. , -9, and when they are integrated and then averaged, (+ 111-9) / 2 = + 1 and the influence of the slope is ± 0. Therefore, the drift amount (+1) for the 0-point correction is accurate. You will be asked.

【0011】[0011]

【実施例】以下に本発明の実施例を図面と共に説明す
る。図3は本実施例の加速度センサ補正装置を備えた車
両のシステム構成を示す概略構成図である。尚、この車
両は、加速度センサの値に基づいてトラクション制御を
行なうことができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a schematic configuration diagram showing a system configuration of a vehicle provided with the acceleration sensor correction device of the present embodiment. It should be noted that this vehicle can perform traction control based on the value of the acceleration sensor.

【0012】図3に示す様に、1はエンジン,2は吸気
管,3はエアフロメータ,4は燃料噴射弁,5は点火プ
ラグ,6はディストリビュータ,7は歯車と電磁ピック
アップからなるエンジン回転数センサ,8はアクセルペ
ダル9の踏み込み量に応じて駆動されて吸気量を調節す
る第1スロットルバルブ,10はトラクション制御(加
速スリップ制御)時に吸気量を調節する第2スロットル
バルブ,11は第2スロットルバルブ10を駆動するD
Cモータ,12は第1スロットルバルブ8の開度を検出
する第1スロットルセンサ,13は第2スロットルバル
ブ10の開度を検出する第2スロットルセンサである。
As shown in FIG. 3, 1 is an engine, 2 is an intake pipe, 3 is an air flow meter, 4 is a fuel injection valve, 5 is an ignition plug, 6 is a distributor, 7 is an engine speed consisting of a gear and an electromagnetic pickup. A sensor, 8 is a first throttle valve that is driven according to the depression amount of an accelerator pedal 9 to adjust the intake air amount, 10 is a second throttle valve that adjusts the intake air amount during traction control (acceleration slip control), and 11 is a second throttle valve. D that drives the throttle valve 10
C motor, 12 is a first throttle sensor that detects the opening of the first throttle valve 8, and 13 is a second throttle sensor that detects the opening of the second throttle valve 10.

【0013】また、20,21は駆動輪,24,25は
左右の駆動輪20,21の回転速度を検出する駆動輪速
度センサ,26,27は誘動輪,28,29は誘動輪速
度センサであり、各速度センサ24,25,28,29
は、歯車と電磁ピックアップから構成されている。各車
輪20,21,26,27にはブレーキ30〜33が設
けられ、各ブレーキ30〜33にはブレーキ30〜33
を駆動するブレーキ油圧回路35〜38が接続されてい
る。
Further, 20 and 21 are drive wheels, 24 and 25 are drive wheel speed sensors for detecting the rotational speeds of the left and right drive wheels 20 and 21, 26 and 27 are guide wheels, and 28 and 29 are guide wheel speed sensors. Yes, each speed sensor 24, 25, 28, 29
Is composed of a gear and an electromagnetic pickup. The brakes 30 to 33 are provided on the wheels 20, 21, 26, and 27, and the brakes 30 to 33 are provided on the brakes 30 to 33.
Brake hydraulic circuits 35 to 38 for driving the are connected.

【0014】更に、本実施例には、絶対加速度を検出す
るGセンサとして、加速度センサ40が配置されてい
る。この加速度センサ40を配置する場所としては、例
えば車両の中心等が挙げられるが、車両の前後方向の加
速度を検出できる位置であれば、特に限定はない。この
加速度センサ40は、図4に示す様に、ロッド状のセン
サ部材41の先端側に重り42を設け、加速によってセ
ンサ部材41に生じるひずみを電圧の変化としてひずみ
検出部43で検出し、このひずみ検出部43からの出力
によって加速度を検出するものである。よって、例えば
平地で車両が停止している場合には所定の0点を示す出
力が得られ、加速が行われている場合にはその加速度に
応じた出力が得られるが、坂路で停止している場合に
は、坂路の傾斜に応じた重力の分力によって、所定の出
力(例えば上りでは+,下りでは−の出力)が得られる
ことになる。
Further, in this embodiment, an acceleration sensor 40 is arranged as a G sensor for detecting absolute acceleration. The location of the acceleration sensor 40 may be, for example, the center of the vehicle, but is not particularly limited as long as the acceleration in the front-rear direction of the vehicle can be detected. As shown in FIG. 4, the acceleration sensor 40 is provided with a weight 42 on the tip side of a rod-shaped sensor member 41, and detects strain generated in the sensor member 41 due to acceleration as a change in voltage by a strain detection unit 43. The acceleration is detected by the output from the strain detector 43. Therefore, for example, when the vehicle is stopped on a level ground, an output indicating a predetermined 0 point is obtained, and when acceleration is performed, an output according to the acceleration is obtained, but when the vehicle is stopped on a slope, When the vehicle is present, a predetermined output (for example, + for uphill and − for downhill) is obtained by the component of gravity corresponding to the slope of the slope.

【0015】また、この車両には、車両の走行状態等を
制御したり、後述する加速度センサ40の0点補正等の
各種の演算処理を行なう装置として、電子制御回路(E
CU)50が設けられている。このECU50は、図5
に示す様に、周知のCPU51,ROM52,RAM5
3,入力部54,出力部55及びそれらを接続するバス
56等からなり、マイクロコンピュータとして構成され
ている。このうち、入力部54には、エアフロメータ
3,エンジン回転数センサ7,第1スロットルセンサ1
2,第2スロットルセンサ13,駆動輪速度センサ2
4,25,誘動輪速度センサ28,29,加速度センサ
40が接続されている。一方、出力部55には、図示し
ない駆動回路を介して、燃料噴射弁4,ディストリビュ
ータ6,DCモータ11,ブレーキ油圧回路35〜38
が接続されている。
Further, the vehicle is provided with an electronic control circuit (E) as a device for controlling the traveling state of the vehicle and for performing various arithmetic processing such as zero point correction of the acceleration sensor 40 described later.
CU) 50 is provided. This ECU 50 is shown in FIG.
As shown in, the well-known CPU 51, ROM 52, RAM 5
3, an input unit 54, an output unit 55, a bus 56 connecting them, and the like, and configured as a microcomputer. Of these, the input section 54 includes an air flow meter 3, an engine speed sensor 7, a first throttle sensor 1
2, second throttle sensor 13, drive wheel speed sensor 2
4, 25, induced wheel speed sensors 28, 29, and acceleration sensor 40 are connected. On the other hand, the output unit 55 is provided with a fuel injection valve 4, a distributor 6, a DC motor 11, and brake hydraulic circuits 35 to 38 via a drive circuit (not shown).
Are connected.

【0016】次に、上述した構成において、本実施例の
要部である加速度センサ40の0点補正処理について、
図6のフローチャートに基づいて説明する。図6に示す
様に、エンジン1が始動されて回転している状態におい
て、S100にて、車両が停止中であるか否かを、誘動
輪速度センサ28,29からの出力に基づき車速が
「0」であるか否かによって判定する。ここで肯定判断
されるとS110に進み、一方否定判断されるとS14
0に進む。
Next, in the above-mentioned configuration, the zero point correction process of the acceleration sensor 40, which is the main part of this embodiment, will be described.
This will be described based on the flowchart of FIG. As shown in FIG. 6, in a state where the engine 1 is started and is rotating, in S100, it is determined whether the vehicle is stopped or not based on the outputs from the driven wheel speed sensors 28 and 29. It is determined by whether it is "0". If an affirmative determination is made here, the process proceeds to S110, and if a negative determination is made, S14.
Go to 0.

【0017】S110では、車両が停止中であることを
示す停止フラグTFをオン(ON)し、S120に進
む。S120では、車両が停止中であるので、加速度セ
ンサ40の停止中における出力の平均値Gs(n)を求
める。つまり、停止中にn回(例えば4回)サンプリン
グを行なって、より安定した値である平均値Gs(n)
を求め、この値を1回の停止における加速度センサ40
の出力値として記憶するものである。
In S110, a stop flag TF indicating that the vehicle is stopped is turned on (ON), and the process proceeds to S120. In S120, since the vehicle is stopped, the average value Gs (n) of the output when the acceleration sensor 40 is stopped is calculated. That is, sampling is performed n times (for example, 4 times) during the stop, and the more stable average value Gs (n) is obtained.
Is calculated, and this value is used as the acceleration sensor 40 at one stop.
Is stored as the output value of.

【0018】一方、前記S100にて車両が走行中であ
ると判断されて進むS140では、車速が低速を示す所
定値V(例えば10km/h)を上回るか否かを判定し、
ここで肯定判断されるとS150に進み、一方否定判断
されるとS130に進む。つまり、この判定は、車速が
低速の場合は、ドリフト量を算出するための処理をパス
するためのものである。
On the other hand, in S140, where the vehicle is judged to be running in S100, it is judged whether or not the vehicle speed exceeds a predetermined value V (for example, 10 km / h) indicating a low speed,
If an affirmative decision is made here, the operation proceeds to S150, whereas if a negative decision is made, the operation proceeds to S130. That is, this determination is to pass the process for calculating the drift amount when the vehicle speed is low.

【0019】S150では、停止フラグTFがオンか否
か、即ち前回車両が停止していたか否かを判定する。こ
こで肯定判断されるとS160に進み、一方否定判断さ
れるとS130に進む。S160では、現在車両が走行
中であるので、停止フラグTFをオフ(OFF)し、S
170に進む。
In S150, it is determined whether or not the stop flag TF is on, that is, whether or not the vehicle was previously stopped. If an affirmative decision is made here, the operation proceeds to step S160, while if a negative decision is made, the operation proceeds to step S130. In S160, since the vehicle is currently traveling, the stop flag TF is turned off (OFF), and S
Proceed to 170.

【0020】S170では、前記S120にて算出され
た加速度センサ40の平均値Gs(n)の絶対値が、所
定の判定値kGsを下回るか否かを判定し、ここで肯定
判断されるとS180に進み、一方否定判断されるとS
130に進む。つまり、この処理は、加速度センサ40
の平均値Gs(n)が、異常な値である否かをチェック
するためのものである。
In S170, it is determined whether or not the absolute value of the average value Gs (n) of the acceleration sensor 40 calculated in S120 is below a predetermined determination value kGs. If a positive determination is made here, S180 If the answer is negative, S
Proceed to 130. That is, this process is performed by the acceleration sensor 40.
It is for checking whether the average value Gs (n) of is an abnormal value.

【0021】S180では、車両が停止状態から走行状
態に変化したのであるから、前記S120にて求めた車
両の停止時における加速度センサ40の平均値Gs
(n)を積算するとともに、その積算値を積算回数nで
除算して、ドリフト量G0(n)を求める。尚、ここで
は、積算及び除算が1つの式で示されているが、詳しく
は、図7に示す様に、車両の走行毎に(S181)、順
次加速度センサ40の平均値Gs(n)を積算し(S1
82)、その積算する回数がカウンタCによる判断によ
って所定値nになった場合に(S183,S184)、
その積算した値を積算回数nで割ってドリフト量G0
(n)を求めるものである(S185)。
At S180, since the vehicle has changed from the stopped state to the running state, the average value Gs of the acceleration sensor 40 obtained when the vehicle is stopped, obtained at S120.
(N) is integrated, and the integrated value is divided by the number of integrations n to obtain the drift amount G0 (n). It should be noted that, here, the integration and the division are represented by one formula, but more specifically, as shown in FIG. 7, the average value Gs (n) of the acceleration sensor 40 is sequentially calculated every time the vehicle travels (S181). Accumulate (S1
82), when the number of times of integration reaches a predetermined value n as judged by the counter C (S183, S184),
Drift amount G0
(N) is obtained (S185).

【0022】図6に戻り、S190では、算出したドリ
フト量G0(n)が所定の−kG0を下回るか否かを判定
し、ここで肯定判断されるとS200に進み、ドリフト
量G0(n)としてガード値−kG0を設定してS130
に進む。一方、S190で否定判断されると、S210
に進み、S190とは逆に、算出したドリフト量G0
(n)が所定のkG0を上回るか否かを判定し、ここで
肯定判断されるとS220に進んで、ドリフト量G0
(n)としてガード値kG0を設定してS130に進
み、一方否定判断されるとそのままS130に進む。
Returning to FIG. 6, in S190, it is determined whether or not the calculated drift amount G0 (n) is less than a predetermined −kG0. If an affirmative determination is made here, the process proceeds to S200 and the drift amount G0 (n). Set guard value -kG0 as
Proceed to. On the other hand, if a negative determination is made in S190, S210
Contrary to S190, the calculated drift amount G0
It is determined whether or not (n) exceeds a predetermined kG0. If an affirmative determination is made here, the routine proceeds to S220, where the drift amount G0
As (n), the guard value kG0 is set and the process proceeds to S130. On the other hand, if a negative determination is made, the process directly proceeds to S130.

【0023】そして、S130では、今回検出した加速
度センサ40の出力値G(n)から前記S180にて算
出したドリフト量G0(n)を減算することにより、0
点補正を行なって、補正後の加速度GH(n)を求め、
一旦本処理を終了する。つまり、本処理は、車両が停止
する毎に、加速度センサ40の平均値Gs(n)を求
め、その平均値Gs(n)を各停止毎に所定回数nにわ
たって積算するとともにnで除算することにより、平均
化して正確に0点のドリフト量G0(n)を求めること
ができる。よって、このドリフト量G0(n)を用い
て、容易に加速度センサ40の0点補正を行なうことが
できる。
Then, in S130, the drift amount G0 (n) calculated in S180 is subtracted from the output value G (n) of the acceleration sensor 40 detected this time to obtain 0.
Perform point correction to obtain the corrected acceleration GH (n),
This process ends once. That is, in this process, each time the vehicle stops, the average value Gs (n) of the acceleration sensor 40 is obtained, and the average value Gs (n) is accumulated for a predetermined number of times n at each stop and divided by n. Thus, the drift amount G0 (n) at the zero point can be accurately obtained by averaging. Therefore, the zero point of the acceleration sensor 40 can be easily corrected by using the drift amount G0 (n).

【0024】特に、本実施例で求めたドリフト量G0
(n)は、上り及び下りの坂路における加速度センサ4
0の出力を積算することによって坂路による影響が排除
されているので、単に実際の加速度センサ40の出力か
らドリフト量G0(n)を減算するだけで、正確に経時
変化等に起因する0点ドリフトの補正を行なうことがで
きるという顕著な効果を奏する。よって、機械的精度を
それほどシビアに要求されないので装置を簡易化でき、
コストも低減できるという利点がある。
In particular, the drift amount G0 obtained in this embodiment
(N) is the acceleration sensor 4 on the uphill and downhill roads.
Since the influence of the slope is eliminated by accumulating the output of 0, it is possible to accurately subtract the drift amount G0 (n) from the actual output of the acceleration sensor 40 to accurately obtain the zero point drift caused by the change with time or the like. The remarkable effect that the correction can be performed. Therefore, the mechanical accuracy is not so severely required, so the device can be simplified,
There is an advantage that the cost can be reduced.

【0025】次に、上記の様な0点補正を用いた実際の
制御について、図8のフローチャートに基づいて説明す
る。この制御は、上りの坂路の際に行われるトラクショ
ン制御に、補正後の加速度GH(n)を用いた例であ
る。図8に示す様に、S300にて、車両が停止中であ
るか否かを、車速が「0」であるか否かによって判定す
る。ここで肯定判断されるとS310に進み、一方否定
判断されるとS340に進む。
Next, the actual control using the above-mentioned zero point correction will be described with reference to the flowchart of FIG. This control is an example in which the corrected acceleration GH (n) is used for the traction control performed on an uphill road. As shown in FIG. 8, in S300, it is determined whether or not the vehicle is stopped depending on whether or not the vehicle speed is “0”. If an affirmative decision is made here, the operation proceeds to step S310, whereas if a negative decision is made, the operation proceeds to step S340.

【0026】S310では、前記図6に示す処理にて算
出された補正後の加速度GH(n)を取り込み、その補
正後の加速度GH(n)が所定値Ks(上り坂を示す例え
ば−0.1G)を上回るか否かを判定する。つまり、こ
の判定は、車両が上り坂にあるか否かを判定するもので
ある。
In S310, the corrected acceleration GH (n) calculated in the process shown in FIG. 6 is fetched, and the corrected acceleration GH (n) is a predetermined value Ks (for example, −0. 1G) is determined. That is, this determination is to determine whether or not the vehicle is on an uphill.

【0027】よって、ここで肯定判断されれば坂路であ
るのでS320に進み、坂路フラグHFをオンにし、一
方、否定判断されればS330に進み、坂路フラグHF
をオフにしてS340に進む。S340では、坂路フラ
グHFがオンであるか否かを判定し、ここで肯定判断さ
れればS350に進み、一方否定判断されればS380
に進む。
Therefore, if an affirmative determination is made here, the road is a slope, so the process proceeds to S320, and the slope flag HF is turned on. On the other hand, if a negative determination is made, the process proceeds to S330, the slope flag HF.
Is turned off and the process proceeds to S340. In S340, it is determined whether or not the slope flag HF is on. If an affirmative determination is made here, the process proceeds to S350, and if a negative determination is made, S380 is performed.
Proceed to.

【0028】S350では、車両が発進状態であるか否
かを、車速が低速域(例えば10km/h)以下であるか
否かによって判定する。ここで肯定判断されるとS36
0に進み、一方否定判断されるとS380に進む。S3
60では、路面が低μ路(例えば凍結している路面)で
あるか否かを、例えば誘動輪の車輪加速度が所定値(例
えば0.2G)以下であるか否かによって判定する。こ
こで肯定判断されるとS370に進み、一方否定判断さ
れるとS380に進む。
In S350, it is determined whether or not the vehicle is in a starting state, based on whether or not the vehicle speed is in a low speed range (for example, 10 km / h) or less. If an affirmative decision is made here, S36
On the other hand, if the determination is negative, the process proceeds to S380. S3
At 60, it is determined whether or not the road surface is a low μ road (for example, a frozen road surface) by, for example, whether or not the wheel acceleration of the driven wheel is equal to or less than a predetermined value (for example, 0.2 G). If an affirmative judgment is made here, the routine proceeds to S370, while if a negative judgment is made, the routine proceeds to S380.

【0029】S370では、前記S340〜S360に
て、低μ路における上り坂路での発進時であると判断さ
れたので、そのための特別なトラクション制御を行な
う。つまり、低μ路における上り坂路では、車輪の加速
スリップ量を極力小さくしないと登りが難しくなるの
で、例えば下記,の制御を行なう。トラクション
制御判定や制御中の目標スリップ率を小さく補正する
(例えば通常+10%のものを+3%に補正する)。
目標スリップ率と実際の車輪スリップの偏差に対するフ
ィードバックゲインを大きく補正する。
At S370, since it is determined at S340 to S360 that the vehicle is starting on an uphill road on a low μ road, special traction control for that purpose is performed. That is, on an uphill road on a low μ road, it is difficult to climb unless the acceleration slip amount of the wheel is made as small as possible, so the following control is performed, for example. The traction control determination and the target slip ratio during control are corrected to be small (for example, the normal + 10% is corrected to + 3%).
The feedback gain for the deviation between the target slip ratio and the actual wheel slip is largely corrected.

【0030】一方、S380では、前記S340〜S3
60にて、低μ路における上り坂路での発進時ではない
と判断されたので、通常のトラクション制御を行なっ
て、一旦本処理を終了する。つまり、この処理では、上
述した0点補正を行なうことによって得られた正確な加
速度GH(n)を用いることによって、確実に坂路を検
出できるので、その坂路に応じた適切なトラクション制
御を行なうことができるという効果がある。
On the other hand, in S380, the above S340 to S3 are performed.
At 60, it is determined that it is not time to start on an uphill road on a low μ road, so normal traction control is performed, and this processing is once terminated. In other words, in this process, the slope can be detected with certainty by using the accurate acceleration GH (n) obtained by performing the above-described zero point correction, so that appropriate traction control according to the slope can be performed. There is an effect that can be.

【0031】尚、前記本発明の実施例について説明した
が、本発明はこの様な実施例に何等限定されるものでは
なく、各種の態様で実施できることは勿論である。例え
ば前記実施例では、車両が停止状態から走行状態に変化
したとき毎に、停止時の加速度を積算しているが、それ
とは逆に、車両が走行状態から停止状態に変化したとき
毎に、加速度を積算してもよい。又、始動直後の加速度
(加速度センサからの出力)をも積算してもよい。
Although the embodiment of the present invention has been described above, the present invention is not limited to the embodiment, and it goes without saying that the present invention can be implemented in various modes. For example, in the above-described embodiment, each time the vehicle changes from the stopped state to the running state, the acceleration at the time of stop is integrated, but conversely, each time the vehicle changes from the running state to the stopped state, Acceleration may be integrated. Further, the acceleration immediately after the start (output from the acceleration sensor) may be integrated.

【0032】[0032]

【発明の効果】以上詳述した様に、本発明では、車両の
停止時の加速度センサの値を積分し平均化して0点から
のドリフト量を求め、このドリフト量を加速度センサの
値から減算することによって、容易にかつ正確に0点補
正を行なうことができる。
As described above in detail, in the present invention, the value of the acceleration sensor when the vehicle is stopped is integrated and averaged to obtain the drift amount from the zero point, and this drift amount is subtracted from the value of the acceleration sensor. By doing so, the zero point correction can be performed easily and accurately.

【0033】つまり、本発明は、車両停止時毎の加速セ
ンサの値を平均化して得られたドリフト量を用いること
によって、確実かつ容易に坂路の影響を排除でき、加速
度センサの経時変化等による0点からのドリフト分のみ
を好適に補正できるという顕著な効果を奏する。また、
その際には、装置を複雑化することなく、かつ装置の精
度を上げる必要もないので、コストを低減できるという
利点もある。
That is, according to the present invention, by using the drift amount obtained by averaging the values of the acceleration sensor every time the vehicle is stopped, the influence of the slope can be reliably and easily eliminated, and the acceleration sensor can be changed with time. There is a remarkable effect that only the drift amount from the 0 point can be suitably corrected. Also,
In that case, there is an advantage that the cost can be reduced because the device is not complicated and it is not necessary to improve the accuracy of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の構成を例示する概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a configuration of the present invention.

【図2】 本発明の原理を示す説明図である。FIG. 2 is an explanatory diagram showing the principle of the present invention.

【図3】 本実施例のシステム構成を示すブロック図で
ある。
FIG. 3 is a block diagram showing the system configuration of the present embodiment.

【図4】 加速度センサの構造を示す説明図である。FIG. 4 is an explanatory diagram showing a structure of an acceleration sensor.

【図5】 本実施例の電気的構成を示すブロック図であ
る。
FIG. 5 is a block diagram showing an electrical configuration of the present embodiment.

【図6】 0点を補正する処理を示すフローチャートで
ある。
FIG. 6 is a flowchart showing a process for correcting a 0 point.

【図7】 ドリフト量を算出する処理を示すフローチャ
ートである。
FIG. 7 is a flowchart showing a process of calculating a drift amount.

【図8】 トラクション制御の処理を示すフローチャー
トである。
FIG. 8 is a flowchart showing a traction control process.

【符号の説明】[Explanation of symbols]

1…内燃機関(エンジン) 7…エンジン回転数
センサ 24,25…駆動輪速度センサ 28,29…誘動輪
速度センサ 40…加速度センサ 50…電子制御回路
(ECU) 35,36,37,38…ブレーキ油圧回路
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine (engine) 7 ... Engine speed sensor 24, 25 ... Drive wheel speed sensor 28, 29 ... Guide wheel speed sensor 40 ... Acceleration sensor 50 ... Electronic control circuit (ECU) 35, 36, 37, 38 ... Brake Hydraulic circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 車両の絶対加速度を検出する加速度セン
サの補正装置であって、 車両の走行及び停止の両状態のうち、一方の状態から他
方の状態に変化したことを検出する車両状態検出手段
と、 該車両状態検出手段によって車両の状態が変化したこと
を検出した場合には、前記車両の停止時の加速度センサ
の値を記憶する記憶手段と、 該記憶手段によって記憶された加速度センサの値を、積
算し平均化して0点からのドリフト量を求めるドリフト
量算出手段と、 該ドリフト量算出手段によって求められたドリフト量
を、加速度センサの値から減算して0点補正を行なう0
点補正手段と、を備えたことを特徴とする加速度センサ
の補正装置。
1. A correction device for an acceleration sensor for detecting an absolute acceleration of a vehicle, the vehicle state detecting means detecting a change from one state to another state of both running and stopped states of the vehicle. And a storage unit that stores the value of the acceleration sensor when the vehicle is stopped when the vehicle state detection unit detects that the state of the vehicle has changed, and a value of the acceleration sensor stored by the storage unit. Is added and averaged to obtain the drift amount from the zero point, and the drift amount obtained by the drift amount calculating means is subtracted from the value of the acceleration sensor to perform zero point correction.
A correction device for an acceleration sensor, comprising: a point correction means.
JP30660993A 1993-12-07 1993-12-07 Correcting device of acceleration sensor Pending JPH07159438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30660993A JPH07159438A (en) 1993-12-07 1993-12-07 Correcting device of acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30660993A JPH07159438A (en) 1993-12-07 1993-12-07 Correcting device of acceleration sensor

Publications (1)

Publication Number Publication Date
JPH07159438A true JPH07159438A (en) 1995-06-23

Family

ID=17959142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30660993A Pending JPH07159438A (en) 1993-12-07 1993-12-07 Correcting device of acceleration sensor

Country Status (1)

Country Link
JP (1) JPH07159438A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301641A (en) * 1994-05-06 1995-11-14 Toyota Motor Corp Vehicular acceleration sensor correcting device
JPH09315716A (en) * 1996-03-29 1997-12-09 Hitachi Building Syst Co Ltd Speed and acceleration measuring device for body transferred
JPH09329486A (en) * 1996-06-11 1997-12-22 Oki Electric Ind Co Ltd Continuous sensitivity monitoring of accelerometer for earthquake observation
JPH10114478A (en) * 1996-10-09 1998-05-06 Hitachi Building Syst Co Ltd Traveling characteristic measuring device of transfer body
JPH10122880A (en) * 1996-10-23 1998-05-15 Matsushita Electric Ind Co Ltd Navigator
JPH10132589A (en) * 1996-10-31 1998-05-22 Matsushita Electric Ind Co Ltd Navigation device
JPH10147479A (en) * 1995-10-02 1998-06-02 Hitachi Building Syst Co Ltd Speed measuring method and device for conveyance body
JPH112644A (en) * 1997-06-12 1999-01-06 Murata Mfg Co Ltd Method for processing output signal of acceleration sensor
JPH1143270A (en) * 1997-07-25 1999-02-16 Hitachi Building Syst Co Ltd Speed calculating method and travel characteristic measuring device of transfer body
JPH11248732A (en) * 1998-02-27 1999-09-17 Hitachi Building Systems Co Ltd Method for computing speed of transferring body and device for measuring traveling characteristic
JP2000292435A (en) * 1999-04-07 2000-10-20 Nissan Motor Co Ltd Device for detecting failure in yaw rate sensor
JP2001153883A (en) * 1999-11-26 2001-06-08 Mitsubishi Motors Corp Compensator for acceleration sensor for vehicle in grade
US6681162B2 (en) 2002-03-11 2004-01-20 Mitsubishi Denki Kabushiki Kaisha Corrective device for output of acceleration sensor and method of correcting output thereof
JP2007530948A (en) * 2004-03-26 2007-11-01 ハネウェル・インターナショナル・インコーポレーテッド Sensor accuracy enhancement during abnormal events
EP1930731A2 (en) 2006-12-07 2008-06-11 Nissan Motor Co., Ltd. Acceleration Detection Device, Acceleration Detection Method and Neutral Control Device Employing Same
JP2010107244A (en) * 2008-10-28 2010-05-13 Daihatsu Motor Co Ltd Device for correcting zero point of on-vehicle acceleration sensor
US7915936B2 (en) 2007-02-19 2011-03-29 Honeywell International Inc. Output signal error detection, circumvention, signal reconstruction and recovery
JP2012078268A (en) * 2010-10-05 2012-04-19 Nissan Motor Co Ltd Acceleration detector
KR101150209B1 (en) * 2006-09-08 2012-06-12 주식회사 만도 Longitudinal acceleration offset compensation method for vehicle
CN102590556A (en) * 2012-02-24 2012-07-18 哈尔滨工业大学 Zero offset test compensation system of multi-channel capacitor type MEMS (micro-electromechanical system) acceleration sensor
JP2012215417A (en) * 2011-03-31 2012-11-08 Fujitsu Ltd Acceleration correction device, acceleration correction method and acceleration correction program
US10767994B2 (en) 2015-06-26 2020-09-08 Denso Corporation Sensor output correction apparatus
DE10314998B4 (en) * 2002-11-21 2021-01-28 Robert Bosch Gmbh Method and device for determining the offset value of a longitudinal acceleration sensor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301641A (en) * 1994-05-06 1995-11-14 Toyota Motor Corp Vehicular acceleration sensor correcting device
JPH10147479A (en) * 1995-10-02 1998-06-02 Hitachi Building Syst Co Ltd Speed measuring method and device for conveyance body
JPH09315716A (en) * 1996-03-29 1997-12-09 Hitachi Building Syst Co Ltd Speed and acceleration measuring device for body transferred
JPH09329486A (en) * 1996-06-11 1997-12-22 Oki Electric Ind Co Ltd Continuous sensitivity monitoring of accelerometer for earthquake observation
JPH10114478A (en) * 1996-10-09 1998-05-06 Hitachi Building Syst Co Ltd Traveling characteristic measuring device of transfer body
JPH10122880A (en) * 1996-10-23 1998-05-15 Matsushita Electric Ind Co Ltd Navigator
JPH10132589A (en) * 1996-10-31 1998-05-22 Matsushita Electric Ind Co Ltd Navigation device
JPH112644A (en) * 1997-06-12 1999-01-06 Murata Mfg Co Ltd Method for processing output signal of acceleration sensor
JPH1143270A (en) * 1997-07-25 1999-02-16 Hitachi Building Syst Co Ltd Speed calculating method and travel characteristic measuring device of transfer body
JPH11248732A (en) * 1998-02-27 1999-09-17 Hitachi Building Systems Co Ltd Method for computing speed of transferring body and device for measuring traveling characteristic
JP2000292435A (en) * 1999-04-07 2000-10-20 Nissan Motor Co Ltd Device for detecting failure in yaw rate sensor
JP2001153883A (en) * 1999-11-26 2001-06-08 Mitsubishi Motors Corp Compensator for acceleration sensor for vehicle in grade
US6681162B2 (en) 2002-03-11 2004-01-20 Mitsubishi Denki Kabushiki Kaisha Corrective device for output of acceleration sensor and method of correcting output thereof
DE10314998B4 (en) * 2002-11-21 2021-01-28 Robert Bosch Gmbh Method and device for determining the offset value of a longitudinal acceleration sensor
JP2007530948A (en) * 2004-03-26 2007-11-01 ハネウェル・インターナショナル・インコーポレーテッド Sensor accuracy enhancement during abnormal events
KR101150209B1 (en) * 2006-09-08 2012-06-12 주식회사 만도 Longitudinal acceleration offset compensation method for vehicle
US8340860B2 (en) 2006-12-07 2012-12-25 Nissan Motor Co., Ltd. Acceleration detection device, acceleration detection method, and neutral control device employing same
EP1930731A3 (en) * 2006-12-07 2011-07-27 Nissan Motor Co., Ltd. Acceleration Detection Device, Acceleration Detection Method and Neutral Control Device Employing Same
EP1930731A2 (en) 2006-12-07 2008-06-11 Nissan Motor Co., Ltd. Acceleration Detection Device, Acceleration Detection Method and Neutral Control Device Employing Same
US7915936B2 (en) 2007-02-19 2011-03-29 Honeywell International Inc. Output signal error detection, circumvention, signal reconstruction and recovery
JP2010107244A (en) * 2008-10-28 2010-05-13 Daihatsu Motor Co Ltd Device for correcting zero point of on-vehicle acceleration sensor
JP2012078268A (en) * 2010-10-05 2012-04-19 Nissan Motor Co Ltd Acceleration detector
US9188602B2 (en) 2010-10-05 2015-11-17 Nissan Motor Co., Ltd. Acceleration detection device
JP2012215417A (en) * 2011-03-31 2012-11-08 Fujitsu Ltd Acceleration correction device, acceleration correction method and acceleration correction program
CN102590556A (en) * 2012-02-24 2012-07-18 哈尔滨工业大学 Zero offset test compensation system of multi-channel capacitor type MEMS (micro-electromechanical system) acceleration sensor
US10767994B2 (en) 2015-06-26 2020-09-08 Denso Corporation Sensor output correction apparatus

Similar Documents

Publication Publication Date Title
JPH07159438A (en) Correcting device of acceleration sensor
JP4076740B2 (en) Road surface gradient determination apparatus and method, and gradient determination program
US8321110B2 (en) Detection of hill grade and feed-forward distribution of 4WD torque bias to improve traction on a low MU surfaces during climbing of such hill grade
JPH08258588A (en) Road surface condition detecting device in vehicle
US5373447A (en) Method of and apparatus for vehicle traction control by detecting wheel spin
GB2251500A (en) Controlling output of automotive engine
KR20080074982A (en) Method for the determination of long-term offset drifts of acceleration sensors in motor vehicles
JPH10287262A (en) Behavior control device for vehicle
JP4190620B2 (en) Driving slip control method and apparatus for automobile
KR100462973B1 (en) Methods and apparatus for mitigating the vehicle's response to load changes
EP0641684B1 (en) Traction control device for vehicle
US20130192333A1 (en) Acceleration detection device
JP3410112B2 (en) Simulated vehicle speed calculation method for four-wheel drive vehicles
JP3796959B2 (en) Vehicle speed control device for vehicles with continuously variable transmission
EP1522698A2 (en) Internal combustion engine control system
US20120253622A1 (en) Control device for controlling drive force that operates on vehicle
JPH063368A (en) Zero-point correcting device for car body acceleration/ deceleration detecting means
JP3323733B2 (en) Air-fuel ratio learning control method when traveling downhill
KR100413392B1 (en) Method of traction control system for vehicle
CN111032471A (en) Vehicle control method and vehicle control device
JPS62121838A (en) Slip control device for vehicle
JPH0654095B2 (en) Vehicle acceleration slip controller
JPH06249655A (en) Method and device for judging gradient of road
JP2900589B2 (en) Acceleration slip control device
JPH0833113B2 (en) Vehicle acceleration slip control device