JPH071593A - Optical molding apparatus - Google Patents

Optical molding apparatus

Info

Publication number
JPH071593A
JPH071593A JP5150104A JP15010493A JPH071593A JP H071593 A JPH071593 A JP H071593A JP 5150104 A JP5150104 A JP 5150104A JP 15010493 A JP15010493 A JP 15010493A JP H071593 A JPH071593 A JP H071593A
Authority
JP
Japan
Prior art keywords
laser
light
liquid crystal
wavelength
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5150104A
Other languages
Japanese (ja)
Inventor
Kiwamu Takehisa
究 武久
Makoto Yano
眞 矢野
Koji Kuwabara
皓二 桑原
Takeoki Miyauchi
建興 宮内
Norio Goto
典雄 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5150104A priority Critical patent/JPH071593A/en
Publication of JPH071593A publication Critical patent/JPH071593A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To reduce the running cost and to elongate the life of a liquid crystal mask by providing a laser-light generating part containing a crystal for a laser including trivalent chromium ion and a nonlinear optical element, and using laser medium in an ultraviolet-ray source in a semipermanent mode. CONSTITUTION:In a laser resonator at a laser-light generating part 2, a Cr: LiCaAlF6 crystal 13 is used as a laser medium, and the laser light having the wavelength of 0.76mu is oscillated with a wavelength selector 14. A BaB2O5 crystal 15, which is a nonlinear optical crystal, is inserted into the laser resonator. The wavelength is converted into the wavelength of 0.83mu with a condenser lens 16. The laser light 1a, which is transmitted through a dichroic mirror 12, is made to scan the entire surface of a liquid crystal mask 4 with galvano mirrors 3a and 3b. The laser light is further transferred on a spot 10b on the surface of an ultraviolet-ray resin 8 with an imagery lens 7 by way of a light polarizing beam splitter 5. The laser light has the energy of several joules. The intensity of the light is sufficiently high, and the ultraviolet-ray hardening resin is efficiently hardened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光造形装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereolithography apparatus.

【0002】[0002]

【従来の技術】紫外域のレーザ光を紫外線硬化樹脂に照
射して、任意形状の三次元の立体モデルを製作する技術
は、一般に、光造形技術と呼ばれている。
2. Description of the Related Art A technique of irradiating an ultraviolet curable resin with an ultraviolet laser beam to produce a three-dimensional three-dimensional model of an arbitrary shape is generally called a stereolithography technique.

【0003】光造形技術では、波長325nmで発振す
るHe−Cdレーザや、波長351(あるいは364)
nmで発振するArレーザなど紫外域で連続発振するイ
オンレーザが紫外線源として利用されている。これらの
レーザから取り出されるレーザ光を、スキャンミラーを
用いて特定のパターンを形成するように、液状の紫外線
硬化樹脂の表面に照射させることで、表面の薄い層では
そのパターン状に同樹脂が硬化する。このように、パタ
ーン形状に硬化された層を積み重ねることで、三次元モ
デルが形成される。尚、光造形技術に関しては、例え
ば、レーザ研究,第18巻,第7号,第448頁から第
455頁,平成2年7月号において説明されている。
In the stereolithography technology, a He-Cd laser that oscillates at a wavelength of 325 nm or a wavelength 351 (or 364) is used.
An ion laser that continuously oscillates in the ultraviolet region, such as an Ar laser that oscillates at nm, is used as an ultraviolet ray source. By irradiating the surface of liquid UV curable resin with the laser light extracted from these lasers so as to form a specific pattern using a scan mirror, the resin is cured in the pattern in a thin layer on the surface. To do. In this way, a three-dimensional model is formed by stacking layers cured in a pattern shape. The stereolithography technique is described, for example, in Laser Research, Vol. 18, No. 7, pp. 448 to 455, July, 1990.

【0004】一方、液晶マスクにレーザ光を照射させ
て、液晶マスクに表示された文字などのパターンをIC
パッケージなどにマーキングする液晶マスク式レーザマ
ーカが知られている。それによると、液晶マスク上で形
成したパターンと相似形のパターンを加工物表面に転写
させることができる。尚、液晶マスク式レーザマーカに
関しては、例えば、特開平1−11088 号公報で説明され
ている。
On the other hand, by irradiating the liquid crystal mask with laser light, a pattern such as characters displayed on the liquid crystal mask can be displayed on the IC.
A liquid crystal mask type laser marker for marking a package or the like is known. According to this, a pattern similar to the pattern formed on the liquid crystal mask can be transferred to the surface of the workpiece. The liquid crystal mask type laser marker is described in, for example, Japanese Patent Application Laid-Open No. 1-11088.

【0005】また、このような液晶マスクを用いて、こ
こで形成された像を紫外線硬化樹脂の表面にパターン転
写させることで、各層においてパターン状に硬化させる
技術があり、これに関しては、例えば、特開平4−37182
9 号公報において説明されている。
Further, there is a technique in which an image formed here is pattern-transferred onto the surface of an ultraviolet curable resin by using such a liquid crystal mask to cure the image in each layer in a pattern. JP 4-37182
No. 9 publication.

【0006】[0006]

【発明が解決しようとする課題】一般に、光造形技術で
は、一つの立体モデルの製作における紫外線の照射時間
は数時間から数日程度と長いため、紫外線源として用い
られるイオンレーザを長時間連続運転させる必要があ
る。ところが、イオンレーザでは、レーザ管の劣化によ
り、次第にレーザ出力が低下していくため、およそ二千
時間のレーザ動作ごとにレーザ管を交換する必要が有
り、その度に、およそ二百から三百万円の費用が掛か
る。この費用をランニングコストに含めると、全体の5
0から80%にも達し、ランニングコストが高くなる最
大の要因になっていた。
Generally, in the stereolithography technique, the irradiation time of ultraviolet rays in the production of one three-dimensional model is as long as several hours to several days. Therefore, the ion laser used as the ultraviolet source is continuously operated for a long time. Need to let. However, in the ion laser, since the laser output gradually decreases due to deterioration of the laser tube, it is necessary to replace the laser tube after every 2,000 hours of laser operation, and about 200 to 300 times each time. It costs 10,000 yen. If this cost is included in the running cost, the total cost is 5
It was 0 to 80%, which was the main reason for the high running cost.

【0007】また、液晶マスクを用いたパターン転写方
式の光造形装置では、適切な紫外線源が存在しなかった
ため、実用的な装置が実現できず、以下に説明するよう
な問題があった。紫外線源にイオンレーザを用いると、
波長は約0.37μ 以下になる。一方、図2に示した液
晶マスクの透過率からわかるように、波長0.37 μ以
下では、液晶マスクに対する透過率が急激に低下し、波
長約0.33μ 以下では、レーザ光はほとんど透過しな
い。したがって、He−Cdレーザを利用することはで
きず、また、Arレーザを用いても、液晶マスクはレー
ザ光を50%程度も吸収するため、液晶の温度上昇が激
しく、その結果、液晶マスクが短期間で劣化することが
あった。
Further, in a pattern transfer type stereolithography apparatus using a liquid crystal mask, since a proper ultraviolet source does not exist, a practical apparatus cannot be realized and there is a problem described below. If an ion laser is used as the ultraviolet source,
The wavelength is about 0.37μ or less. On the other hand, as can be seen from the transmissivity of the liquid crystal mask shown in FIG. 2, the transmissivity to the liquid crystal mask sharply decreases at a wavelength of 0.37 μm or less, and almost no laser light passes at a wavelength of 0.33 μm or less. . Therefore, the He—Cd laser cannot be used, and even if the Ar laser is used, the liquid crystal mask absorbs about 50% of the laser light, so that the temperature of the liquid crystal rises sharply, and as a result, the liquid crystal mask is It may have deteriorated in a short period of time.

【0008】また、パターン転写方式では、紫外線源と
してレーザの代わりに水銀ランプなどの紫外線ランプを
用いることができる。ところが、紫外線ランプでは発光
スペクトルが広範囲に渡るため、液晶マスクを高く透過
し、しかも、紫外線硬化樹脂を効率良く硬化できる波長
0.37μから0.4μの間で効率良く発光する紫外ラン
プは存在しなかった。また、発光スペクトルが広くなる
と、液晶による制御性が低下する。すなわち、液晶で
は、液晶の設計パラメータが、入射光の波長に依存する
ため、設計波長以外の波長の光に対しては、液晶による
偏光方向の制御性が変化して、液晶マスクを通過後に、
偏光方向による分離能力が低下する。その結果、紫外線
硬化樹脂に対して、紫外線を照射させるべきパターン以
外の部分にも、多少の紫外線が照射されることがあり、
パターン通りに、硬化されないことがあった。
Further, in the pattern transfer system, an ultraviolet lamp such as a mercury lamp can be used as the ultraviolet source instead of the laser. However, since an ultraviolet lamp has a wide emission spectrum, there is an ultraviolet lamp that transmits light highly through a liquid crystal mask and efficiently emits light at a wavelength of 0.37μ to 0.4μ that can cure an ultraviolet curable resin efficiently. There wasn't. Further, when the emission spectrum is widened, the controllability by the liquid crystal is deteriorated. That is, in the liquid crystal, since the design parameter of the liquid crystal depends on the wavelength of the incident light, the controllability of the polarization direction by the liquid crystal changes with respect to light having a wavelength other than the design wavelength, and after passing through the liquid crystal mask,
The separation ability depending on the polarization direction is reduced. As a result, with respect to the ultraviolet curable resin, a part of the ultraviolet rays may be irradiated to a portion other than the pattern to be irradiated with the ultraviolet rays,
Sometimes it did not cure according to the pattern.

【0009】本発明の第一の目的は、ランニングコスト
が低い光造形装置を提供することにある。また、第二の
目的は、実用的なパターン転写方式の光造形装置を提供
することにある。
A first object of the present invention is to provide a stereolithography apparatus having a low running cost. A second object is to provide a practical pattern transfer type stereolithography apparatus.

【0010】[0010]

【課題を解決するための手段】上記第一の目的を達成す
るために、三価のクロムイオンを含んだレーザ用結晶と
非線形光学素子とを含むレーザ光発生部を含んだもので
ある。
In order to achieve the above-mentioned first object, a laser beam generator including a laser crystal containing trivalent chromium ions and a nonlinear optical element is included.

【0011】上記第二の目的を達成するために、前記レ
ーザ光発生部と液晶マスクとを含んだものである。
In order to achieve the second object, the laser light generator and the liquid crystal mask are included.

【0012】[0012]

【作用】三価のクロムイオンを含んだレーザ用結晶の多
くは、波長約0.7から0.9μでレーザ動作できること
が知られている。したがって、この種のレーザから、非
線形光学素子により、その第二高調波を発生させれば、
波長約0.37μ から約0.4μ の紫外光を発生させる
ことができる。この波長のレーザ光は、液晶マスクにお
ける透過率が約70%以上と高いため、液晶の温度上昇
を抑制でき、液晶マスクの寿命が長くなる。また、レー
ザ媒質は固体であるため、半永久的に使用できることか
ら、ランニングコストを低下させることができる。
It is known that most laser crystals containing trivalent chromium ions can operate at a wavelength of about 0.7 to 0.9μ. Therefore, if the second harmonic of this type of laser is generated by a nonlinear optical element,
Ultraviolet light having a wavelength of about 0.37 μ to about 0.4 μ can be generated. Since the laser light of this wavelength has a high transmittance of about 70% or more in the liquid crystal mask, it is possible to suppress the temperature rise of the liquid crystal and prolong the life of the liquid crystal mask. Further, since the laser medium is a solid, it can be used semipermanently, so that the running cost can be reduced.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の一実施例である光造形装
置100の斜視図である。
FIG. 1 is a perspective view of a stereolithography apparatus 100 which is an embodiment of the present invention.

【0015】光造形装置100は、大きく分けて、レー
ザ光発生部2,液晶マスク4、及び紫外線硬化樹脂8が
満たされた容器9とからなる。
The stereolithography apparatus 100 is roughly divided into a laser beam generator 2, a liquid crystal mask 4, and a container 9 filled with an ultraviolet curable resin 8.

【0016】レーザ光発生部2では、全反射鏡11a,
11b、及びダイクロイックミラー12とでL字型にレ
ーザ共振器が組まれている。レーザ共振器中には、C
r:LiCaAlF6結晶13がレーザ媒質として用いられ
ている。複屈折プリズムなどから構成される波長選択子
14によって、この結晶から波長0.76μ のレーザ光
が基本波として発振するように設定されている。また、
レーザ共振器中には、非線形光学結晶であるBaB25
結晶15が挿入されており、集光レンズ16によって、
発振した基本波が波長変換され、波長0.38μ の第二
高調波が発生する。第二高調波は、ダイクロイックミラ
ー12を通過して、レーザ共振器外部に取り出される。
第二高調波では、図2からわかるように、液晶マスク4
に対する透過率は80%程度ある。尚、レーザ光発生部
2では、レーザ動作の励起源はXeフラッシュランプが
用いられており、パルス状のレーザ光1aが取り出され
る。
In the laser light generator 2, total reflection mirrors 11a,
An L-shaped laser resonator is assembled with 11b and the dichroic mirror 12. In the laser cavity, C
An r: LiCaAlF 6 crystal 13 is used as a laser medium. A wavelength selector 14 composed of a birefringent prism or the like is set so that laser light having a wavelength of 0.76 μ oscillates as a fundamental wave from this crystal. Also,
A nonlinear optical crystal of BaB 2 O 5 is contained in the laser cavity.
The crystal 15 is inserted, and by the condenser lens 16,
The oscillated fundamental wave is wavelength-converted to generate a second harmonic wave having a wavelength of 0.38μ. The second harmonic passes through the dichroic mirror 12 and is taken out of the laser resonator.
At the second harmonic, as can be seen from FIG.
Is about 80%. In the laser light generator 2, an Xe flash lamp is used as an excitation source for laser operation, and pulsed laser light 1a is extracted.

【0017】レーザ光1aは、ガルバノミラー3a,3
bにより、液晶マスク4全面をスキャンするように照射
される。液晶マスク4を通過したレーザ光1bは、結像
レンズ7に入射する。また、レーザ光1bは、液晶マス
ク4により、その偏光方向が制御され、紫外線硬化樹脂
8に照射すべきレーザ光1eと、それ以外のレーザ光1
dとに、偏光ビームスプリッタ5によって分離される。
レーザ光1dは光吸収板6に当って止められる。
The laser beam 1a is transmitted to the galvano mirrors 3a and 3a.
By b, irradiation is performed so as to scan the entire surface of the liquid crystal mask 4. The laser light 1b that has passed through the liquid crystal mask 4 enters the imaging lens 7. The polarization direction of the laser light 1b is controlled by the liquid crystal mask 4, and the laser light 1e to be irradiated on the ultraviolet curable resin 8 and the other laser light 1b.
and d by the polarization beam splitter 5.
The laser light 1d hits the light absorption plate 6 and is stopped.

【0018】尚、偏光ビームスプリッタ5は、結像レン
ズ7と、紫外線硬化樹脂8との間にあり、結像レンズ7
によるレーザ光1cの集光点近くに設置される。この理
由は、レーザ光1cの進路は、ガルバノミラー3a,3
bによって、変化するが、常に、この集光点近くを通過
するため、偏光ビームスプリッタ5は、小さなものを用
いることができる。偏光ビームスプリッタは、一般的な
レーザ用ミラーの中でも比較的に高価であるため、これ
がコンパクトなもので構成できることは、コストの低減
につながる。
The polarization beam splitter 5 is located between the imaging lens 7 and the ultraviolet curable resin 8, and the imaging lens 7
Is installed near the condensing point of the laser beam 1c. The reason for this is that the path of the laser beam 1c is the galvano mirrors 3a, 3
Although it changes depending on b, the polarization beam splitter 5 can be a small one because it always passes near this condensing point. Since the polarization beam splitter is relatively expensive among general laser mirrors, the fact that it can be configured with a compact one leads to cost reduction.

【0019】液晶マスク4上でのスポット10a内パタ
ーンが、紫外線硬化樹脂8の表面のスポット10bに転
写される。スポット10bの直径は約数mmであり、従来
のスキャン方式におけるレーザ光の集光径に比べて、二
桁程度大きく、その結果、面積は四桁程度も大きくなっ
ている。しかし、レーザ光は数ジュール程度のエネルギ
を有するパルス状であるため、スポット10bでのレー
ザ光強度は十分高く、紫外線硬化樹脂を効率良く硬化さ
せることができる。
The pattern in the spot 10a on the liquid crystal mask 4 is transferred to the spot 10b on the surface of the ultraviolet curing resin 8. The diameter of the spot 10b is about several millimeters, which is about two orders of magnitude larger than the condensing diameter of the laser beam in the conventional scanning method, and as a result, the area is about four orders of magnitude larger. However, since the laser light has a pulse shape having energy of about several joules, the laser light intensity at the spot 10b is sufficiently high, and the ultraviolet curable resin can be cured efficiently.

【0020】尚、レーザ光発生部2から取り出されるレ
ーザ光1aは第二高調波であるため、完全な直線偏光で
ある。したがって、液晶マスクによる偏光方向の制御性
が極めて高い。尚、これに対して、イオンレーザのよう
に紫外域で直接発振するレーザでは、通常ランダム偏光
となっており、直線偏光で発振させると、レーザ出力が
数十%低下する。
Since the laser beam 1a extracted from the laser beam generator 2 is the second harmonic wave, it is perfectly linearly polarized light. Therefore, the controllability of the polarization direction by the liquid crystal mask is extremely high. On the other hand, a laser that directly oscillates in the ultraviolet region, such as an ion laser, usually has random polarization, and if it is oscillated with linear polarization, the laser output decreases by several tens of percent.

【0021】また、光造形装置100では、容器9とし
て、大きさの異なるものと交換することができる。例え
ば、液晶マスク4と同程度の表面の容器を用いるなら
ば、結像レンズ7を用いずに、容器9を液晶マスク4に
接近させて設置し、レーザ光1cを、直接、紫外線硬化
樹脂に照射させればよい。ただし、この場合には、偏光
ビームスプリッタ5の代わりに、偏光板を用いる。ま
た、液晶マスク4上の像は結像されないが、紫外線硬化
樹脂上に照射されるレーザ光のパターンは、僅かにぼけ
る程度で済む。むしろ、液晶マスク4では、その画素間
に隙間があるため、転写された像が僅かにぼけた方が、
画素間の隙間に対応する部分にも、紫外線が多少照射さ
れるため、硬化後の立体モデルの仕上りが良好になる。
Further, in the stereolithography apparatus 100, the container 9 can be replaced with one having a different size. For example, if a container having the same surface as the liquid crystal mask 4 is used, the container 9 is installed close to the liquid crystal mask 4 without using the imaging lens 7, and the laser light 1c is directly applied to the ultraviolet curable resin. Irradiate it. However, in this case, a polarizing plate is used instead of the polarization beam splitter 5. Further, although the image on the liquid crystal mask 4 is not formed, the pattern of the laser beam applied onto the ultraviolet curable resin is only slightly blurred. Rather, in the liquid crystal mask 4, there is a gap between the pixels, so that the transferred image is slightly blurred,
Since the ultraviolet rays are also radiated to a portion corresponding to the gaps between the pixels, the finished solid model after curing becomes good.

【0022】[0022]

【発明の効果】本発明は紫外線源におけるレーザ媒質が
半永久的に使用できるため、ランニングコストを50か
ら80%程度下げることができる。
According to the present invention, since the laser medium in the ultraviolet source can be used semipermanently, the running cost can be reduced by about 50 to 80%.

【0023】また、本発明では波長約0.37μから0.
4μの間で、単一波長のレーザ光を発生できる紫外線源
を用いているため、液晶マスクに対して高い透過率を有
するため、液晶が劣化しにくくなり、また、液晶による
紫外線の制御性も良好である。
In the present invention, the wavelength is about 0.37μ to 0.3.
Since an ultraviolet ray source capable of generating a laser beam of a single wavelength is used within 4 μm, it has a high transmittance with respect to a liquid crystal mask, so that the liquid crystal is less likely to deteriorate, and the controllability of ultraviolet rays by the liquid crystal is also high. It is good.

【0024】また、本発明における紫外線源のレーザで
は、レーザ遷移における上準位寿命が通常数十マイクロ
秒以上となるため、フラッシュランプをレーザの励起源
として用いることが可能になり、ピークパワーが数kW
以上でエネルギが数十mジュール以上のパルス状のレー
ザ光を取り出すことができる。したがって、パターン転
写により、レーザ光を拡大して広い面積に照射しても、
高いレーザ光照射強度を確保でき、紫外線硬化樹脂を有
効に硬化させることができる。
Further, in the laser of the ultraviolet source according to the present invention, since the upper level lifetime in the laser transition is usually several tens of microseconds or more, it becomes possible to use the flash lamp as the excitation source of the laser, and the peak power is increased. Several kW
With the above, pulsed laser light having energy of several tens mJoule or more can be extracted. Therefore, even if the laser light is expanded to irradiate a large area by pattern transfer,
A high laser beam irradiation intensity can be secured, and the ultraviolet curable resin can be effectively cured.

【0025】さらに、本発明における紫外線源では、用
いるレーザ結晶の種類を変えれば、レーザ光の波長を約
0.35μから0.45μの広範囲に渡って自由に設定す
ることができる。その結果、本発明では、以下に説明す
る新たな機能が加わった。波長を短い方に合わせれば、
紫外線硬化樹脂による吸収率が高くなるため、レーザ照
射により硬化する層を薄くでき、深さ方向の精度を高め
ることができる。また逆に、波長を長い方に合わせれ
ば、硬化する層を厚くできるため、大型のモデルを製作
するのに適する。
Further, in the ultraviolet source according to the present invention, the wavelength of the laser beam can be freely set over a wide range from about 0.35μ to 0.45μ by changing the type of laser crystal used. As a result, in the present invention, new functions described below are added. If you tune the wavelength to the shorter one,
Since the absorptivity of the ultraviolet curable resin becomes high, the layer cured by laser irradiation can be made thin and the accuracy in the depth direction can be improved. On the contrary, if the wavelength is adjusted to the longer side, the layer to be cured can be thickened, which is suitable for manufacturing a large model.

【0026】また、このように、レーザ光の波長を約
0.35μから0.45μの間で選択できるため、液晶マ
スクの紫外域での透過率特性が種類により多少異なって
も、用いる液晶マスクの特性に合わせることができる。
Further, since the wavelength of the laser beam can be selected from about 0.35 μm to 0.45 μm in this way, even if the transmittance characteristics of the liquid crystal mask in the ultraviolet region are slightly different depending on the type, the liquid crystal mask to be used. It can be adapted to the characteristics of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光造形装置の斜視図。FIG. 1 is a perspective view of a stereolithography apparatus of the present invention.

【図2】液晶マスクの透過率を示すグラフ。FIG. 2 is a graph showing the transmittance of a liquid crystal mask.

【符号の説明】 1a,1b,1c,1d,1e…レーザ光、2…レーザ
光発生部、3a,3b…ガルバノミラー、4…液晶マス
ク、5…偏光ビームスプリッタ、6…光吸収板、7…結
像レンズ、8…紫外線硬化性樹脂、9…容器、10a,
10b…スポット、11a,11b…全反射鏡、12…
ダイクロイックミラー、13…Cr:LiCaAlF6
晶、14…波長選択子、15…BaB25結晶、16…
集光レンズ、100…光造形装置。
[Explanation of Codes] 1a, 1b, 1c, 1d, 1e ... Laser light, 2 ... Laser light generating part, 3a, 3b ... Galvano mirror, 4 ... Liquid crystal mask, 5 ... Polarization beam splitter, 6 ... Light absorbing plate, 7 ... Imaging lens, 8 ... UV curable resin, 9 ... Container, 10a,
10b ... spot, 11a, 11b ... total reflection mirror, 12 ...
Dichroic mirror, 13 ... Cr: LiCaAlF 6 crystal, 14 ... Wavelength selector, 15 ... BaB 2 O 5 crystal, 16 ...
Condensing lens, 100 ... Stereolithography device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮内 建興 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 後藤 典雄 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所映像メディア研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenko Miyauchi, 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Inside the Hitachi, Ltd. Institute of Industrial Science (72) Inventor Norio Goto 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi, Ltd. Visual Media Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】三価のクロムイオンを含んだレーザ用結晶
と非線形光学素子とを含むレーザ光発生部を含むことを
特徴とする光造形装置。
1. A stereolithography apparatus comprising a laser light generator including a laser crystal containing trivalent chromium ions and a nonlinear optical element.
【請求項2】請求項1において、液晶マスクを設けた光
造形装置。
2. The stereolithography apparatus according to claim 1, wherein a liquid crystal mask is provided.
JP5150104A 1993-06-22 1993-06-22 Optical molding apparatus Pending JPH071593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150104A JPH071593A (en) 1993-06-22 1993-06-22 Optical molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150104A JPH071593A (en) 1993-06-22 1993-06-22 Optical molding apparatus

Publications (1)

Publication Number Publication Date
JPH071593A true JPH071593A (en) 1995-01-06

Family

ID=15489595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150104A Pending JPH071593A (en) 1993-06-22 1993-06-22 Optical molding apparatus

Country Status (1)

Country Link
JP (1) JPH071593A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846548A1 (en) * 1996-12-06 1998-06-10 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
JPH10211658A (en) * 1997-01-31 1998-08-11 Toyota Motor Corp Powdery particle laminate shaping method and apparatus therefor
EP0856393A3 (en) * 1997-01-29 1998-09-23 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
JP2016518516A (en) * 2013-03-05 2016-06-23 ローレンス リバモア ナショナル セキュリティー, エルエルシー System and method for additive manufacturing based on high power diodes
US10747033B2 (en) 2016-01-29 2020-08-18 Lawrence Livermore National Security, Llc Cooler for optics transmitting high intensity light
WO2022182466A1 (en) * 2021-02-24 2022-09-01 NEXA3D Inc. Methods and systems for photocuring liquid resin with reduced heat generation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846548A1 (en) * 1996-12-06 1998-06-10 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
EP0856393A3 (en) * 1997-01-29 1998-09-23 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
JPH10211658A (en) * 1997-01-31 1998-08-11 Toyota Motor Corp Powdery particle laminate shaping method and apparatus therefor
JP2016518516A (en) * 2013-03-05 2016-06-23 ローレンス リバモア ナショナル セキュリティー, エルエルシー System and method for additive manufacturing based on high power diodes
US10569363B2 (en) 2013-03-05 2020-02-25 Lawrence Livermore National Security, Llc System and method for high power diode based additive manufacturing
US11534865B2 (en) 2013-03-05 2022-12-27 Lawrence Livermore National Security, Llc System and method for high power diode based additive manufacturing
US10747033B2 (en) 2016-01-29 2020-08-18 Lawrence Livermore National Security, Llc Cooler for optics transmitting high intensity light
WO2022182466A1 (en) * 2021-02-24 2022-09-01 NEXA3D Inc. Methods and systems for photocuring liquid resin with reduced heat generation

Similar Documents

Publication Publication Date Title
US6832024B2 (en) Method and apparatus for fiber bragg grating production
CA1173889A (en) High resolution optical lithography method and apparatus having excimer laser light source and stimulated raman shifting
US20050180302A1 (en) Optical recording medium master disc exposure device and optical recording medium master exposure method
US20050254035A1 (en) Multi-photon lithography
JPH071593A (en) Optical molding apparatus
JPH08236839A (en) Cavity for solid micro laser having optimized efficiency andmicro laser using it
US7241550B2 (en) Method and apparatus for multiphoton-absorption exposure wherein exposure condition is changed with depth of convergence position
US6768762B2 (en) High repetition rate UV excimer laser
EP0792530A1 (en) Low cost, high average power, high brightness solid state laser
JP3468450B2 (en) Method for selective reforming inside solid material and solid material having selectively reformed inside
US6839374B2 (en) Barium fluoride high repetition rate UV excimer laser
US5821980A (en) Device and method for producing a screen printing stencil having improved image sharpness
JPH07266429A (en) Optical shaping device
JPH06143437A (en) Ultraviolet curing shaping device
JP2008185891A (en) Wavelength conversion laser beam source and laser wavelength conversion method
JP3067313B2 (en) Solid-state laser device
JPH07231136A (en) Pulsed laser oscillator and laser marker
JPH0643514A (en) Wavelength converting laser device and wavelength converting laser processing device
JPH04302186A (en) Solid-state laser oscillator, solid-state laser medium, laser resonator, and laser exposure device
KR20090100393A (en) Laser pulse generator and generation method
JPH0534927A (en) Laser marker
JP2006049506A (en) Semiconductor laser excitation solid state laser apparatus
JPH07170008A (en) Ultraviolet laser oscillation equipment
JP2000105464A (en) Laser irradiating device and exposure device
Benerji et al. Generation of long pulse excimer laser using a novel auto pre-pulse excitation scheme