JPH0715815B2 - Method for producing paste type cadmium cathode plate for alkaline storage battery - Google Patents

Method for producing paste type cadmium cathode plate for alkaline storage battery

Info

Publication number
JPH0715815B2
JPH0715815B2 JP62167293A JP16729387A JPH0715815B2 JP H0715815 B2 JPH0715815 B2 JP H0715815B2 JP 62167293 A JP62167293 A JP 62167293A JP 16729387 A JP16729387 A JP 16729387A JP H0715815 B2 JPH0715815 B2 JP H0715815B2
Authority
JP
Japan
Prior art keywords
cathode plate
paste
storage battery
alkaline storage
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62167293A
Other languages
Japanese (ja)
Other versions
JPS6412461A (en
Inventor
龍二 川瀬
勇次 盛岡
束 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62167293A priority Critical patent/JPH0715815B2/en
Priority to KR1019880001509A priority patent/KR920007380B1/en
Priority to US07/156,154 priority patent/US4826744A/en
Priority to DE3804932A priority patent/DE3804932C3/en
Priority to FR8801869A priority patent/FR2611087A1/en
Publication of JPS6412461A publication Critical patent/JPS6412461A/en
Publication of JPH0715815B2 publication Critical patent/JPH0715815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、ニッケル−カドミウム電池等のアルカリ蓄電
池に用いられるペースト式カドミウム陰極板の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a paste-type cadmium cathode plate used in an alkaline storage battery such as a nickel-cadmium battery.

(ロ)従来の技術 ペースト式カドミウム陰極板は、製造工程が簡単であ
り、製造コストが安く、高エネルギー密度が得られる
等、焼結式カドミウム陰極板に比し優れた利点を有する
反面、電子伝導性に劣るため、過充電により陽極から発
生した場合の酸素ガスの吸収能力が悪く、密閉型電池に
使用すると内部ガス圧が上昇し易いという欠点があっ
た。その為、化成を行い導電性を付与する方法が取られ
ているが、この方法ではペースト式カドミウム陰極板の
製造工程が簡単で製造コストが安いというメリットが失
われてしまうことになる。その為、特開昭60−63875号
公報では、ペースト状活物質の表層に炭素粉末よりなる
導電層を形成することにより、酸素ガス吸収能力に優れ
たペースト式カドミウム陰極板を得られることが提案さ
れている。即ち酸化カドミウムを主体とするペースト状
活物質層の表面にポリビニルアルコール(PVA)等の親
水性糊料の水溶液に炭素粉末を分散させたスラリーをコ
ーティング、乾燥して強固な炭素層を形成する。この炭
素は導電を有しており、電池充電時表層の活物質が優先
的に充電され、次式に基づく科学的酸素ガス吸収速度を
向上せしめる。
(B) Conventional technology The paste-type cadmium cathode plate has advantages over the sintered cadmium cathode plate, such as simple manufacturing process, low manufacturing cost, and high energy density. Since it has poor conductivity, it has a drawback in that it has a poor ability to absorb oxygen gas generated from the anode due to overcharging, and the internal gas pressure tends to rise when used in a sealed battery. For this reason, a method of conducting the chemical conversion to give conductivity is taken, but this method loses the merit that the manufacturing process of the paste type cadmium cathode plate is simple and the manufacturing cost is low. Therefore, in JP-A-60-63875, it is proposed that a paste type cadmium cathode plate having an excellent oxygen gas absorbing ability can be obtained by forming a conductive layer made of carbon powder on the surface layer of the paste-like active material. Has been done. That is, the surface of the paste-like active material layer mainly containing cadmium oxide is coated with a slurry prepared by dispersing carbon powder in an aqueous solution of a hydrophilic paste such as polyvinyl alcohol (PVA), and dried to form a strong carbon layer. This carbon has conductivity, and when the battery is charged, the active material in the surface layer is preferentially charged, which improves the scientific oxygen gas absorption rate based on the following formula.

Cd+1/2O2+H2O→Cd(OH)2 しかしこの方法においても全く問題がない訳ではない。
炭素粉末の固定に親水性糊料を用いている為、陰極板表
面が電解液で濡れ易く、電池内での電解液料を増大させ
た場合、酸素ガス吸収に於て、化成方式より劣るといっ
た問題点がある。一方、電池の放電特性、サイクル寿命
の点からいえば、電解液量はできる限り多い方が望まし
い。
Cd + 1 / 2O 2 + H 2 O → Cd (OH) 2 However, this method is not completely free of problems.
Since a hydrophilic paste is used to fix the carbon powder, the surface of the cathode plate is easily wet with the electrolyte solution, and when the electrolyte solution in the battery is increased, it is inferior to the chemical conversion method in absorbing oxygen gas. There is a problem. On the other hand, in terms of the discharge characteristics and cycle life of the battery, it is desirable that the amount of the electrolytic solution be as large as possible.

また一方、電極表面を撥水処理して濡れ特性を低下さ
せ、酸素ガス吸収能力を、他の特性を低下させずに向上
せしめんとする提案が種々しられている。代表的な例と
して、特開昭57−96463号公報に記載されているよう
に、酸化カドミウム粉末を主体とし、親水性糊料を含む
活物質ペーストを導電芯体に塗着し、乾燥した後、加圧
し、ついでフッ素樹脂ディスパージョンを含浸する方法
が挙げられる。この方法では活物質表層部に重点的とし
ながら、一部は活物質内部に迄、フッ素樹脂の微粒子を
くいこませ併せて極板の強度向上を図っている。確かに
この方法によれば、極板表面に撥水性を附与する事は可
能である。しかしながら、やはり問題がない訳ではな
い。即ち活物質層を事前にプレスした程度では極板の残
孔度は50%以上有り、どうしても不用のフッ素樹脂の微
粒子が活物質層細孔内に迄かなり侵入し、フッ素樹脂は
絶縁物質であるから電極反応を阻害し易く、現実的には
採用し難い。又、フッ素樹脂の水性ディスパージョンを
酸化カドミウムを主体とする活物質層に直接含浸する
為、酸化カドミウムが水和して一部水酸化カドミウムに
転化し、極板の膨化が起こる。この際生成した水酸化カ
ドミウムは電池初回充填時における水素ガス発生をひき
起こし易く、問題となる。尚、電池系外で水和して生成
した水酸化カドミウムは特に導電性が悪く、充電初期か
ら水素ガスが発生しやすい事が知得されている。
On the other hand, various proposals have been made to improve the oxygen gas absorption capacity without deteriorating other characteristics by treating the electrode surface with water repellency to reduce the wetting characteristics. As a typical example, as described in JP-A-57-96463, an active material paste containing a cadmium oxide powder as a main component and a hydrophilic paste is applied to a conductive core and then dried. A method of pressurizing and then impregnating with a fluororesin dispersion can be mentioned. In this method, while focusing on the surface layer of the active material, a part of the fluororesin is incorporated into the inside of the active material to improve the strength of the electrode plate. Certainly, according to this method, it is possible to impart water repellency to the surface of the electrode plate. However, it is not without problems. That is, the residual porosity of the electrode plate is 50% or more when the active material layer is pressed in advance, and unnecessary fine particles of fluororesin infiltrate into the pores of the active material layer, and the fluororesin is an insulating material. Therefore, the electrode reaction is liable to be hindered, and it is practically difficult to adopt. Further, since the aqueous dispersion of fluororesin is directly impregnated into the active material layer mainly composed of cadmium oxide, the cadmium oxide is hydrated and partially converted into cadmium hydroxide, resulting in swelling of the electrode plate. The cadmium hydroxide produced at this time is apt to cause generation of hydrogen gas at the time of initial filling of the battery, which is a problem. It has been known that cadmium hydroxide produced by hydration outside the battery system has particularly poor conductivity and is likely to generate hydrogen gas from the beginning of charging.

(ハ)発明が解決しようとする問題点 本発明は、前記問題点に鑑みなされたものであって電極
表面に、炭素粉末よりなる導電性を有する炭素層を有し
たペースト式カドミウム陰極板の更なる酸素ガス吸収性
能の向上を計るための、製造方法を提供しようとするも
のである。
(C) Problems to be Solved by the Invention The present invention has been made in view of the above problems, and further includes a paste type cadmium cathode plate having a conductive carbon layer made of carbon powder on the electrode surface. The present invention aims to provide a manufacturing method for improving the oxygen gas absorption performance.

(ニ)問題点を解決するための手段 本発明のアルカリ蓄電池用ペースト式カドミウム陰極板
の製造方法は、炭素粉末と、該炭素粉末より大きな粒径
を有するフッ素樹脂粉末と、糊料とを混練してスラリー
を得、導電芯体にカドミウム活物質よりなるペーストを
塗着したカドミウム電極に、前記スラリーを塗着するこ
とを特徴とするものである。
(D) Means for Solving Problems A method for producing a paste-type cadmium cathode plate for an alkaline storage battery according to the present invention comprises kneading carbon powder, a fluororesin powder having a particle size larger than the carbon powder, and a paste. To obtain a slurry, and the slurry is applied to a cadmium electrode having a conductive core coated with a paste containing a cadmium active material.

(ホ)作用 従来の炭素粉末よりなる導電層には、炭素粒子を活物質
層表面に結着させるべくPVA等の親水性糊料の薄膜が存
在している為、特に電池内電解液を増大せしめた場合、
陰極板表面が電解液で濡れ易くなる。
(E) Action In the conventional conductive layer made of carbon powder, a thin film of hydrophilic glue such as PVA is present to bind the carbon particles to the surface of the active material layer, so that the electrolyte solution inside the battery is increased. If you do
The surface of the cathode plate is easily wet with the electrolytic solution.

しかし本発明の陰極板は、炭素薄層にフッ素樹脂の微粒
子が存在する為、陰極板表面の炭素層内に、微視的な撥
水点を均一かつ無数に形成する事ができる。これらの撥
水点の形成により、陰極板表面の炭素粉末薄層に、たと
え電池内の電解液量を多くしても陽極から発生する酸素
ガスが容易に接近できる為、炭素粉末薄層直下に形成さ
れる金属カドミウムと酸素との反応がすみやかに起こ
る。その結果、酸素ガス吸収性能が大幅に向上する。
However, in the cathode plate of the present invention, since the fine particles of the fluororesin are present in the carbon thin layer, it is possible to form an infinite number of microscopic water repellent points in the carbon layer on the surface of the cathode plate. By forming these water repellent points, the oxygen gas generated from the anode can easily approach the carbon powder thin layer on the surface of the cathode plate even if the amount of electrolyte in the battery is increased. The reaction between the formed metal cadmium and oxygen occurs promptly. As a result, the oxygen gas absorption performance is significantly improved.

又、フッ素樹脂の微粒子の粒径は約0.2μm程度であ
り、炭素微粒子は粒径200〜300Åである。その結果、フ
ッ素樹脂は炭素粉末に比べると極めて大きく、水、糊
料、炭素粉末およびフッ素樹脂よりなるスラリーを、カ
ドミウム電極表面に塗着、乾燥させた場合、粒径の極め
て小さな炭素粉末微粒子がフッ素樹脂粒子の回りを必然
的に取り囲んだ状態で配設される。その結果、フッ素樹
脂は陰極活物質とは接触することがなく、それ故、電極
反応を阻害することがない。つまり本発明の製造方法に
よれば、スラリーを塗着して形成した炭素層が乾燥する
際に、カドミウム陰極板表面から乾燥が始まり、粒径の
大きなフッ素樹脂から固定されていき、粒径の小さい炭
素粉末は溶媒中に浮遊して残存し、固定され難いので、
最終的にカドミウム活物質と炭素粉末層との間に、フッ
素樹脂をほとんど含有しないカーボン単独層が形成さ
れ、これによってフッ素樹脂が活物質層内に入り込んで
保液性を低下させることを防止できると考えられる。
The particle size of the fine particles of the fluororesin is about 0.2 μm, and the particle size of the carbon fine particles is 200 to 300Å. As a result, the fluororesin is much larger than the carbon powder, and when a slurry composed of water, a paste, carbon powder and the fluororesin is applied to the surface of the cadmium electrode and dried, carbon powder fine particles with an extremely small particle size are obtained. The fluororesin particles are necessarily arranged so as to surround them. As a result, the fluororesin does not come into contact with the cathode active material and therefore does not interfere with the electrode reaction. That is, according to the manufacturing method of the present invention, when the carbon layer formed by applying the slurry is dried, the drying starts from the surface of the cadmium cathode plate, and is fixed from the fluororesin having a large particle size. Since small carbon powder floats in the solvent and remains, it is difficult to fix,
Finally, a carbon single layer containing almost no fluororesin is formed between the cadmium active material and the carbon powder layer, which can prevent the fluororesin from entering the active material layer and lowering the liquid retention property. it is conceivable that.

一方、フッ素樹脂のみを陰極板表面に配設させた場合
は、当然フッ素樹脂は活物質と接触する為、電極反応を
阻害し、しかもその固定が非常に不安定である為、効果
の持続が期待できない。
On the other hand, when only the fluororesin is provided on the surface of the cathode plate, the fluororesin naturally comes into contact with the active material, which hinders the electrode reaction and the fixation thereof is very unstable, so that the effect is not sustained. I can't expect.

しかし本発明の陰極板は、炭素粒子およびフッ素樹脂が
糊料により固定されている為、充放電サイクルを繰り返
し行なっても陰極板表面に固定され続け、酸素ガス吸収
能力を維持し続けることができる。
However, in the cathode plate of the present invention, since the carbon particles and the fluororesin are fixed by the paste, the carbon plate and the fluororesin can be fixed on the surface of the cathode plate even after repeated charge and discharge cycles, and the oxygen gas absorbing ability can be maintained. .

この炭素粉末とフッ素樹脂の微粒子よりなる薄膜の形成
についてはローラーによる塗着、あるいはスプレー方式
により形成することができる為、浸漬法の様に水酸化カ
ドミウムの水和反応を起こすこともなく、又、活物質の
脱落の心配もない。
The thin film composed of the carbon powder and the fine particles of the fluororesin can be formed by coating with a roller or by a spray method, so that the hydration reaction of cadmium hydroxide does not occur unlike the dipping method. There is no need to worry about the active material falling off.

又、フッ素樹脂の微粒子には何らせん断力等がかからな
い為、フッ素樹脂粒子の配向による繊維状マトリックス
は基本的には形成されない。
Further, since the fine particles of the fluororesin are not subjected to any shearing force, the fibrous matrix due to the orientation of the fluororesin particles is basically not formed.

(ヘ)実施例 以下に本発明の実施例と比較例との対比に言及し、詳述
する。
(F) Example Hereinafter, the comparison between the example of the present invention and the comparative example will be described in detail.

〔実施例1〕 水100重量部、炭素粉末(粒径200〜300Å)10重量部、P
VA10重量部よりなるスラリーに、テフロンディスパージ
ョン41−J(三井デュポンフロロケミカル(株)製)
(粒径約0.2μm)を純水にて10重量%溶液に希釈した
もの100重量部を混合し、スラリーを調整する。
[Example 1] 100 parts by weight of water, 10 parts by weight of carbon powder (particle size 200 to 300Å), P
Teflon dispersion 41-J (manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) in a slurry consisting of 10 parts by weight of VA
100 parts by weight of a 10% by weight solution (particle size: about 0.2 μm) diluted with pure water is mixed to prepare a slurry.

一方、酸化カドミウム粉末900gと金属カドミウム粉末10
0gよりなる活物質と、デンドライト防止剤としての酸化
マグネシウム20gと、結着剤としてのヒドロキシプロピ
ルセルロース6gと、補強剤としてのナイロン繊維10g
と、水和防止剤としてのリン酸ナトリウム水溶液300cc
とを混練して、活物質シートを得た。該シートをパンチ
ングメタルよりなる導電芯体の両表面に塗着し、乾燥を
行ないカドミウム電極を得、この表面に前述のスラリー
をコーティング、乾燥させて、本発明陰極板aを得た。
On the other hand, 900 g of cadmium oxide powder and 10 g of metal cadmium powder
Active material consisting of 0 g, magnesium oxide 20 g as dendrite inhibitor, hydroxypropyl cellulose 6 g as binder, nylon fiber 10 g as reinforcing agent
And 300cc aqueous solution of sodium phosphate as anti-hydration agent
And were kneaded to obtain an active material sheet. The sheet was applied to both surfaces of a conductive core made of punched metal and dried to obtain a cadmium electrode. The surface was coated with the above-mentioned slurry and dried to obtain a cathode plate a of the present invention.

〔比較例1〕 テフロンディスパージョン41−Jを純水にて2重量%に
希釈したものを、前記実施例に用いたカドミウム電極と
同一の電極表面に吹き付け、乾燥させて、比較陰極板b
を得た。
Comparative Example 1 Teflon Dispersion 41-J diluted with pure water to 2% by weight was sprayed onto the same electrode surface as the cadmium electrode used in the above Example, and dried to give a comparative cathode plate b.
Got

〔比較例2〕 テフロンディスパージョン41−Jを純水にて10重量%溶
液に希釈したもの100重量部に、炭素粉末10重量部を混
合した後、乾燥させ、ついでこれにせん断力をかけ薄膜
状にしたものを、前記実施例と同一のカドミウム電極表
面に塗着し、比較陰極板cを得た。
[Comparative Example 2] 100 parts by weight of Teflon Dispersion 41-J diluted with 10% by weight of pure water was mixed with 10 parts by weight of carbon powder, dried and then subjected to shearing force to form a thin film. The formed material was applied to the same surface of the cadmium electrode as in the above-mentioned example to obtain a comparative cathode plate c.

〔比較例3〕 水100重量部、炭素粉末5重量部、PVA5重量部よりなる
スラリーを、前記実施例と同一のカドミウム電極表面に
コーティング、乾燥して、比較陰極板dを得た。
[Comparative Example 3] A slurry of 100 parts by weight of water, 5 parts by weight of carbon powder, and 5 parts by weight of PVA was coated on the same surface of the cadmium electrode as in the above example and dried to obtain a comparative cathode plate d.

〔比較例4〕 前記実施例で用いたカドミウム電極を、何の処理も施さ
ずそのまま用いたものを、比較陰極板eとした。
Comparative Example 4 The cadmium electrode used in the above example was used as it was without any treatment to obtain a comparative cathode plate e.

このようにして作製されたペースト式カドミウム陰極板
a,b,c,d,eをそれぞれセパレータを介して公知のニッケ
ル陽極板を組み合わせて捲回し、電池ケースに収納し
て、公称容量1.3AHのSCサイズの密閉型ニッケル−カド
ミウム蓄電池を作製し、それぞれ本発明電池A,比較電池
B,比較電池C,比較電池D,比較電池Eを得た。
Paste type cadmium cathode plate produced in this way
A, b, c, d, e are wound by combining known nickel anode plates via separators, respectively, and housed in a battery case to produce a SC size sealed nickel-cadmium storage battery with a nominal capacity of 1.3 AH. , Battery A of the present invention, Comparative battery
B, comparative battery C, comparative battery D, and comparative battery E were obtained.

〔実験1〕 これらの電池A〜Eを用いて、25℃で1.3A(1C)の電流
で充填を行った時の、電池内部圧の比較を行った。この
結果を、第1図に示す。
[Experiment 1] Using these batteries A to E, the internal pressures of the batteries were compared when they were charged at a current of 1.3 A (1 C) at 25 ° C. The results are shown in FIG.

これより炭素薄層にフッ素樹脂を含有したもの(本発明
電池A)は、他の電池に比べ、極めて内部圧が低くなっ
ている。これはまさに陰極板表面の炭素層内に微視的な
撥水点が均一かつ無数に形成されたことにより、陽極か
ら発生する酸素ガスが容易に接近でき消費可能な為であ
る。
As a result, the carbon thin layer containing a fluororesin (Battery A of the present invention) has a significantly lower internal pressure than other batteries. This is because the microscopic water-repellent points are formed uniformly and innumerably in the carbon layer on the surface of the cathode plate, so that oxygen gas generated from the anode can be easily approached and consumed.

又、比較電池Cは、フッ素樹脂の微粒子をせん断力によ
り配向させ、繊維状マトリックスを形成させたものであ
るが、ガス吸収性能は、本発明電池Aより劣っている。
これはフッ素樹脂の撥水性により形成される三相界面
(固−液−気)の形成面積がフッ素樹脂の繊維化により
減少した為と考えられ、このことより、フッ素樹脂の存
在形態は繊維状より微粒子状の方が、酸素ガス吸収に好
ましいことがわかる。
Further, Comparative Battery C is one in which fine particles of fluororesin are oriented by a shearing force to form a fibrous matrix, but the gas absorption performance is inferior to Battery A of the present invention.
It is considered that this is because the formation area of the three-phase interface (solid-liquid-air) formed by the water repellency of the fluororesin decreased due to the fibrosis of the fluororesin. It can be seen that finer particles are more preferable for oxygen gas absorption.

〔実験2〕 前記陰極板a〜eを用いて、25℃にて1.3Aの電流で90分
間充電した後、1.3Aの電流で放電を行い、放電容量の比
較を行った。このときの結果を、第2図に示す。これに
より、比較陰極板bは、電極表面が絶縁物質であるフッ
素樹脂によって覆われている為、この部分に於ける反応
性が低下し、放電容量が少なくなったと考えられる。し
かし、本発明陰極板aは、前述した如く粒径の極めて小
さな炭素粉末微粒子が、フッ素樹脂微粒子の回りを取り
囲んだ状態で配設される為、フッ素樹脂は陰極活物質と
接触することがなく、それゆえ電極反応を阻害すること
がなく、陰極板の放電容量を増大させる。
[Experiment 2] Using the cathode plates a to e, after charging at 25 ° C. with a current of 1.3 A for 90 minutes, discharging was performed with a current of 1.3 A to compare the discharge capacities. The result at this time is shown in FIG. As a result, it is considered that since the electrode surface of the comparative cathode plate b is covered with the fluororesin which is an insulating material, the reactivity in this portion is lowered and the discharge capacity is reduced. However, in the cathode plate a of the present invention, since the carbon powder fine particles having an extremely small particle diameter are arranged around the fluororesin fine particles as described above, the fluororesin does not come into contact with the cathode active material. Therefore, the discharge capacity of the cathode plate is increased without disturbing the electrode reaction.

以上の実験結果より、以下の事が判明した。From the above experimental results, the following facts were revealed.

ペースト式カドミウム陰極板の酸素ガス吸収能力が
大幅に向上するため、急速充電耐性の優れた電池を得る
ことができる。
Since the oxygen gas absorption capacity of the paste type cadmium cathode plate is significantly improved, it is possible to obtain a battery having excellent quick charge resistance.

陰極板のガス吸収能力が向上する為、従来より電池
電解液を多量に設定することが可能となり、電池の諸特
性(特にハイレトート放電特性、サイクル寿命)が向上
する。
Since the gas absorption capacity of the cathode plate is improved, it becomes possible to set a large amount of battery electrolyte solution as compared with the conventional case, and various characteristics of the battery (particularly high retort discharge characteristics and cycle life) are improved.

フッ素樹脂は糊料により陰極板表面に固定されてい
る為、充放電サイクルを繰り返し行なっても層内に固定
され続け、酸素ガス吸収能力を維持し続けることがで
き、しかもフッ素樹脂の微粒子は極めて微細な炭素粒子
により回りを取り囲まれた状態で配設される為、陰極活
物質と接触することがなく、電極反応を阻害することも
ない。
Since the fluororesin is fixed on the surface of the cathode plate with a paste, it can be kept fixed in the layer even after repeated charge and discharge cycles, and the oxygen gas absorption capacity can be maintained. Since it is arranged in a state of being surrounded by fine carbon particles, it does not come into contact with the cathode active material and does not hinder the electrode reaction.

炭素粉末とフッ素樹脂よりなる薄膜(炭素層)の形
成については、浸漬法によらず、ローラーによる塗着あ
るいはスプレー方式により形成することができる為、活
物質である水酸化カドミウムを水和させることもなく、
又活物質脱落の心配もない。
Regarding the formation of a thin film (carbon layer) consisting of carbon powder and fluororesin, it can be formed by coating with a roller or spraying, not by the dipping method. Therefore, hydrate the cadmium hydroxide active material. None,
In addition, there is no need to worry about the active material falling off.

尚、本実施例では炭素層を形成するための糊料として親
水性糊料であるPVAを用いたが、糊料として有機性糊料
であるバニーハイト(日本黒鉛工業(株)製)を用いト
ルエン等を溶媒として使用し炭素層を形成した場合に
は、この炭素層を有する陰極板を化成する時に、糊料の
溶出が抑制できる。
In this example, PVA, which is a hydrophilic paste, was used as the paste for forming the carbon layer, but bunny height (manufactured by Nippon Graphite Industry Co., Ltd.), which is an organic paste, was used as the paste. When a carbon layer is formed using the above as a solvent, the elution of the paste can be suppressed when forming the cathode plate having the carbon layer.

(ト)発明の効果 本発明の製造方法によれば、酸素ガス吸収性能の優れた
ペースト式カドミウム陰極板を提供することができ、か
かる陰極板を用いた電池の諸特性を向上させることが可
能となるので、その工業的価値はきわめて大きい。
(G) Effect of the Invention According to the production method of the present invention, it is possible to provide a paste type cadmium cathode plate having excellent oxygen gas absorption performance, and it is possible to improve various characteristics of a battery using such a cathode plate. Therefore, its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図は電池の内部圧変化を示した図、第2図は陰極板
の放電特性を示した図である。 A……本発明電池、B,C,D,E……比較電池。
FIG. 1 is a diagram showing changes in internal pressure of the battery, and FIG. 2 is a diagram showing discharge characteristics of the cathode plate. A: battery of the present invention, B, C, D, E: comparative battery.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】炭素粉末と、該炭素粉末より大きな粒径を
有するフッ素樹脂粉末と、糊料とを混練してスラリーを
得、導電芯体にカドミウム活物質よりなるペーストを塗
着したカドミウム電極に、前記スラリーを塗着すること
を特徴とするアルカリ蓄電池用ペースト式カドミウム陰
極板の製造方法。
1. A cadmium electrode in which a carbon powder, a fluororesin powder having a particle size larger than that of the carbon powder, and a paste are kneaded to obtain a slurry, and a conductive core is coated with a paste containing a cadmium active material. A method for producing a paste-type cadmium cathode plate for an alkaline storage battery, which comprises coating the slurry with the above.
【請求項2】前記糊料が親水性糊料であることを特徴と
する特許請求の範囲第項記載のアルカリ蓄電池用ペー
スト式カドミウム陰極板の製造方法。
2. The method for producing a paste type cadmium cathode plate for an alkaline storage battery according to claim 1, wherein the sizing agent is a hydrophilic sizing agent.
【請求項3】前記親水性糊料が、ポリビニルアルコー
ル、カルボキシメチルセルロース、メチルセルロース、
ヒドロキシプロピルセルロースより選ばれたものである
ことを特徴とする特許請求の範囲第項記載のアルカリ
蓄電池用ペースト式カドミウム陰極板の製造方法。
3. The hydrophilic paste is polyvinyl alcohol, carboxymethyl cellulose, methyl cellulose,
The method for producing a paste type cadmium cathode plate for an alkaline storage battery according to claim 1, wherein the method is selected from hydroxypropyl cellulose.
【請求項4】前記親水性糊料が、ポリビニルアルコール
であることを特徴とする特許請求の範囲第項記載のア
ルカリ蓄電池用ペースト式カドミウム陰極板の製造方
法。
4. The method for producing a paste type cadmium cathode plate for an alkaline storage battery according to claim 1, wherein the hydrophilic paste is polyvinyl alcohol.
【請求項5】前記導電芯体が、パンチングメタル、発泡
メタル、金属繊維焼結体より選ばれたものであることを
特徴とする特許請求の範囲第項記載のアルカリ蓄電池
用ペースト式カドミウム陰極板の製造方法。
5. The paste type cadmium cathode plate for an alkaline storage battery according to claim 1, wherein the conductive core is selected from punching metal, foam metal, and metal fiber sintered body. Manufacturing method.
【請求項6】前記スラリーを塗着した後、乾燥すること
を特徴とする特許請求の範囲第項記載のアルカリ蓄電
池用ペースト式カドミウム陰極板の製造方法。
6. The method for producing a paste type cadmium cathode plate for an alkaline storage battery according to claim 1, wherein the slurry is applied and then dried.
【請求項7】前記フッ素樹脂は、スラリーを塗着した後
粒子状として存在することを特徴とする特許請求の範囲
第項記載のアルカリ蓄電池用ペースト式カドミウム陰
極板の製造方法。
7. The method for producing a paste type cadmium cathode plate for an alkaline storage battery according to claim 1, wherein the fluororesin is present in the form of particles after the slurry is applied.
JP62167293A 1987-02-17 1987-07-03 Method for producing paste type cadmium cathode plate for alkaline storage battery Expired - Fee Related JPH0715815B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62167293A JPH0715815B2 (en) 1987-07-03 1987-07-03 Method for producing paste type cadmium cathode plate for alkaline storage battery
KR1019880001509A KR920007380B1 (en) 1987-02-17 1988-02-15 Making method of alkali battery
US07/156,154 US4826744A (en) 1987-02-17 1988-02-16 Alkaline storage cell
DE3804932A DE3804932C3 (en) 1987-02-17 1988-02-17 Alkaline storage cell
FR8801869A FR2611087A1 (en) 1987-02-17 1988-02-17 ALKALINE BATTERY WITH NEGATIVE ELECTRODE TO CADMIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62167293A JPH0715815B2 (en) 1987-07-03 1987-07-03 Method for producing paste type cadmium cathode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6412461A JPS6412461A (en) 1989-01-17
JPH0715815B2 true JPH0715815B2 (en) 1995-02-22

Family

ID=15847068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62167293A Expired - Fee Related JPH0715815B2 (en) 1987-02-17 1987-07-03 Method for producing paste type cadmium cathode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0715815B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731755B2 (en) * 1989-09-14 1995-04-10 ボディソニック株式会社 Feeling vibration system
JP4786476B2 (en) * 2006-09-04 2011-10-05 株式会社日立製作所 Displacement coil manufacturing apparatus and method for rotating electrical machine
JP6324783B2 (en) * 2014-03-20 2018-05-16 株式会社日本触媒 Battery electrode and battery

Also Published As

Publication number Publication date
JPS6412461A (en) 1989-01-17

Similar Documents

Publication Publication Date Title
KR20010030366A (en) Alkali rechargeable batteries and process for the production of said rechargeable batteries
JP2000021401A (en) Nickel hydroxide powder for alkaline battery and nickel hydroxide electrode using the same
KR920007380B1 (en) Making method of alkali battery
KR19990072691A (en) Alkaline Secondary Battery and Method of Manufacturing the Same
US4938780A (en) Paste type cadmium anode and method for making same
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JPH0715815B2 (en) Method for producing paste type cadmium cathode plate for alkaline storage battery
JPH0450707B2 (en)
JPS6137733B2 (en)
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPH0715814B2 (en) Paste type cadmium cathode plate for alkaline storage battery
JPH0568828B2 (en)
JP2581362B2 (en) Electrodes for alkaline storage batteries
JPS60254564A (en) Nickel positive electrode for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP3113534B2 (en) Non-sintered nickel electrode and method for producing the same
JP3043775B2 (en) Cadmium negative electrode for alkaline storage batteries
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JP3241441B2 (en) Cadmium negative electrode for alkaline storage batteries
JPH0789487B2 (en) Cadmium electrode for alkaline storage battery and manufacturing method thereof
JPH10275619A (en) Paste type cadmium electrode
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
JP2692795B2 (en) Paste type cadmium cathode for alkaline storage battery
JP2525320B2 (en) Positive electrode for alkaline secondary battery
JPH0417260A (en) Cadmium negative electrode for alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees