JPH07153920A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH07153920A
JPH07153920A JP5326146A JP32614693A JPH07153920A JP H07153920 A JPH07153920 A JP H07153920A JP 5326146 A JP5326146 A JP 5326146A JP 32614693 A JP32614693 A JP 32614693A JP H07153920 A JPH07153920 A JP H07153920A
Authority
JP
Japan
Prior art keywords
layer
polysilicon
electrode
semiconductor device
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5326146A
Other languages
Japanese (ja)
Inventor
Kazumi Yamaguchi
和己 山口
Manabu Yamada
学 山田
Yoshizo Hagimoto
佳三 萩本
Masami Sawada
雅己 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5326146A priority Critical patent/JPH07153920A/en
Priority to KR1019940031862A priority patent/KR950015755A/en
Publication of JPH07153920A publication Critical patent/JPH07153920A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the breakdown of a semiconductor element by temperature increase by forming a temperature detecting polysilicon diode on the semiconductor element. CONSTITUTION:This is a semiconductor device, wherein a temperature detecting diode is formed of one polysilicon layer on the same chip. An oxide film 5 and polysilicon 6 are formed on a silicon substrate (n<+> substrate 1). The polysilicon 6 is patterned, and an n<+> layer 4 and a p<+> layer 32 are formed. An oxide film 7 and phosphorus glass 8 are formed thereon. A source electrode 91 is in contact with the n layer 4 and the p layer 32, a drain electrode 92 is in contact with the n<+> substrate 1 and a gate electrode 93 is in contact with a gate layer. A temperature detecting polysilicon diode 10 having an electrode 14 in contact with the p<+> layer 12 and an electrode 15 in contact with the n layer 13 is formed by the same step for forming the gate electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置に関し、特
に半導体素子の温度を検出することができる半導体装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device capable of detecting the temperature of a semiconductor element.

【0002】[0002]

【従来の技術】従来の温度検出機能付き半導体装置は、
半導体素子のチップを金属基板上にろう付けし、このチ
ップのわきに熱電対などの温度センサ−を取り付け、そ
の信号を素子の制御回路に送り、温度検出するものが主
流であった。
2. Description of the Related Art A conventional semiconductor device with a temperature detecting function is
The mainstream method is to braze a semiconductor element chip on a metal substrate, attach a temperature sensor such as a thermocouple to the side of the chip, and send the signal to the element control circuit to detect the temperature.

【0003】上記従来の温度検出機能付き半導体装置で
は、温度センサ−と半導体素子との間に熱抵抗が存在
し、温度上昇に対する応答遅れが避けられず、半導体素
子の保護が十分行われないという欠点を有している。こ
の欠点を解決するものとして、半導体素体の表面上に絶
縁膜を介して温度センサ−を構成する層を備えた半導体
装置が提案されている(特開昭63−299264号公報参照)。
この半導体装置を図9に基づいて説明する。
In the conventional semiconductor device with a temperature detecting function, there is a thermal resistance between the temperature sensor and the semiconductor element, a delay in response to a temperature rise cannot be avoided, and the semiconductor element is not sufficiently protected. It has drawbacks. As a solution to this drawback, there has been proposed a semiconductor device having a layer forming a temperature sensor on the surface of a semiconductor element via an insulating film (see JP-A-63-299264).
This semiconductor device will be described with reference to FIG.

【0004】図9は、上記従来の半導体装置の要部断面
図であって、電力用MOSFETは、シリコン基板(n+
基板1)とその上に形成されたn-エピタキシャル層(n-
層2)からなり、このn-層2にp-層31及びp+層32が設
けられ、さらにその中に二つのn+層4が設けられてい
る。また、n-層2の表面には、ゲ−ト酸化膜(酸化膜
5)を介して多結晶シリコンからなるゲ−ト層(ポリシリ
コン6)が設けられ、その上を酸化膜7及びリンガラス
8が被覆している。そして、p+層32及びn+層4にはソ
−ス電極91、n+基板1にはドレイン電極92、ゲ−ト層
(ポリシリコン6)にはゲ−ト電極93が接触している。
FIG. 9 is a cross-sectional view of a main part of the conventional semiconductor device described above. The power MOSFET is a silicon substrate (n +
Substrate 1) and n formed thereon - epitaxial layer (n -
Layer 2), in which the n layer 2 is provided with a p layer 31 and a p + layer 32, in which two n + layers 4 are provided. A gate layer (polysilicon 6) made of polycrystalline silicon is provided on the surface of the n layer 2 via a gate oxide film (oxide film 5), and an oxide film 7 and a phosphorus layer are formed on the gate layer. It is covered with glass 8. The p + layer 32 and the n + layer 4 have a source electrode 91, the n + substrate 1 has a drain electrode 92, and a gate layer.
The gate electrode 93 is in contact with (polysilicon 6).

【0005】一方、温度センサ−は、不活性領域のp+
層3の上に厚さ1μmの酸化膜5、厚さ1μmの多結晶
Si膜(ポリシリコン6)、厚さ0.5μmの酸化膜7を形
成し、この酸化膜7上に2層目のn-多結晶Si膜(ポリ
シリコン11)を成長させ、その中にp+層12、n+層13を
設けてpn接合ダイオ−ド10を有している。なお、14、
15は電極である。
On the other hand, the temperature sensor has p + of the inactive region.
An oxide film 5 having a thickness of 1 μm, a polycrystalline Si film (polysilicon 6) having a thickness of 1 μm, and an oxide film 7 having a thickness of 0.5 μm are formed on the layer 3, and an oxide film 7 of a second layer is formed on the oxide film 7. - growing the polycrystalline Si film (polysilicon 11), pn junction diode with the p + layer 12, n + layer 13 provided therein - has a de 10. In addition, 14,
15 is an electrode.

【0006】そして、このダイオ−ド10の低電流におけ
る順電圧降下は、温度依存性を有するので、順電圧降下
をp+層12に接触する電極14とn+層13に接触する電極15
から取り出すことによりその温度を検出でき、前記した
電力用MOSFETのn-層2とp+層32の間の接合温度
を2層のポリシリコン膜を介して検出でき、ゲ−ト電圧
の制御回路へ送ることができるものとなっていた。
Since the forward voltage drop of the diode 10 at a low current has temperature dependence, the forward voltage drop is in contact with the p + layer 12 at the electrode 14 and the n + layer 13 at the electrode 15.
The temperature can be detected by taking it out from the device, and the junction temperature between the n layer 2 and the p + layer 32 of the power MOSFET can be detected through the two-layer polysilicon film, and the gate voltage control circuit can be detected. It could be sent to.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記従来の
半導体装置では、半導体素子を形成するためのポリシリ
コン6と、温度検出用ポリシリコンダイオ−ドを形成す
るためのポリシリコン11の2層ポリシリコン構造となっ
ているので、ポリシリコン成長及びポリシリコンパタ−
ニング、ポリシリコンエッチング等が2回必要となり、
製造工程が多くなるという問題点があった。
By the way, in the above-mentioned conventional semiconductor device, a two-layer polysilicon of polysilicon 6 for forming a semiconductor element and polysilicon 11 for forming a temperature detecting polysilicon diode is used. As it has a silicon structure, it can be used for polysilicon growth and polysilicon pattern.
And polysilicon etching are required twice,
There is a problem that the number of manufacturing processes increases.

【0008】また、上記従来の半導体装置では、温度検
出用ポリシリコンダイオ−ドを形成する時に拡散層の押
し込みが浅い構造となっているため、アルミスパイクに
よる特性変動や順方向電圧(VF)、耐圧(VZ)等のバラツ
キが発生するという問題点があった。
Further, the above-described conventional semiconductor device, the temperature detecting polysilicon diode - for pushing the diffusion layer when forming the de is a shallow structure, characteristic variation and the forward voltage due to the aluminum spike (V F) However, there is a problem in that variations in withstand voltage (V Z ) occur.

【0009】本発明は、上記従来の半導体装置の問題点
に鑑み成されたものであって、その目的は、製造工程が
短縮でき、上記したバラツキが発生しないものであり、
半導体素子の接合部の温度上昇を応答性よく正確に検出
して該素子の破壊を防止できる半導体装置を提供するこ
とにある。
The present invention has been made in view of the problems of the conventional semiconductor device described above, and an object thereof is to shorten the manufacturing process and to prevent the above-mentioned variations.
It is an object of the present invention to provide a semiconductor device capable of accurately detecting a temperature rise of a junction portion of a semiconductor element with high responsiveness and preventing the element from being broken.

【0010】[0010]

【課題を解決するための手段】本発明の半導体装置は、
MOSFETとほぼ同一工程フロ−で温度検出用ポリシ
リコンダイオ−ドを形成する層を備え、かつ、ポリシリ
コン層を一層のみで形成する層を備えたものであり、ま
た、温度検出用ポリシリコンダイオ−ドのポリシリコン
層にポリシリコン層を垂直に突き抜けた拡散層を備えた
ものであり、これにより前記した目的とする半導体装置
を提供するものである。
The semiconductor device of the present invention comprises:
A polysilicon layer for forming a temperature detecting polysilicon diode and a layer for forming a single polysilicon layer are formed in almost the same process flow as that of the MOSFET. And a diffusion layer vertically penetrating the polysilicon layer is provided in the negative polysilicon layer to provide the above-described semiconductor device of interest.

【0011】即ち、本発明は、「ポリシリコンを主体と
したゲ−ト電極を有するMOS型電界効果トランジスタ
を含む半導体素子において、その温度を検出できるポリ
シリコンダイオ−ド又は抵抗を同一チップ上にポリシリ
コン一層で形成してなることを特徴とする半導体装
置。」を要旨とする。
That is, according to the present invention, in a semiconductor device including a MOS field effect transistor having a gate electrode mainly composed of polysilicon, a polysilicon diode or a resistor capable of detecting the temperature is provided on the same chip. A semiconductor device characterized by being formed of a single layer of polysilicon. "

【0012】また、本発明は、「前記半導体素子とその
温度を検出できるポリシリコンダイオ−ド又は抵抗を同
一チップ上に形成してなり、ゲ−ト電極、ソ−ス電極、
ドレイン電極、アノ−ド電極、カソ−ド電極の5電極を
独立に有する、又は、ゲ−ト電極、ドレイン電極、カソ
−ド電極の独立した3電極と、ソ−ス電極とアノ−ド電
極とを接続した電極端子の4電極を有する半導体装
置。」及び「前記半導体素子と同一チップ上に形成した
温度検出用ポリシリコンダイオ−ドを形成する拡散層
が、ポリシリコン層を垂直に突き抜けているポリシリコ
ン層を有する半導体装置。」を要旨とする。
According to the present invention, "the semiconductor element and a polysilicon diode or resistor capable of detecting the temperature thereof are formed on the same chip, and a gate electrode, a source electrode,
Drain electrode, anode electrode, cathode electrode having 5 electrodes independently, or gate electrode, drain electrode, cathode electrode having 3 independent electrodes, source electrode and anode electrode A semiconductor device having four electrodes of electrode terminals connected to and. And "a semiconductor device in which a diffusion layer forming a temperature detecting polysilicon diode formed on the same chip as the semiconductor element has a polysilicon layer vertically penetrating the polysilicon layer." .

【0013】[0013]

【実施例】次に、本発明について図1〜図8を参照して
説明する。なお、図1〜図5は、本発明の一実施例(実
施例1)を説明するための図であり、図6及び図7は、
本発明の他の実施例( 実施例2)を説明するための図で
ある。また、図8は、本発明の半導体装置における温度
特性(温度−VF)を示すグラフである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to FIGS. 1 to 5 are views for explaining one embodiment (Example 1) of the present invention, and FIGS. 6 and 7 are
It is a figure for demonstrating other Example (Example 2) of this invention. 8 is a graph showing the temperature characteristic of the semiconductor device of the present invention (temperature -V F).

【0014】(実施例1)図1は、本発明の一実施例
(実施例1)の半導体装置の要部断面図であり、図2は、
本発明の実施例1の半導体装置の平面図である。本実施
例1における半導体装置の製造に当っては、図1に示す
ように、まずシリコン基板(n+基板1)上に酸化膜5を
形成し、さらにその上にポリシリコン6を形成し、フォ
トリソグラフィ技術を用いてポリシリコン6をパタ−ニ
ングし、n+層4とp+層32を形成し、その上に酸化膜7
及びリンガラス8を形成する。
(Embodiment 1) FIG. 1 shows an embodiment of the present invention.
2 is a cross-sectional view of a main part of the semiconductor device of (Example 1), and FIG.
FIG. 3 is a plan view of the semiconductor device according to the first embodiment of the present invention. In manufacturing the semiconductor device according to the first embodiment, as shown in FIG. 1, first, an oxide film 5 is formed on a silicon substrate (n + substrate 1), and then polysilicon 6 is formed thereon. The polysilicon 6 is patterned by using the photolithography technique to form the n + layer 4 and the p + layer 32, and the oxide film 7 is formed thereon.
And phosphor glass 8 are formed.

【0015】n+層4及びp+層32にはソ−ス電極91、シ
リコン基板(n+基板1)にはドレイン電極92、ゲ−ト層
にはゲ−ト電極93が接触しており、このゲ−ト電極形成
と同一工程で、p+層12に接触する電極14とn+層13に接
触する電極15とを有する温度検出用ポリシリコンダイオ
−ド10を形成する。
A source electrode 91 is in contact with the n + layer 4 and the p + layer 32, a drain electrode 92 is in contact with the silicon substrate (n + substrate 1), and a gate electrode 93 is in contact with the gate layer. In the same step as forming the gate electrode, a temperature detecting polysilicon diode 10 having an electrode 14 in contact with the p + layer 12 and an electrode 15 in contact with the n + layer 13 is formed.

【0016】図3(A)、(B)は、上記ダイオ−ド部拡散
層を説明するための図であって、本実施例1のポリシリ
コンダイオ−ド10の拡散層は、同図(A)、(B)に示すよ
うな閉じた拡散層、並列拡散層を形成する。図4は、本
実施例1のポリシリコンダイオ−ド(ポリシリDi)部の
レイアウトを示す平面図であり、これは、試作時のパタ
−ンを参考としたものであり、縦:500μm、横:240μ
mよりなる。
FIGS. 3 (A) and 3 (B) are views for explaining the above-mentioned diode portion diffusion layer. The diffusion layer of the polysilicon diode 10 of the first embodiment is shown in FIG. A closed diffusion layer and a parallel diffusion layer as shown in A) and (B) are formed. FIG. 4 is a plan view showing the layout of the polysilicon diode (polysilicon Di) portion of the first embodiment, which is based on the pattern at the time of trial production, and the vertical length is 500 μm and the horizontal width is 500 μm. : 240μ
m.

【0017】図5は、本実施例1の等価回路図(5電極)
であり、本実施例1では、この図に示すように、ソ−ス
電極91、ドレイン電極92、ゲ−ト電極93、アノ−ド電極
及びカソ−ド電極である電極14、同15の5電極が独立に
有する構造のものである。
FIG. 5 is an equivalent circuit diagram of the first embodiment (five electrodes).
In the first embodiment, as shown in this figure, the source electrode 91, the drain electrode 92, the gate electrode 93, the electrodes 14 and 15 which are the anode electrode and the cathode electrode, and 5 The structure has independent electrodes.

【0018】次に、この実施例1の半導体装置の動作を
説明すると、この温度検出用ポリシリコンダイオ−ド10
の低電流における順電圧降下は、温度依存性を有するの
で、半導体素子の温度を検出することができ、早い応答
性でゲ−ト電圧の制御回路へ送ることができる。
Next, the operation of the semiconductor device of the first embodiment will be described. This temperature detecting polysilicon diode 10 is used.
Since the forward voltage drop at a low current has a temperature dependency, the temperature of the semiconductor element can be detected and can be sent to the control circuit of the gate voltage with a quick response.

【0019】(実施例2)図6は、本発明の他の実施例
(実施例2)の半導体装置の平面図であり、図7は、本発
明の実施例2の等価回路図(4電極)である。この実施例
2では、前記実施例1の5電極が独立に有する構造のも
のに代えて、図6及び図7に示すように、ソ−ス電極9
1、ドレイン電極92、ゲ−ト電極93の独立した3電極
と、ソ−ス電極91及びアノ−ド電極14を接続した電極端
子との4電極を有する構造としたものである。
(Embodiment 2) FIG. 6 shows another embodiment of the present invention.
FIG. 8 is a plan view of a semiconductor device of (Example 2), and FIG. 7 is an equivalent circuit diagram (4 electrodes) of Example 2 of the present invention. In the second embodiment, instead of the structure having the five electrodes independently of the first embodiment, as shown in FIGS. 6 and 7, a source electrode 9 is used.
The structure has four electrodes, namely, three independent electrodes, a drain electrode 92 and a gate electrode 93, and an electrode terminal to which the source electrode 91 and the anode electrode 14 are connected.

【0020】本実施例2の半導体装置について、前記し
た図1を参照してさらに説明すると、本実施例2では、
図1に示したp+層12に接触する電極14とソ−ス電極91
とを接続させた構造よりなり、また、図1に示すp+層1
2及びn+層4をポリシリコン6の層に垂直に突き抜ける
ように形成した構造よりなる。
The semiconductor device of the second embodiment will be further described with reference to FIG. 1 described above.
The electrode 14 and the source electrode 91 in contact with the p + layer 12 shown in FIG.
And p + layer 1 shown in FIG.
2 and the n + layer 4 are formed so as to vertically penetrate the layer of polysilicon 6.

【0021】本実施例2では、上記したとおり、p+層1
2に接触する電極14とソ−ス電極91とを接続させたの
で、実施例1における電極を1個少なくすることができ
る。従って、本実施例2によれば、ボンデイングワイヤ
−を打つための面積分ペレット面積を小さくできるとい
う利点がある。また、本実施例2では、前記実施例1の
+層12及びn+層4をポリシリコン6の層に垂直に突き
抜けるように形成したため、アルミスパイクによる特性
変動及び順方向電圧(VF)、耐圧(VZ)等のバラツキを小
さくできるという利点を有している。
In the second embodiment, as described above, the p + layer 1
Since the electrode 14 in contact with 2 and the source electrode 91 are connected, the number of electrodes in the first embodiment can be reduced by one. Therefore, according to the second embodiment, there is an advantage that the pellet area can be reduced by the area for hitting the bonding wire. In the second embodiment, the p + layer 12 and the n + layer 4 of the first embodiment are formed so as to penetrate perpendicularly to the layer of polysilicon 6, so that the characteristic fluctuation due to the aluminum spike and the forward voltage (V F ) The advantage is that variations in withstand voltage (V Z ) can be reduced.

【0022】ここで、本発明の半導体装置について、具
体的に裏付けデ−タとして、図8(本発明の半導体装置
における温度特性「温度−VF」を示すグラフ)を用いて
説明する。この図8のグラフに示すように、一層のポリ
シリコンで温度特性を確認した結果、市販されているダ
イオ−ドとほぼ同一の20mV/℃の温度係数を得ること
ができた。
[0022] Here, the semiconductor device of the present invention, specifically supported de - as data will be described with reference to FIG. 8 (a graph showing temperature characteristics "Temperature -V F" in the semiconductor device of the present invention). As shown in the graph of FIG. 8, as a result of confirming the temperature characteristics with one layer of polysilicon, it was possible to obtain a temperature coefficient of 20 mV / ° C. which is almost the same as that of the commercially available diode.

【0023】[0023]

【発明の効果】以上説明したように本発明は、半導体素
子上に温度検出用ポリシリコンダイオ−ドを設けること
により、半導体素子の接合部に近い温度を検出できるた
め、接合部の温度上昇を応答性よく正確に検出して素子
の破壊を防止できるという効果が生じる。
As described above, according to the present invention, by providing the temperature detecting polysilicon diode on the semiconductor element, it is possible to detect the temperature close to the junction of the semiconductor element, so that the temperature rise of the junction can be prevented. There is an effect that the element can be prevented from being broken down by accurately detecting it with high responsiveness.

【0024】また、本発明は、一層のポリシリコン層で
半導体素子と温度検出用ポリシリコンダイオ−ドとを形
成したため、製造工程を短縮でき、さらに、温度検出用
ポリシリコンダイオ−ドの抵抗成分をポリシリコン層に
垂直に突き抜けるように形成したため、特性のバラツキ
を小さくできるという効果が生じる。
Further, according to the present invention, since the semiconductor element and the temperature detecting polysilicon diode are formed of one polysilicon layer, the manufacturing process can be shortened and the resistance component of the temperature detecting polysilicon diode can be shortened. Is formed so as to penetrate perpendicularly to the polysilicon layer, so that there is an effect that variation in characteristics can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例(実施例1)の半導体装置の要
部断面図。
FIG. 1 is a cross-sectional view of essential parts of a semiconductor device according to an embodiment (Embodiment 1) of the present invention.

【図2】本発明の実施例1の半導体装置の平面図。FIG. 2 is a plan view of the semiconductor device according to the first embodiment of the present invention.

【図3】本発明の実施例1のダイオ−ド部拡散層を示す
図であって、(A)、(B)はその閉じた拡散層、並列拡散
層の平面図。
FIG. 3 is a diagram showing a diode portion diffusion layer of Example 1 of the present invention, in which (A) and (B) are plan views of the closed diffusion layer and the parallel diffusion layer.

【図4】本発明の実施例1のポリコンシリダイオ−ド部
のレイアウトを示す平面図。
FIG. 4 is a plan view showing a layout of a polyconsolidated diode portion according to the first embodiment of the present invention.

【図5】本発明の実施例1の等価回路図(5電極)。FIG. 5 is an equivalent circuit diagram (five electrodes) of the first embodiment of the present invention.

【図6】本発明の他の実施例(実施例2)の半導体装置の
平面図。
FIG. 6 is a plan view of a semiconductor device according to another embodiment (embodiment 2) of the present invention.

【図7】本発明の実施例2の等価回路図(4電極)。FIG. 7 is an equivalent circuit diagram (four electrodes) of the second embodiment of the present invention.

【図8】本発明の半導体装置における温度特性(温度−
F)を示すグラフ。
FIG. 8 is a temperature characteristic of the semiconductor device of the present invention (temperature-
A graph showing V F ).

【図9】従来の半導体装置の要部断面図。FIG. 9 is a cross-sectional view of a main part of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 n+基板 2 n-層 3 p+層 4 n+層 5 酸化膜 6 ポリシリコン 7 酸化膜 8 リンガラス 10 ダイオ−ド 11 ポリシリコン 12 p+層 13 n+層 14 電極 15 電極 31 p-層 32 p+層 91 ソ−ス電極 92 ドレイン電極 93 ゲ−ト電極1 n + substrate 2 n - layer 3 p + layer 4 n + layer 5 oxide film 6 polysilicon 7 oxide film 8 phosphorus glass 10 diode - de 11 polysilicon 12 p + layer 13 n + layer 14 electrode 15 electrode 31 p - Layer 32 p + layer 91 source electrode 92 drain electrode 93 gate electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 9055−4M H01L 29/78 321 K 9055−4M 321 W (72)発明者 沢田 雅己 東京都港区芝五丁目7番1号日本電気株式 会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location 9055-4M H01L 29/78 321 K 9055-4M 321 W (72) Inventor Masami Sawada Minato-ku, Tokyo 5-7-1 Shiba NEC Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリシリコンを主体としたゲ−ト電極を
有するMOS型電界効果トランジスタを含む半導体素子
において、その温度を検出できるポリシリコンダイオ−
ド又は抵抗を同一チップ上にポリシリコン一層で形成し
てなることを特徴とする半導体装置。
1. In a semiconductor device including a MOS field effect transistor having a gate electrode mainly composed of polysilicon, a polysilicon diode capable of detecting its temperature.
A semiconductor device having a polysilicon layer formed on the same chip.
【請求項2】 前記半導体素子とその温度を検出できる
ポリシリコンダイオ−ド又は抵抗を同一チップ上に形成
してなり、ゲ−ト電極、ソ−ス電極、ドレイン電極、ア
ノ−ド電極、カソ−ド電極の5電極を独立に有すること
を特徴とする請求項1記載の半導体装置。
2. A semiconductor device and a polysilicon diode or resistor capable of detecting the temperature of the semiconductor device are formed on the same chip, and a gate electrode, a source electrode, a drain electrode, an anode electrode, and a cathode are formed. The semiconductor device according to claim 1, wherein the five electrodes of the negative electrode are independently provided.
【請求項3】 前記半導体素子とその温度を検出できる
ポリシリコンダイオ−ド又は抵抗を同一チップ上に形成
してなり、ゲ−ト電極、ドレイン電極、カソ−ド電極の
独立した3電極と、ソ−ス電極とアノ−ド電極とを接続
した電極端子の4電極を有することを特徴とする請求項
1記載の半導体装置。
3. The semiconductor element and a polysilicon diode or resistor capable of detecting the temperature thereof are formed on the same chip, and three independent electrodes of a gate electrode, a drain electrode and a cathode electrode are provided, 2. The semiconductor device according to claim 1, further comprising four electrodes, which are electrode terminals connecting the source electrode and the anode electrode.
【請求項4】 前記半導体素子と同一チップ上に形成し
た温度検出用ポリシリコンダイオ−ドを形成する拡散層
が、ポリシリコン層を垂直に突き抜けているポリシリコ
ン層を有することを特徴とする請求項1、請求項2又は
請求項3記載の半導体装置。
4. A diffusion layer forming a temperature detecting polysilicon diode formed on the same chip as the semiconductor element has a polysilicon layer which vertically penetrates through the polysilicon layer. The semiconductor device according to claim 1, claim 2, or claim 3.
JP5326146A 1993-11-30 1993-11-30 Semiconductor device Pending JPH07153920A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5326146A JPH07153920A (en) 1993-11-30 1993-11-30 Semiconductor device
KR1019940031862A KR950015755A (en) 1993-11-30 1994-11-29 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5326146A JPH07153920A (en) 1993-11-30 1993-11-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH07153920A true JPH07153920A (en) 1995-06-16

Family

ID=18184569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5326146A Pending JPH07153920A (en) 1993-11-30 1993-11-30 Semiconductor device

Country Status (2)

Country Link
JP (1) JPH07153920A (en)
KR (1) KR950015755A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203446A (en) * 2004-01-13 2005-07-28 Toyota Industries Corp Semiconductor device with temperature detecting function
JP2006093252A (en) * 2004-09-22 2006-04-06 Sanken Electric Co Ltd Semiconductor device
DE102008045722A1 (en) 2007-12-25 2009-07-09 Mitsubishi Electric Corp. Temperature Acquisition System
JP2014082519A (en) * 2013-12-27 2014-05-08 Fuji Electric Co Ltd Semiconductor device and manufacturing method of the same
JPWO2014024595A1 (en) * 2012-08-09 2016-07-25 富士電機株式会社 Semiconductor device and manufacturing method thereof
US9543294B2 (en) 2015-02-09 2017-01-10 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US9548294B2 (en) 2012-08-09 2017-01-17 Fuji Electric Co., Ltd. Semiconductor device with temperature-detecting diode
JP2017037997A (en) * 2015-08-11 2017-02-16 富士電機株式会社 Semiconductor element and semiconductor element manufacturing method
JPWO2015029159A1 (en) * 2013-08-28 2017-03-02 三菱電機株式会社 Semiconductor device
US9780012B2 (en) 2013-12-12 2017-10-03 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing the same
JP2017183581A (en) * 2016-03-31 2017-10-05 ルネサスエレクトロニクス株式会社 Semiconductor device and semiconductor apparatus
WO2017208734A1 (en) * 2016-06-03 2017-12-07 富士電機株式会社 Semiconductor device
JP2018120930A (en) * 2017-01-24 2018-08-02 トヨタ自動車株式会社 Semiconductor device
JP2021002683A (en) * 2020-10-02 2021-01-07 ローム株式会社 Semiconductor device and semiconductor module
US11257812B2 (en) 2015-02-13 2022-02-22 Rohm Co., Ltd. Semiconductor device and semiconductor module
JP2022033226A (en) * 2020-10-02 2022-02-28 ローム株式会社 Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201522A (en) * 1983-04-28 1984-11-15 Nec Corp Integrated circuit
JPS63229757A (en) * 1987-03-19 1988-09-26 Nippon Denso Co Ltd Semiconductor device
JPH05199040A (en) * 1992-01-22 1993-08-06 Mitsubishi Electric Corp Semiconductor equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201522A (en) * 1983-04-28 1984-11-15 Nec Corp Integrated circuit
JPS63229757A (en) * 1987-03-19 1988-09-26 Nippon Denso Co Ltd Semiconductor device
JPH05199040A (en) * 1992-01-22 1993-08-06 Mitsubishi Electric Corp Semiconductor equipment

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203446A (en) * 2004-01-13 2005-07-28 Toyota Industries Corp Semiconductor device with temperature detecting function
JP2006093252A (en) * 2004-09-22 2006-04-06 Sanken Electric Co Ltd Semiconductor device
JP4599963B2 (en) * 2004-09-22 2010-12-15 サンケン電気株式会社 Semiconductor device
DE102008045722A1 (en) 2007-12-25 2009-07-09 Mitsubishi Electric Corp. Temperature Acquisition System
DE102008045722B4 (en) * 2007-12-25 2011-12-01 Mitsubishi Electric Corp. Temperature Acquisition System
US8602645B2 (en) 2007-12-25 2013-12-10 Mitsubishi Electric Corporation Temperature detection system
US10396065B2 (en) 2012-08-09 2019-08-27 Fuji Electric Co., Ltd. Semiconductor device having a temperature-detecting diode
JPWO2014024595A1 (en) * 2012-08-09 2016-07-25 富士電機株式会社 Semiconductor device and manufacturing method thereof
US9461030B2 (en) 2012-08-09 2016-10-04 Fuji Electric Co., Ltd. Semiconductor device and method for producing the same
US9548294B2 (en) 2012-08-09 2017-01-17 Fuji Electric Co., Ltd. Semiconductor device with temperature-detecting diode
JPWO2015029159A1 (en) * 2013-08-28 2017-03-02 三菱電機株式会社 Semiconductor device
US9716052B2 (en) 2013-08-28 2017-07-25 Mitsubishi Electric Corporation Semiconductor device comprising a conductive film joining a diode and switching element
US9780012B2 (en) 2013-12-12 2017-10-03 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing the same
DE112014005661B4 (en) 2013-12-12 2023-01-12 Fuji Electric Co., Ltd. Semiconductor device and method for its manufacture
JP2014082519A (en) * 2013-12-27 2014-05-08 Fuji Electric Co Ltd Semiconductor device and manufacturing method of the same
US9543294B2 (en) 2015-02-09 2017-01-10 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US11257812B2 (en) 2015-02-13 2022-02-22 Rohm Co., Ltd. Semiconductor device and semiconductor module
US11495595B2 (en) 2015-02-13 2022-11-08 Rohm Co., Ltd. Semiconductor device and semiconductor module
US11670633B2 (en) 2015-02-13 2023-06-06 Rohm Co., Ltd. Semiconductor device and semiconductor module
US11916069B2 (en) 2015-02-13 2024-02-27 Rohm Co., Ltd. Semiconductor device and semiconductor module
JP2017037997A (en) * 2015-08-11 2017-02-16 富士電機株式会社 Semiconductor element and semiconductor element manufacturing method
JP2017183581A (en) * 2016-03-31 2017-10-05 ルネサスエレクトロニクス株式会社 Semiconductor device and semiconductor apparatus
JPWO2017208734A1 (en) * 2016-06-03 2018-09-27 富士電機株式会社 Semiconductor device
WO2017208734A1 (en) * 2016-06-03 2017-12-07 富士電機株式会社 Semiconductor device
US10504785B2 (en) 2016-06-03 2019-12-10 Fuji Electric Co., Ltd. Semiconductor device
JP2018120930A (en) * 2017-01-24 2018-08-02 トヨタ自動車株式会社 Semiconductor device
JP2021002683A (en) * 2020-10-02 2021-01-07 ローム株式会社 Semiconductor device and semiconductor module
JP2022033226A (en) * 2020-10-02 2022-02-28 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
KR950015755A (en) 1995-06-17

Similar Documents

Publication Publication Date Title
JP2521783B2 (en) Semiconductor device and manufacturing method thereof
JPH07153920A (en) Semiconductor device
US7157054B2 (en) Membrane type gas sensor and method for manufacturing membrane type gas sensor
US3634929A (en) Method of manufacturing semiconductor integrated circuits
KR20010031207A (en) Power transistor device
US6686634B2 (en) Semiconductor device and a method of producing the same
US6930371B2 (en) Temperature-sensing diode
US20030082842A1 (en) On-chip temperature sensor formed of MOS tunneling diode
US8018018B2 (en) Temperature sensing device
JPH06334189A (en) Current detecting resistance of integrated structure for power mos device
JPH10116917A (en) Power transistor
EP0595355A1 (en) Semiconductor device with a protection element and method for manufacturing the same
JPH0775260B2 (en) Semiconductor device
JP3269536B2 (en) Semiconductor device
US4942446A (en) Semiconductor device for switching, and the manufacturing method therefor
JPS60147154A (en) Resistance structure
JP3148781B2 (en) Semiconductor device
JPS6321341B2 (en)
EP0948050A1 (en) Electronic semiconductor power device with polycrystalline silicon components
JP3372109B2 (en) Semiconductor device
JP3263554B2 (en) Chip component and method of manufacturing the same
JPH11297941A (en) Semiconductor device
JPH0629466A (en) Semiconductor integrated circuit
JPH05326844A (en) Semiconductor integrated circuit
JPH01196858A (en) Transistor